JPS6076707A - Semiconductor laser duplex module - Google Patents

Semiconductor laser duplex module

Info

Publication number
JPS6076707A
JPS6076707A JP18456183A JP18456183A JPS6076707A JP S6076707 A JPS6076707 A JP S6076707A JP 18456183 A JP18456183 A JP 18456183A JP 18456183 A JP18456183 A JP 18456183A JP S6076707 A JPS6076707 A JP S6076707A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser
polarization
polarizing element
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18456183A
Other languages
Japanese (ja)
Inventor
Tsutomu Aoyama
勉 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP18456183A priority Critical patent/JPS6076707A/en
Publication of JPS6076707A publication Critical patent/JPS6076707A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4216Packages, e.g. shape, construction, internal or external details incorporating polarisation-maintaining fibres
    • G02B6/4218Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • G02B6/425Optical features

Abstract

PURPOSE:To improve reliability by mounting two laser chips onto the heat sink of a semiconductor laser module and adding a 90 deg. polarizing rotor and a polarizing element thereto. CONSTITUTION:A semiconductor laser duplex module is constituted of two semiconductor laser chips 12, 13, a 90 deg. polarizing rotor 14, a polarizing element 15 and a lens 17. The chips 12, 13 are disposed on a heat sink 11 having a flat main plane in such a way that the optical axis of the linearly polarized exit light and the plane of polarization are in parallel with each other and that the positions of the laser end faces coincide with each other. The rotor 14 is placed on the front surface of the one laser chip and rotates 90 deg. the plane of polarization of the laser light. The element 15 consists of a double refracting material and joins the two beams having the orthogonally intersecting planes of polarization. The lens 17 focuses the laser light and couples the same to an optical fiber 16 on the output side.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は電気信号を光信号に変換する半導体レーザ素子
と光信号伝送媒体である光ファイバを。
Detailed Description of the Invention [Technical Field] The present invention relates to a semiconductor laser device that converts an electrical signal into an optical signal and an optical fiber that is an optical signal transmission medium.

効率よく安定に結合する半導体レーザモジュール。A semiconductor laser module that combines efficiently and stably.

特に高信頼光フアイバ通信システムに用いられる二重化
した半導体レーザモジュールに関するものである。
In particular, the present invention relates to a dual semiconductor laser module used in a highly reliable optical fiber communication system.

〔従来技術〕[Prior art]

光ファイバケーゾル海底中継システムヲ初めとする高信
頼光ファイ・ぐ通信システムでは、このシステム中に使
用する部品に対して超高信頼を要求する。電気信号を光
信号に変換する半導体レーザは最近50〜100万時間
の平均無故障時間(MTTF)を達成するものも現れ高
信頼化されてきてはいるが、他の電気系の部品に比べて
十分とは言えない。
Highly reliable optical fiber communication systems, such as optical fiber Kasol submarine relay systems, require extremely high reliability from the components used in the system. Semiconductor lasers that convert electrical signals into optical signals have recently become highly reliable, with some achieving a mean time-to-failure (MTTF) of 500,000 to 1,000,000 hours, but compared to other electrical components, I can't say it's enough.

この故に複数個の半導体レーザモジュールを光スィッチ
又は光結合器によ92重化している。並列に用いて即ち
多重化してその信頼性を他の電気系の部品に近づけるよ
うにしている。
For this reason, a plurality of semiconductor laser modules are stacked in 92 layers using optical switches or optical couplers. They are used in parallel, that is, multiplexed, to bring their reliability closer to that of other electrical system components.

第1図は従来の半導体レーザニ重化モノーールの構成の
一例を示す図であって、2個の半導体モノ−〜ル1およ
び2からのレーザ光は個々の光ファイバ3を通り、光ス
ィッチ4で結合され、光ファイバ5に送られる。
FIG. 1 is a diagram showing an example of the configuration of a conventional semiconductor laser duplex monole, in which laser light from two semiconductor monooles 1 and 2 passes through individual optical fibers 3 and is connected to an optical switch 4. The signals are combined and sent to the optical fiber 5.

第2図は従来の半導体レーザニ重化モジュールの構成の
他の例を示す図であって、2つのレーザ光の結合はハー
フミラ−又は偏光分離素子を用いた光結合器6で行なっ
ている。他は第1図の場合と同じである。
FIG. 2 is a diagram showing another example of the configuration of a conventional semiconductor laser duplexing module, in which two laser beams are coupled by an optical coupler 6 using a half mirror or a polarization separation element. The other details are the same as in the case of FIG.

