JPS6115347B2 - - Google Patents

Info

Publication number
JPS6115347B2
JPS6115347B2 JP1465978A JP1465978A JPS6115347B2 JP S6115347 B2 JPS6115347 B2 JP S6115347B2 JP 1465978 A JP1465978 A JP 1465978A JP 1465978 A JP1465978 A JP 1465978A JP S6115347 B2 JPS6115347 B2 JP S6115347B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
compressor
temperature
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1465978A
Other languages
Japanese (ja)
Other versions
JPS54108045A (en
Inventor
Matsuo Amano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1465978A priority Critical patent/JPS54108045A/en
Publication of JPS54108045A publication Critical patent/JPS54108045A/en
Publication of JPS6115347B2 publication Critical patent/JPS6115347B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 本発明は冷凍装置の冷媒洩れ検出装置に係り、
特に、自動車内空気調和装置に用いられる冷凍装
置の冷媒洩れ検出装置の改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigerant leak detection device for a refrigeration system,
In particular, the present invention relates to an improvement in a refrigerant leak detection device for a refrigeration system used in an automobile air conditioner.

従来の冷凍装置の冷媒洩れを検出する方法とし
ては、特公昭51−33289号に示される如く冷媒の
低圧部分である蒸発器出口の過熱度を検出する方
法と、特開昭52−90846号に示される如く高圧部
分でその圧力を検出する方法とがある。前者は冷
凍装置を作動させた後の冷媒の状態を検出してい
るので、その作動前に冷媒が洩れていた場合は作
動直後に圧縮機が焼付くことがある。又、後者
は、冷凍サイクルの高圧回路の冷媒圧力を検出す
るとともに、冷凍サイクルの冷媒温度もしくは周
囲温度を検出し、この検出圧力と検出温度を比較
することにより、この検出圧力がその検出温度に
おける飽和圧力より所定以上低くなつた時、冷凍
サイクルの冷媒ガスの洩れ信号を発生する冷凍サ
イクルの冷媒ガス洩れ検出方法で、冷凍サイクル
の作動前に遅動装置を使用しなくても冷媒ガスの
洩れを適格に検出可能とするもので、冷凍装置の
作動および作動中の高圧部分における冷媒洩れは
検出できるが、作動中の低圧部分の冷媒洩れは検
出できないという欠点があつた。
Conventional methods for detecting refrigerant leaks in refrigeration systems include detecting the degree of superheat at the outlet of the evaporator, which is the low-pressure part of the refrigerant, as shown in Japanese Patent Publication No. 51-33289, and Japanese Patent Application Laid-Open No. 52-90846. As shown, there is a method of detecting the pressure at a high pressure section. The former detects the state of the refrigerant after the refrigeration system is activated, so if the refrigerant leaks before the refrigeration system is activated, the compressor may seize immediately after activation. In addition, the latter detects the refrigerant pressure in the high-pressure circuit of the refrigeration cycle, detects the refrigerant temperature in the refrigeration cycle or the ambient temperature, and compares the detected pressure with the detected temperature to determine whether the detected pressure is at the detected temperature. A method for detecting refrigerant gas leakage in a refrigeration cycle that generates a refrigerant gas leakage signal when the pressure drops to a predetermined level below the saturation pressure.This method detects refrigerant gas leakage without using a delay device before operating the refrigeration cycle. Although it can detect refrigerant leaks in the high-pressure parts during operation and operation of the refrigeration system, it has the disadvantage that it cannot detect refrigerant leaks in the low-pressure parts during operation.