上記のような光源の多重光回路系では、多重光回路系を
構成する部品数が多くなり、目標とする信頼度を達成す
るには、これらの光部品・素子が極めて高い信頼を有し
ていることが必要となる。
In the multiplex optical circuit system for the light source as described above, the number of components that make up the multiplex optical circuit system increases, and in order to achieve the target reliability, these optical components and elements must have extremely high reliability. It is necessary to be present.

また多重光回路系が占めるスペースが犬きくなシ。Also, the space occupied by the multiplexed optical circuit system is very small.

光システムの小形化高密度実装化が難しい。It is difficult to miniaturize optical systems and implement high-density packaging.

〔発明の目的〕[Purpose of the invention]

したがって本発明の目的は、上述の光源多重光回路系の
欠点を克服し、多重化のだめの構成部品・−素子が少な
い小形、高信頼の半導体レーザモノニール企提供するこ
とにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to overcome the drawbacks of the above-mentioned light source multiplexing optical circuit system and to provide a compact, highly reliable semiconductor laser monolayer system with fewer components and elements that cannot be multiplexed.

〔発明の構成〕[Structure of the invention]

本発明は上記の目的を達成するために、半導体レーザ光
を結合するのに複屈折効果を持つ偏光素子を用いるよう
にしたものである。
In order to achieve the above object, the present invention uses a polarizing element having a birefringence effect to combine semiconductor laser light.

すなわち本発明によれば、主面が平坦状のヒートシンク
上に配置され、光軸および直線偏光の偏光面が互いに平
行で且つ出射端面がほぼ一致する互いに近接した第1お
よび第2のレーザ光を出射する半導体レーザ手段と、前
記第1のレーザ光の光路内に置かれ、該第1のレーザ光
の偏光面を90’回転させて前記第2のレーザ光の偏光
面に対し直角にする90°偏光回転子と、偏光面が互い
に直角になった第1および第2のレーザ光の光路を複屈
折効果で合流させる偏光素子と、出射側光ファイバーと
、前記偏光素子で合流したレーザ光を像変換して前記出
射側光ファイバーに結合させるレンズとを有する半導体
レーザニ重化モジュールが得られる。
That is, according to the present invention, the first and second laser beams are disposed on a heat sink having a flat principal surface, and are close to each other, the optical axes and the polarization planes of the linearly polarized light are parallel to each other, and the emission end surfaces are substantially coincident. a semiconductor laser means for emitting light, and a semiconductor laser means placed in the optical path of the first laser beam and rotating the plane of polarization of the first laser beam by 90' to make it perpendicular to the plane of polarization of the second laser beam. ° A polarization rotator, a polarization element that merges the optical paths of the first and second laser beams whose polarization planes are perpendicular to each other using a birefringence effect, an output side optical fiber, and an image of the laser beams that merge with the polarization element. A semiconductor laser duplication module having a lens for converting and coupling to the output side optical fiber is obtained.

〔実施例〕〔Example〕

第3図は本発明の一実施例である半導体レーザ二重化モ
ジュールの基本構成を示す図である。この第3図の半導
体レーザモゾーールは、主面が平坦なヒートシンク1工
上に出射直線偏光の光軸および偏光面が互いに平行で 
− 妻毒毒→レーザ端面位置がほぼ一致するように配置され
た2個の半導体レーザチップ12 、137(両チップ
が同一のときは偏向面は実質的に重なる。)と、一方の
レーザチップ前面に置かれレーザ光の制光面を90°回
転させる90°偏光回転子14(例えばレーザ光の波長
が1.3ミクロンのとき厚さ140ミクロンの水晶板)
と、直交する偏光面を有する2つのビームを合流する複
屈折材料からなる偏光素子15(厚さ約2.5ミリメー
トルの方解石板)と、レーザ光を集束し出力側光ファイ
バ16に結合させるレンズ17とから構成される。
FIG. 3 is a diagram showing the basic configuration of a semiconductor laser duplex module which is an embodiment of the present invention. The semiconductor laser mozole shown in Fig. 3 is mounted on a heat sink with a flat principal surface so that the optical axis and polarization plane of the emitted linearly polarized light are parallel to each other.
- Two semiconductor laser chips 12 and 137 arranged so that the positions of the laser end faces almost match (when both chips are the same, the deflection planes substantially overlap), and the front surface of one laser chip. A 90° polarization rotator 14 (for example, a quartz plate with a thickness of 140 microns when the wavelength of the laser light is 1.3 microns) is placed in the 90° polarization rotator 14 to rotate the light control surface of the laser beam by 90°.
, a polarizing element 15 (a calcite plate approximately 2.5 mm thick) made of a birefringent material that combines two beams with orthogonal polarization planes, and a lens that focuses the laser beam and couples it to the output optical fiber 16. It consists of 17.

半導体レーザチップ12.13からの出射ビー杼 ムの偏光面は互いに平p(図では紙面に平行)であるが
、90°偏光回転子14はレーザチッf12からの光の
みが通過するように置かれているので。
The polarization planes of the output beams from the semiconductor laser chips 12 and 13 are parallel to each other (parallel to the paper plane in the figure), but the 90° polarization rotator 14 is placed so that only the light from the laser chip f12 passes through. Because it is.

レーザチップ12からの光の偏光面は9 Q’回転する
がレーザチップ13からの光は回転せず、したがって両
レーザチップからの光の偏光面は互いに直交するように
なる。偏光素子15では1紙面に垂直な偏光をもつレー
ザチップ12からの光は直進し1紙面に平行な偏光をも
つレーザチッf13からの光は屈折して、出射端で2つ
の光路は一致する。この偏光素子15を用いる合流回路
では原理上損失がない。光路の一致した2つの直線偏光
は複屈折性の無視できるレンズ17によシ適度に像変換
され、効率よく出力側ファイバ16に結合する。
The polarization plane of the light from the laser chip 12 is rotated by 9 Q', but the light from the laser chip 13 is not rotated, so that the polarization planes of the light from both laser chips become perpendicular to each other. In the polarizing element 15, the light from the laser chip 12 with polarization perpendicular to the paper plane travels straight, and the light from the laser chip f13 with polarization parallel to the paper plane is refracted, so that the two optical paths coincide at the output end. A confluence circuit using this polarizing element 15 has no loss in principle. The two linearly polarized lights whose optical paths coincide are appropriately image-converted by the lens 17 with negligible birefringence, and are efficiently coupled to the output fiber 16.

上記の実施例の構成では、半導体レーザの2重化に必要
な光学素子は9o0偏光回転子と偏光素子の2点だけで
あシ、単純な構成である。而も1個のレーザモジュール
程度のスペースしか必要トシない。なおレンズ17に相
当するレンズは、説明は省略したが、第1図および第2
図の従来の半導体レーザモジュール1と2にも使われて
いる。
In the configuration of the above embodiment, only two optical elements are required for duplication of the semiconductor laser: a 9o0 polarization rotator and a polarizing element, and the configuration is simple. Moreover, only a space equivalent to one laser module is required. Although the explanation of the lens corresponding to the lens 17 is omitted, it is shown in FIGS. 1 and 2.
It is also used in conventional semiconductor laser modules 1 and 2 shown in the figure.

第3図の実施例とは異って90’偏光回転子14を用い
ずに2個のレーザチップ12と13を偏光方向が直交す
るように配置することは、原理的には可能であシ又素子
の数が少なくて済むが、ヒート7ンクの形状をL形にし
たシ、チップのマウント精度を正確にコントロールした
シする必要があシ、実際的には好ましくない。
Unlike the embodiment shown in FIG. 3, it is theoretically possible to arrange the two laser chips 12 and 13 so that their polarization directions are perpendicular to each other without using the 90' polarization rotator 14. Further, although the number of elements can be reduced, it is necessary to make the shape of the heat sink L-shaped and to precisely control the mounting accuracy of the chip, which is not preferable in practice.

第4図は本発明の第1図の実施例の半導体レーザモジュ
ールのうち、半導体レーザ、偏光回転子。
FIG. 4 shows a semiconductor laser and a polarization rotator of the semiconductor laser module according to the embodiment of FIG. 1 of the present invention.