発明は、冷凍装置の全回路における作動前およ
び作動中の冷媒洩れを検知するに好適な冷媒洩れ
検出装置を提供することを目的とし、圧縮機で圧
縮して送り出した冷媒気体を冷却して液化する高
圧回路と、この高圧回路よりの冷媒を膨張させる
膨張弁と、この膨張弁よりの冷媒を外部より吸熱
させて気化し上記圧縮機に循環させる低圧回路
と、上記高圧回路に設けられ、上記圧縮機の始動
前および作動中に上記冷媒の圧力と温度の状態が
設定値以下となつたときはその接点が開き、上記
圧縮機を作動させないようにする上記冷媒の圧力
と温度とを検知する圧力−温度スイツチとを有す
る冷凍装置の冷媒洩れ検出装置において、上記圧
力−温度スイツチが、上記冷媒の圧力の変化によ
つて変位する金属製のダイヤフラムと、このダイ
ヤフラムの上記冷媒側とは反対側に固定した第1
の接点と、この第1の接点と対向する第2の接点
を有し外部より導線と接続したバイメタルとを備
え、上記冷媒が室温で設定圧以下のときは上記1
対の接点を分離させ上記圧縮機を始動させず、上
記圧縮機の作動後に上記冷媒が設定値以下の圧力
と温度との状態のときは上記1対の接点を分離さ
せて上記圧縮機の運転を停止させるごとく作動す
るスイツチであることを特徴とするものである。
The purpose of the invention is to provide a refrigerant leak detection device suitable for detecting refrigerant leaks in all circuits of a refrigeration system before and during operation. an expansion valve for expanding refrigerant from the high-pressure circuit; a low-pressure circuit for absorbing heat from the expansion valve from the outside to vaporize the refrigerant and circulating it to the compressor; When the pressure and temperature of the refrigerant become lower than a set value before and during operation of the compressor, the contact opens and the pressure and temperature of the refrigerant are detected to prevent the compressor from operating. A refrigerant leak detection device for a refrigeration system having a pressure-temperature switch, wherein the pressure-temperature switch includes a metal diaphragm that is displaced by a change in the pressure of the refrigerant, and a side of the diaphragm opposite to the refrigerant side. The first fixed at
and a bimetal having a second contact facing the first contact and connected to a conductor from the outside, and when the refrigerant is at room temperature and below the set pressure,
If the pair of contacts is separated and the compressor is not started, and the refrigerant has a pressure and temperature below the set value after the compressor is activated, the pair of contacts is separated and the compressor is operated. It is characterized by a switch that operates as if to stop the operation.

第1図は本発明の一実施例である冷凍装置の系
統図である。圧縮機1は電磁クラツチを介して自
動車エンジンに依り駆動される。圧縮機1が回転
すると冷凍装置内の冷媒(一般にフレオンR−12
が使用される)は凝縮器2、受液器3、膨張弁4
および蒸発器5を通り圧縮機1に戻るように循環
させられる。図において、圧縮機1の出口より凝
縮器2、受液器3および膨張弁4の入口までの回
路中の冷媒は高圧の状態にあり、膨張弁4の出口
から圧縮機1の入口までは低圧の状態にある。し
たがつて、この系統内の冷媒は膨張弁4の入口部
にいては液状であり圧縮機1の入口部においては
気体となつており、その中間部の流路には気液両
相が混在しているのが通常の運転状態である。し
かし、圧縮機1が回転を停止すればこの系統内の
冷媒は同一圧力の状態となり、室温では気液共存
しているのが普通である。
FIG. 1 is a system diagram of a refrigeration system that is an embodiment of the present invention. The compressor 1 is driven by an automobile engine via an electromagnetic clutch. When the compressor 1 rotates, the refrigerant in the refrigeration system (generally Freon R-12
(used) are condenser 2, receiver 3, expansion valve 4
and is circulated through the evaporator 5 and back to the compressor 1. In the figure, the refrigerant in the circuit from the outlet of the compressor 1 to the inlet of the condenser 2, liquid receiver 3, and expansion valve 4 is in a high pressure state, and the refrigerant in the circuit from the outlet of the expansion valve 4 to the inlet of the compressor 1 is in a low pressure state. is in a state of Therefore, the refrigerant in this system is liquid at the inlet of the expansion valve 4 and gaseous at the inlet of the compressor 1, and both gas and liquid phases coexist in the flow path in the middle. This is the normal operating condition. However, when the compressor 1 stops rotating, the refrigerant in this system is at the same pressure, and normally gas and liquid coexist at room temperature.