および偏光素子をパッチーノ内に封止した場合の構成を
示す図である。第4図において、ノやツケージ21の中
に設けられた半導体レーザ素子22と23は、中間をス
クライブされて同一チップとして形成されていて、ヒー
トシンク11にマウントされている。これによシ、レー
ザ素子間の相対距離及びレーザ光出射端面位置の再現性
が保証され。
FIG. 3 is a diagram illustrating a configuration in which a polarizing element is sealed inside a patch. In FIG. 4, semiconductor laser elements 22 and 23 provided in a cage 21 are scribed in the middle to form the same chip, and are mounted on a heat sink 11. This ensures the reproducibility of the relative distance between the laser elements and the position of the laser beam emitting end face.

さらに、2個のレーザ素子の特性の均一性も確保できる
。このときのレーザチップ間の距離は、第3図に示しだ
数字をそのまま用いた場合1例えば250ミクロンにと
る。そして90°偏光回転子(水晶板)14は偏光素子
(方解石板)15に接着されておシ、この偏光素子15
は同時に外部遮断部材としても用いられる。なお24は
レーザ出力モニター用のフォトダイオードである。
Furthermore, it is possible to ensure uniformity of the characteristics of the two laser elements. The distance between the laser chips at this time is set to 1, for example, 250 microns if the numbers shown in FIG. 3 are used as they are. The 90° polarization rotator (quartz plate) 14 is bonded to a polarizing element (calcite plate) 15.
is also used as an external blocking member. Note that 24 is a photodiode for monitoring laser output.

以上説明したように2本発明の半導体レーザモジ=−ル
ハ、従来の半導体レーザモジュール構造にヒートシンク
上に2個のレーザチップ又は素子をマウントし、90°
偏光回転子と偏光素子を付加するだけの簡単な光回路構
成である。従って光源二重化に伴う光回路部品点数の増
加が少なく、かつ従来の半導体レーザの大きさとほとん
ど変らすに小形で信頼度の高い半導体レーザ/1重化光
回路が実現できる。すなわち本発明は高信頼光フアイバ
通信システム用の半導体レーザモジュールとしてきわめ
て有用である。
As explained above, in the semiconductor laser module of the present invention, two laser chips or elements are mounted on a heat sink in a conventional semiconductor laser module structure, and the two laser chips or elements are mounted at 90 degrees.
This is a simple optical circuit configuration that only requires the addition of a polarization rotator and a polarization element. Therefore, there is little increase in the number of optical circuit components due to duplication of light sources, and a highly reliable semiconductor laser/single optical circuit can be realized which is small and almost the same size as a conventional semiconductor laser. That is, the present invention is extremely useful as a semiconductor laser module for highly reliable optical fiber communication systems.

【図面の簡単な説明】[Brief explanation of drawings]