しかしこの冷凍装置を、自動車の空調用として
用いた場合はその振動と衝撃等によつて配管接続
部から冷媒洩れを生じ易い。このために本実施例
においては受液器3と膨張弁4との間の高圧回路
に圧力−温度スイツチ10を設置し、冷媒洩れを
検知して圧縮機1の焼損を防止すると共に高能率
な冷却効果が得られるようにしている。なお、膨
張弁4と蒸発器5の出口をバイパス接続する細管
6は蒸発器5出口における冷媒の温度を検出して
膨張弁4の開度を自動的に調節する作用をするも
のである。
However, when this refrigeration system is used for air conditioning in an automobile, refrigerant is likely to leak from the piping connections due to vibrations and shocks. For this purpose, in this embodiment, a pressure-temperature switch 10 is installed in the high-pressure circuit between the liquid receiver 3 and the expansion valve 4 to detect refrigerant leakage and prevent burnout of the compressor 1, as well as to increase efficiency. This provides a cooling effect. The thin tube 6 connecting the expansion valve 4 and the outlet of the evaporator 5 in a bypass manner serves to detect the temperature of the refrigerant at the outlet of the evaporator 5 and automatically adjust the opening degree of the expansion valve 4.

第2図は第1図の冷凍装置内の冷媒の圧力と冷
媒温度との関係を示す線図で、縦軸は冷媒圧力を
Kg/cm2で示し、横軸は冷媒温度を℃で示してい
る。圧縮機1が作動する前は前記のように冷凍装
置内の冷媒圧力は均一であり、存在する冷媒量に
よつて異なる値を示す。この冷凍装置内に封入さ
れている冷媒量が200gであるときは実線Aのよ
うな蒸気圧特性曲線を示し、これ以上の冷媒量が
存在するときはこの冷凍装置の冷却効率はすべて
最高の状態にあるものとする。しかし、冷媒が洩
れて減量したときは冷却効率は低下する、冷媒量
が100gのときは実線B、50gのときは実線C、
30gのときは実線Dのような蒸気圧特性を示すこ
とになる。
Figure 2 is a diagram showing the relationship between the refrigerant pressure and refrigerant temperature in the refrigeration system shown in Figure 1, and the vertical axis represents the refrigerant pressure.
It is expressed in Kg/cm 2 , and the horizontal axis indicates the refrigerant temperature in degrees Celsius. Before the compressor 1 operates, the refrigerant pressure within the refrigeration system is uniform as described above, and shows different values depending on the amount of refrigerant present. When the amount of refrigerant sealed in this refrigeration system is 200g, it shows a vapor pressure characteristic curve as shown by solid line A, and when there is a larger amount of refrigerant, the cooling efficiency of this refrigeration system is at its highest. It shall be assumed that However, when the amount of refrigerant leaks and decreases, the cooling efficiency decreases.When the amount of refrigerant is 100g, solid line B, when it is 50g, solid line C,
When the weight is 30g, the vapor pressure characteristic will be as shown by solid line D.

ところが、圧縮機1が作動を開始すると高圧回
路の冷媒の圧力と温度は上昇しその冷媒量に相当
する圧力と温度の状態に落着く。即ち、冷媒量が
200gのときはa点に、100gのときはb点に、50
gのときはc点に、30gのときはd点まで移動す
る。このことは、冷媒量が最初200gであつたも
のが作動中に洩れて30g迄減少したときは、上記
a点〜d点を連ねる一点鎖線7に沿つて変化する
ことを示している。
However, when the compressor 1 starts operating, the pressure and temperature of the refrigerant in the high-pressure circuit rise and settle to a state of pressure and temperature corresponding to the amount of refrigerant. In other words, the amount of refrigerant
When it is 200g, it is at point a, when it is 100g, it is at point b, 50
When it is g, it moves to point c, and when it is 30g, it moves to point d. This shows that when the amount of refrigerant is initially 200 g but decreases to 30 g due to leakage during operation, it changes along the dashed line 7 connecting points a to d.