二ニー 第1図および第2図は従来の光源1重化光回路構成を示
す図、第3図は本発明の一実施例である半導体レーザモ
ジュールの構成を示す図、第4図はレーザパッケージ構
造をした本発明の実施例の構成を示す図である。 記号の説明:11はヒートシンク、12と13は半導体
レーザチップ、14は90°偏光回転子。 15は偏光素子、16は光ファイバ、17はレンズ、涜
云−嚇一〒21はノぐッケージケース、22と23は半
導体レーザ素子、24はフォトダイオードをそれぞれあ
られしている。 第2図 第3図 第4図
Figures 1 and 2 are diagrams showing the configuration of a conventional single light source optical circuit, Figure 3 is a diagram showing the configuration of a semiconductor laser module that is an embodiment of the present invention, and Figure 4 is a laser package. 1 is a diagram illustrating a configuration of an embodiment of the present invention having a structure. Explanation of symbols: 11 is a heat sink, 12 and 13 are semiconductor laser chips, and 14 is a 90° polarization rotator. 15 is a polarizing element, 16 is an optical fiber, 17 is a lens, 21 is a package case, 22 and 23 are semiconductor laser elements, and 24 is a photodiode. Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)主面が平坦状のヒートシンク上に配置され。 光軸および直線偏光の偏光面が互いに平行で且つ出射端
面がほぼ一致する互いに近接した第1および第2のレー
ザ光を出射する半導体レーザ手段と。 前記第1のレーデ光の光路内に置かれ、該第1のレーザ
光の偏光面を9(7’回転させて前記第2のレーザ光の
偏光面に対し直角にする90°偏光回転子と、偏光面が
互いに直角になった第1および第2のレーザ光の光路を
複屈折効果で合流させる偏光素子と、出射側光ファイバ
ーと、前記偏光素子で合流したレーザ光を像変換して前
記出射側光ファイバーに結合させるレンズとを有する半
導体レーザ二重化モジュール。
(1) The main surface is placed on a flat heat sink. Semiconductor laser means for emitting first and second laser beams which are close to each other and whose optical axes and polarization planes of linearly polarized light are parallel to each other and whose emission end surfaces substantially coincide. a 90° polarization rotator that is placed in the optical path of the first laser beam and rotates the polarization plane of the first laser beam by 9 (7') to be perpendicular to the polarization plane of the second laser beam; , a polarizing element that merges the optical paths of the first and second laser beams whose polarization planes are perpendicular to each other by a birefringence effect; an output side optical fiber; and an image conversion of the merged laser beams by the polarizing element and the output. A semiconductor laser duplex module having a lens coupled to a side optical fiber.
(2) 前記(1)項および(2)項記載の装置であっ
て。 前記偏光素子が、前記半導体レーザ手段、90°偏光回
転子、および偏光素子をパッケージ内に封止して用いる
ときに、出力窓として設けられていることを特徴とする
半導体レーザ二重化モジュール。
(2) The device according to items (1) and (2) above. A semiconductor laser duplex module, characterized in that the polarizing element is provided as an output window when the semiconductor laser means, the 90° polarization rotator, and the polarizing element are sealed in a package.
(3) 前記(0項および(2)項に記載の装置であっ
て。 前記半導体レーザ手段が2つの半導体レーザ素子を単一
のチップとして構成した半導体レーザ手段であることを
特徴とする半導体レーザ二重化モジュール。
(3) The device according to (0) and (2) above, wherein the semiconductor laser means is a semiconductor laser means in which two semiconductor laser elements are configured as a single chip. Duplex module.
JP18456183A 1983-10-04 1983-10-04 Semiconductor laser duplex module Pending JPS6076707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18456183A JPS6076707A (en) 1983-10-04 1983-10-04 Semiconductor laser duplex module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18456183A JPS6076707A (en) 1983-10-04 1983-10-04 Semiconductor laser duplex module

Publications (1)

Publication Number Publication Date
JPS6076707A true JPS6076707A (en) 1985-05-01

Family

ID=16155357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18456183A Pending JPS6076707A (en) 1983-10-04 1983-10-04 Semiconductor laser duplex module

Country Status (1)

Country Link
JP (1) JPS6076707A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867991A1 (en) * 1997-03-27 1998-09-30 Mitsui Chemicals, Inc. Semiconductor laser light source and solid-state laser apparatus
EP1182481A2 (en) * 2000-08-22 2002-02-27 Axsun Technologies, Inc. Laser system with multi-stripe diode chip and integrated beam combiner
EP1215784A2 (en) * 2000-12-15 2002-06-19 The Furukawa Electric Co., Ltd. Semiconductor laser device for use in a semiconductor laser module and optical amplifier
WO2002049172A1 (en) * 2000-12-15 2002-06-20 The Furukawa Electric Co., Ltd Semiconductor laser element, semiconductor laser module and production method therefor and optical fiber amplifier
WO2002065191A1 (en) * 2001-02-09 2002-08-22 Hentze-Lissotschenko Patentverwaltungs Gmbh & Co. Kg Coupling device for light beams and illuminating device for a modulator
US6765935B2 (en) 2000-12-15 2004-07-20 The Furukawa Electric Co., Ltd. Semiconductor laser module, manufacturing method thereof and optical amplifier
US7085440B2 (en) 2001-07-02 2006-08-01 The Furukawa Electric Co., Ltd Semiconductor laser module and optical amplifier
US7245643B2 (en) 2001-07-02 2007-07-17 The Furukawa Electric Co., Ltd. Semiconductor laser module and method of manufacturing the same
US7259905B2 (en) 2001-07-02 2007-08-21 The Furukawa Electric Co., Ltd. Semiconductor laser module, optical amplifier, and method of manufacturing the semiconductor laser module
US7408867B2 (en) 2002-04-04 2008-08-05 The Furukawa Electric Co., Ltd. Method of aligning an optical fiber, method of manufacturing a semiconductor laser module, and semiconductor laser module