ここで、高圧路内に破線A′で示すような検出
限界をもつ冷媒洩れ検出装置を設置したとする。
破線A′より下方の斜線を施した側はこの検出装
置が作動して圧縮機1を停止させる範囲である。
冷媒量が200gのときの室温20℃における圧力は
約4.5Kg/cm2であり、この点をpとすると、p点
は破線A′の上側にあるので圧縮機が作動するが
これ以下の冷媒量のときは圧縮機は作動しない。
しかるに、圧縮機が作動するにつれてp点はa点
に向つて移動すると、破線A′を横切ることにな
りこのとき冷媒洩れ検出装置が作動して圧縮機を
停止させる。即ち、冷媒能率が良好な範囲の冷媒
量においても圧縮機は作動を中止することになり
不適当である。また、破線C′の検出限界をもつ
冷媒洩れ検出装置を用いた場合は、冷媒量が50g
存在すれば圧縮機は始動する。また、圧縮機が作
動を続行して冷媒の圧力と温度が上昇した場合
は、約60gの冷媒量があれば作動を続けるが、こ
のときの冷却効果は著るしく低下するばかりでな
く、低圧回路の温度が異常に上昇して圧縮機を焼
損させるようになる。
Here, it is assumed that a refrigerant leak detection device having a detection limit as shown by the broken line A' is installed in the high pressure path.
The shaded area below the broken line A' is the range in which this detection device operates to stop the compressor 1.
When the amount of refrigerant is 200g, the pressure at a room temperature of 20℃ is approximately 4.5Kg/ cm2 , and if this point is designated as p, the compressor operates because point p is above the broken line A', but the refrigerant below this The compressor does not operate when the amount of
However, as the compressor operates, point p moves toward point a, crosses the broken line A', and at this time, the refrigerant leak detection device operates to stop the compressor. That is, even when the amount of refrigerant is within a range where the refrigerant efficiency is good, the compressor stops operating, which is inappropriate. In addition, when using a refrigerant leak detection device with a detection limit of dashed line C', the amount of refrigerant is 50g.
If present, the compressor will start. In addition, if the compressor continues to operate and the pressure and temperature of the refrigerant rises, it will continue to operate if there is approximately 60g of refrigerant, but the cooling effect will not only be significantly reduced, but the pressure will be low. The circuit temperature rises abnormally and the compressor burns out.

このような関係を考慮して本実施例においては
破線B′の検出限界をもつ冷媒洩れ検出装置を用い
た。したがつて、冷媒量200gのときのp点およ
びa点は破線B′の上方にあるので冷却効果の良効
な所で冷凍装置は作動し続ける。もし、作動中に
冷媒が洩れて一点鎖線7に沿つて下降し破線B′を
横切つたときは冷媒洩れ検出装置がそれを検知し
て圧縮機の作動を停止させる。なお、圧縮機の始
動時に冷媒量が60g程度に低下していたときも始
動するが、間もなく高圧回路の冷媒は破線B′を横
切るように圧力と温度が変化するので圧縮機は停
止する。これによつて冷媒が洩れていることが知
れ事故の発生を防止すると共に、好適な冷凍効果
を維持するように冷媒を追加する等の処置を施す
ことが可能となる。
In consideration of such a relationship, a refrigerant leak detection device having a detection limit indicated by broken line B' was used in this embodiment. Therefore, when the amount of refrigerant is 200 g, point p and point a are above the broken line B', so the refrigeration system continues to operate where the cooling effect is effective. If refrigerant leaks during operation and descends along the dashed line 7 and crosses the broken line B', the refrigerant leak detection device detects this and stops the operation of the compressor. Note that the compressor will also start if the amount of refrigerant has dropped to about 60 g when it is started, but soon the pressure and temperature of the refrigerant in the high-pressure circuit will change across the broken line B', and the compressor will stop. This makes it possible to know that refrigerant is leaking, prevent accidents from occurring, and take measures such as adding refrigerant to maintain a suitable refrigeration effect.

第3図は第1図の冷凍装置に設置した冷媒洩れ
検出装置の説明図であり、高圧回路に設置した圧
力−温度スイツチ10を断面図で示している。第
4図は第3図の圧力−温度スイツチのA−A断面
図である。この圧力−温度スイツチ10は上記第
2図の破線B′の検出限界をもつように構成したも
のである。この冷媒洩れ検出装置に用いた圧力−
温度スイツチ10は、下部外周に雄ねじを有し穴
20を開口させたケース11を冷媒の高圧回路に
気密に螺合されており、このケース11の上面に
不銹鋼製のダイヤフラム12を載せている。この
ダイヤフラム12はケース11とハウジング13
で挾持されその外縁部14はアルゴン溶接されて
耐圧気密に形成されている。金属製のケース11
は自動車の車体に接続されており、ハウジング1
3の上部に取付けた絶縁体19を通して導体より
成るターミナル18がハウジング13に挿入され
ている。このターミナル18は第4図に示すコの
字形の空間部25を有する板状のバイメタル17
をダイヤフラム12と水平になるように固定して
おり、バイメタル17の中央部には小円板状の接
点16をスポツト溶接してある。なお、この接点
16はダイヤフラム12の上面中央部にスポツト
溶接して固定した接点15と対向させている。
FIG. 3 is an explanatory diagram of the refrigerant leak detection device installed in the refrigeration system shown in FIG. 1, and shows a cross-sectional view of the pressure-temperature switch 10 installed in the high-pressure circuit. FIG. 4 is a sectional view taken along line AA of the pressure-temperature switch of FIG. This pressure-temperature switch 10 is constructed to have a detection limit indicated by the broken line B' in FIG. 2 above. The pressure used in this refrigerant leak detection device -
In the temperature switch 10, a case 11 having a male thread on the outer periphery of the lower part and a hole 20 opened therein is hermetically screwed into a high-pressure refrigerant circuit, and a diaphragm 12 made of stainless steel is mounted on the upper surface of the case 11. This diaphragm 12 includes a case 11 and a housing 13.
The outer edges 14 are welded with argon and are pressure-tight and airtight. metal case 11
is connected to the car body, and housing 1
A terminal 18 made of a conductor is inserted into the housing 13 through an insulator 19 attached to the upper part of the terminal 3. This terminal 18 is a plate-shaped bimetal 17 having a U-shaped space 25 as shown in FIG.
is fixed horizontally to the diaphragm 12, and a small disc-shaped contact 16 is spot welded to the center of the bimetal 17. Note that this contact point 16 is opposed to a contact point 15 fixed to the center of the upper surface of the diaphragm 12 by spot welding.

ターミナル18はリレー21を経てスイツチ2
3に接続し、リレー21内のスイツチ22は圧縮
機を回転させるための電磁クラツチ24に接続さ
れている。この電磁クラツチ24も車体に接続さ
れている。
Terminal 18 is connected to switch 2 via relay 21
3, and a switch 22 in the relay 21 is connected to an electromagnetic clutch 24 for rotating the compressor. This electromagnetic clutch 24 is also connected to the vehicle body.

このように構成された冷媒洩れ検出装置は自動
車のイグニシヨンスイツチを投入してエンジンを
始動させると、スイツチ23も自動車の電源26
に接続可能な状態となる。車内を冷房したいとき
はスイツチ23を投入するとリレー21を経て圧
力−温度スイツチ10に電流が流れる。即ち、室
温状態では圧力−温度スイツチ10のバイメタル
17の接点16は接点15と接触しているので、
電源26の電流はリレー21、ターミナル18、
バイメタル17、接点16,15、ダイヤフラム
12およびケース11を流れると同時に、接点2
2を閉じてコイル状の電磁クラツチ24にも電流
を流す。電磁クラツチ24に電流が流れると、自
動車エンジンで回転させられている回転軸と冷凍
装置の圧縮機1の回転軸とが連結された状態とな
り圧縮機1は始動する。
In the refrigerant leak detection device configured in this way, when the ignition switch of the automobile is turned on to start the engine, the switch 23 is also connected to the automobile's power source 26.
It becomes possible to connect to. When it is desired to cool the inside of the car, a switch 23 is turned on, and current flows through the relay 21 to the pressure-temperature switch 10. That is, since the contact 16 of the bimetal 17 of the pressure-temperature switch 10 is in contact with the contact 15 at room temperature,
The current of the power supply 26 is passed through the relay 21, the terminal 18,
At the same time, the flow passes through the bimetal 17, the contacts 16 and 15, the diaphragm 12, and the case 11, and the contact 2
2 is closed and current is also applied to the coiled electromagnetic clutch 24. When current flows through the electromagnetic clutch 24, the rotating shaft rotated by the automobile engine and the rotating shaft of the compressor 1 of the refrigeration system are connected, and the compressor 1 starts.