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867991A1 (en) * 1997-03-27 1998-09-30 Mitsui Chemicals, Inc. Semiconductor laser light source and solid-state laser apparatus
EP1182481A2 (en) * 2000-08-22 2002-02-27 Axsun Technologies, Inc. Laser system with multi-stripe diode chip and integrated beam combiner
EP1182481A3 (en) * 2000-08-22 2003-01-15 Axsun Technologies, Inc. Laser system with multi-stripe diode chip and integrated beam combiner
WO2002049172A1 (en) * 2000-12-15 2002-06-20 The Furukawa Electric Co., Ltd Semiconductor laser element, semiconductor laser module and production method therefor and optical fiber amplifier
EP1258954A1 (en) * 2000-12-15 2002-11-20 The Furukawa Electric Co., Ltd. Semiconductor laser element, semiconductor laser module and production method therefor and optical fiber amplifier
EP1215784A2 (en) * 2000-12-15 2002-06-19 The Furukawa Electric Co., Ltd. Semiconductor laser device for use in a semiconductor laser module and optical amplifier
EP1215784A3 (en) * 2000-12-15 2004-01-07 The Furukawa Electric Co., Ltd. Semiconductor laser device for use in a semiconductor laser module and optical amplifier
US6765935B2 (en) 2000-12-15 2004-07-20 The Furukawa Electric Co., Ltd. Semiconductor laser module, manufacturing method thereof and optical amplifier
EP1258954A4 (en) * 2000-12-15 2005-12-07 Furukawa Electric Co Ltd Semiconductor laser element, semiconductor laser module and production method therefor and optical fiber amplifier
WO2002065191A1 (en) * 2001-02-09 2002-08-22 Hentze-Lissotschenko Patentverwaltungs Gmbh & Co. Kg Coupling device for light beams and illuminating device for a modulator
US7085440B2 (en) 2001-07-02 2006-08-01 The Furukawa Electric Co., Ltd Semiconductor laser module and optical amplifier
US7245643B2 (en) 2001-07-02 2007-07-17 The Furukawa Electric Co., Ltd. Semiconductor laser module and method of manufacturing the same
US7259905B2 (en) 2001-07-02 2007-08-21 The Furukawa Electric Co., Ltd. Semiconductor laser module, optical amplifier, and method of manufacturing the semiconductor laser module
US7529021B2 (en) 2001-07-02 2009-05-05 The Furukawa Electric Co., Ltd. Semiconductor laser module, optical amplifier, and method of manufacturing the semiconductor laser module
US7408867B2 (en) 2002-04-04 2008-08-05 The Furukawa Electric Co., Ltd. Method of aligning an optical fiber, method of manufacturing a semiconductor laser module, and semiconductor laser module

Similar Documents

Publication Publication Date Title
US9042731B2 (en) Optical module having a plurality of optical sources
CN101080660B (en) Integrated optical multiplexer and demultiplexer
US5530577A (en) Two-way optical communication apparatus
CN110554463B (en) Optical integration device and circulator
WO2016065865A1 (en) Miniature same-wavelength single-core bidirectional optical transceiving module
EP1182481A2 (en) Laser system with multi-stripe diode chip and integrated beam combiner
JPH0268515A (en) Optical non-reciprocal device
US20230152537A1 (en) Optical Coupler Comprising a Molded Optical Interposer Together with a PIC and 2 Polarization Selective Elements Enabling Isolation and/or Polarization Management
WO2022088412A1 (en) Single-optical-fiber bidirectional transceiving device and optical fiber communication system
JPS6076707A (en) Semiconductor laser duplex module
US6263129B1 (en) High-isolation dense wavelength division multiplexer utilizing a polarization beam splitter, non-linear interferometers and birefringent plates
WO2023065468A1 (en) Optical signal transmission system
JP2943436B2 (en) Semiconductor laser module
EP0372807A2 (en) Optical mixing device
JPH0629915B2 (en) Optical communication signal source package
Nelson et al. Wavelength division multiplexed optical interconnect using short pulses
CN217639632U (en) Circulator and optical module
JP2002189148A (en) Optical semiconductor element module
JPH11202263A (en) Depolarizer and optical transmission/reception module provided with the same
JP3011735B2 (en) Optical module
CN109799619B (en) 8-channel polarization combiner
JP6566022B2 (en) Integrated prism and integrated prism construction method
CN218728159U (en) Light splitting isolator
JPS5929219A (en) Optical coupler with terminal for monitoring light output
JPH06130257A (en) Bidirectional light transmission/reception module