圧縮機1が回転すると圧力−温度スイツチ10
を設置した高圧回路内の冷媒の圧力と温度が上昇
するので、穴20内に充満した冷媒がダイヤフラ
ム12を上方に膨張させるが、このとき接点1
5,16を伝わつた熱によつてバイメタル17は
上方に弯曲するので接点15,16は離れようと
する。しかし、冷凍装置の冷媒量が200g以上存
在しているときは、ダイヤフラム12を押し上げ
る力が強いので常に接触させて圧縮機1の作動を
持続させる。もし、圧縮機1の作動中に冷媒が洩
れたときは、第2図のa点からb点方向に一点鎖
線7に沿つて冷媒の状態は変化するので、破線
B′を横切ることになる。このとき主に圧力が低下
するのでダイヤフラム12を押上げる力が減少し
接点15と接点16は離れるので、リレー21の
接点22が開き電磁クラツチ24が移動して圧縮
機1は停止する。更に、第2図によつて圧力−温
度スイツチ10の動作を具体的に説明すると、冷
媒量が200gあつたものが作動中に100gに減少し
たとすると、冷媒の圧力は8Kg/cm2、温度が142
℃であるa点から圧力5.5Kg/cm2、温度148℃のb
点に移動する。これによつてダイヤフラム12は
2.5Kg/cm2の圧力差に相当するだけ接点間を開く
方向に移動する。一方、冷媒の温度は6℃上昇す
るのでこれに相当する寸法だけ接点間は開く方向
に変位する。したがつて、これらの変位量を加え
た寸法だけ接点15,16間は離れて高精度にリ
レー回路を遮断する。
When the compressor 1 rotates, the pressure-temperature switch 10
As the pressure and temperature of the refrigerant in the high-pressure circuit increases, the refrigerant filling the hole 20 expands the diaphragm 12 upward, but at this time, the contact 1
The bimetal 17 is bent upward by the heat transmitted through the contacts 15 and 16, so that the contacts 15 and 16 tend to separate. However, when the amount of refrigerant in the refrigeration system is 200 g or more, the force pushing up the diaphragm 12 is strong, so the diaphragm 12 is kept in contact with the diaphragm 12 to maintain the operation of the compressor 1. If refrigerant leaks during operation of the compressor 1, the state of the refrigerant will change along the dashed line 7 from point a to point b in Fig. 2, so the state of the refrigerant will change along the dashed line 7.
It will cross B′. At this time, the pressure mainly decreases, so the force pushing up the diaphragm 12 decreases, and the contacts 15 and 16 separate, so the contacts 22 of the relay 21 open, the electromagnetic clutch 24 moves, and the compressor 1 stops. Furthermore, to specifically explain the operation of the pressure-temperature switch 10 with reference to FIG. 2, if the amount of refrigerant was 200 g and decreased to 100 g during operation, the refrigerant pressure would be 8 Kg/cm 2 and the temperature would be 8 Kg/cm 2 . is 142
From point a, which is ℃, to point b, where the pressure is 5.5Kg/cm 2 and the temperature is 148℃.
Move to a point. This causes the diaphragm 12 to
Move in the direction to open the contacts by an amount equivalent to a pressure difference of 2.5Kg/cm 2 . On the other hand, since the temperature of the refrigerant increases by 6° C., the contact points are displaced in the direction of opening by a corresponding amount. Therefore, the contacts 15 and 16 are separated by the sum of these displacement amounts, and the relay circuit is interrupted with high precision.

上記のごとくこの圧力−温度スイツチ10の要
部はダイヤフラム12とバイメタル17であり、
ダイヤフラム12は冷媒に侵されない不銹鋼製の
薄板を用いている。バイメタル17は第3図に示
すように中央部にコの字形の空間部25をもつて
おり、接点16は空間部25で囲まれた中心部分
の先端に取付けてある。このバイメタル17は温
度が上昇すると上方にそり返るように設置してあ
るが、このとき接点16はバイメタル17の中央
部にあるにもかかわらず空間部25で囲まれた部
分の先端に位置しているのでその変位量は大であ
る。このように圧力−温度スイツチ10は冷媒の
圧力と温度の変化を高精度で検知できる構造とな
つている。
As mentioned above, the main parts of this pressure-temperature switch 10 are the diaphragm 12 and the bimetal 17.
The diaphragm 12 is made of a thin plate made of stainless steel that is not attacked by the refrigerant. As shown in FIG. 3, the bimetal 17 has a U-shaped space 25 in its center, and the contact 16 is attached to the tip of the center surrounded by the space 25. This bimetal 17 is installed so that it warps upward when the temperature rises, but at this time, although the contact 16 is located in the center of the bimetal 17, it is located at the tip of the part surrounded by the space 25. Therefore, the amount of displacement is large. In this way, the pressure-temperature switch 10 has a structure that allows it to detect changes in the pressure and temperature of the refrigerant with high accuracy.

前記のごとく圧縮機1の始動時に冷媒が洩れて
いた場合は、第2図に示すように冷媒量が約60g
以下のとき圧力−温度スイツチ10の接点15,
16が離れているので圧縮機1は始動しない。ま
た、冷媒量が約180g〜約60gの範囲に減少して
いるときは圧力−温度スイツチ10の接点は接触
し始動するが、冷媒の圧力と温度が上昇するにし
たがつて接点は離れ圧縮機1は回転を停止する。
即ち、冷媒の洩れを検知して圧縮機の焼付け事故
を防止すると共に、圧縮機1の始動より停止時ま
での時間によつて冷凍装置内の残存冷媒量を推定
することができる。
If refrigerant leaks when starting compressor 1 as described above, the amount of refrigerant will be approximately 60g as shown in Figure 2.
Contact 15 of pressure-temperature switch 10 when:
16 is far away, the compressor 1 will not start. Also, when the amount of refrigerant decreases to a range of about 180 g to about 60 g, the contacts of the pressure-temperature switch 10 come into contact and start up, but as the pressure and temperature of the refrigerant increases, the contacts separate and the compressor 1 stops rotation.
That is, it is possible to detect a refrigerant leak and prevent a burnout accident of the compressor, and also to estimate the amount of refrigerant remaining in the refrigeration system based on the time from when the compressor 1 is started to when it is stopped.

また、圧力−温度スイツチ10は高圧回路に設
置されているので上記のように高圧回路の冷媒の
状態を高精度に検知することができるが、更に低
圧回路の冷媒洩れも間接的ではあるが次の理由で
検出できる。一般にこのような冷凍装置では膨張
弁4の絞り作用があるので、低圧回路の冷媒洩れ
は高圧回路の圧力はあまり低下させず、冷媒温度
を比較的大きく上昇させるように作用するもので
ある。第3図の圧力−温度スイツチ10は上記の
ように温度上昇に対して敏感に作動するバイメタ
ル17を備えているので、このような低圧回路の
冷媒洩れに対しても敏感に作動するという特長を
もつている。
In addition, since the pressure-temperature switch 10 is installed in the high-pressure circuit, it is possible to detect the state of the refrigerant in the high-pressure circuit with high precision as described above, but in addition, refrigerant leakage in the low-pressure circuit can occur, albeit indirectly. It can be detected for the following reason. Generally, in such a refrigeration system, the expansion valve 4 has a throttling action, so that refrigerant leakage in the low pressure circuit does not significantly reduce the pressure in the high pressure circuit, but rather increases the refrigerant temperature by a relatively large amount. Since the pressure-temperature switch 10 shown in FIG. 3 is equipped with the bimetal 17 that operates sensitively to temperature rises as described above, it has the feature of operating sensitively to refrigerant leaks in such low-pressure circuits. I have it too.

以上本実施例の冷媒洩れ検出装置は、冷媒の高
圧回路である受液器と膨張弁との間に冷媒の圧力
と温度を高精度に検知して作動する比較的簡単な
圧力−温度スイツチを一個設置することによつ
て、高圧回路の冷媒洩れは勿論、低圧回路の冷媒
洩れも敏感に検知して圧縮機の回転を停止し事故
を防止するという効果をもつている。
As described above, the refrigerant leak detection device of this embodiment includes a relatively simple pressure-temperature switch that operates by detecting the refrigerant pressure and temperature with high precision between the liquid receiver and the expansion valve, which are the high-pressure refrigerant circuit. By installing one, not only refrigerant leaks in the high pressure circuit but also refrigerant leaks in the low pressure circuit can be sensitively detected and the rotation of the compressor can be stopped to prevent accidents.

上記実施例においては、圧力−温度スイツチ1
0と受液器3と膨張弁4との間の冷媒流路に設置
してあるが、この場所は圧縮機1の作動による冷
媒の圧力変動が最も小さく圧力検出に好適な場所
であるためである。しかし、ダイヤフラム12を
より厚い不銹鋼板製として圧力変動の影響を抑制
するように圧力−温度スイツチを構成すれば、こ
れ以外の高圧回路に設置することも可能である。
また、第3図のリレー回路にランプを取付けて圧
力−温度スイツチ10に電流が流れないとき(圧
縮機1が作動しないとき)は消灯するようにすれ
ば、運転者は冷媒洩れを知らせることもできる。
なお、上記実施例は自動車の空調装置を例として
説明したが、一般の冷凍装置にもこのような冷媒
洩れ検出装置を適用することは装置の安全と冷凍
効率の向上に役立つものである。
In the above embodiment, the pressure-temperature switch 1
It is installed in the refrigerant flow path between the liquid receiver 3 and the expansion valve 4, because this location is a suitable location for pressure detection where the refrigerant pressure fluctuation due to the operation of the compressor 1 is the smallest. be. However, if the diaphragm 12 is made of a thicker stainless steel plate and the pressure-temperature switch is configured to suppress the influence of pressure fluctuations, it is possible to install it in other high-pressure circuits.
Additionally, if a lamp is attached to the relay circuit shown in Figure 3 so that the light goes off when no current flows to the pressure-temperature switch 10 (when the compressor 1 does not operate), the operator can be notified of a refrigerant leak. can.
Although the above embodiment has been explained using an automobile air conditioner as an example, applying such a refrigerant leak detection device to a general refrigeration system is useful for improving the safety of the system and the refrigeration efficiency.

本発明の冷凍装置の冷媒洩れ検出装置は、冷凍
装置の作動前および作動中の全冷媒流路の冷媒洩
れを高精度に検出して、冷凍装置を安全にかつ効
率良く運転させるに役立つという効果をもつてい
る。
The refrigerant leak detection device for a refrigeration system of the present invention can detect refrigerant leaks in all refrigerant channels with high accuracy before and during operation of the refrigeration system, and has the advantage of helping to operate the refrigeration system safely and efficiently. It has

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である冷凍装置の系
統図、第2図は第1図の冷凍装置の高圧回路内の
冷媒圧力と冷媒温度との関係を示す線図、第3図
は第1図の冷媒洩れ検出装置の説明図、第4図は
第3図の圧力−温度スイツチのA−A断面図であ
る。 1……圧縮機、4……膨張弁、10……圧力−
温度スイツチ、12……ダイヤフラム、15……
第1の接点、16……第2の接点、17……バイ
メタル、18……導線(ターミナル)、25……
空間部。
Figure 1 is a system diagram of a refrigeration system that is an embodiment of the present invention, Figure 2 is a diagram showing the relationship between refrigerant pressure and refrigerant temperature in the high pressure circuit of the refrigeration system of Figure 1, and Figure 3 is FIG. 1 is an explanatory diagram of the refrigerant leak detection device, and FIG. 4 is a sectional view taken along line A-A of the pressure-temperature switch in FIG. 3. 1... Compressor, 4... Expansion valve, 10... Pressure -
Temperature switch, 12...Diaphragm, 15...
First contact, 16... Second contact, 17... Bimetal, 18... Conductor (terminal), 25...
Space department.

Claims (1)

【特許請求の範囲】 1 圧縮機で圧縮して送り出した冷媒気体を冷却
して液化する高圧回路と、この高圧回路よりの冷
媒を膨張させる膨張弁と、この膨張弁よりの冷媒
を外部より吸熱させて気化した上記圧縮機に循環
させる低圧回路と、上記高圧回路に設けられ、上
記圧縮機の始動前および作動中に上記冷媒の圧力
と温度の状態が設定値以下となつたときはその接
点が開き、上記圧縮機を作動させないようにする
上記冷媒の圧力と温度とを検知する圧力−温度ス
イツチとを有する冷凍装置の冷媒洩れ検出装置に
おいて、上記圧力−温度スイツチが、上記冷媒の
圧力の変化によつて変位する金属製のダイヤフラ
ムと、このダイヤフラムの上記冷媒側とは反対側
に固定した第1の接点と、この第1の接点と対向
する第2の接点を有し外部よりの導線と接続した
バイメタルとを備え、上記冷媒が室温で設定圧以
下のときは上記1対の接点を分離させ上記圧縮機
を始動させず、上記圧縮機の作動後に上記冷媒が
設定値以下の圧力と温度との状態のときは上記1
対の接点を分離させて上記圧縮機の運転を停止さ
せるごとく作動するスイツチであることを特徴と
する冷凍装置の冷媒洩れ検出装置。 2 上記バイメタルが、上記導線に支持された端
部とは反対方向の自由端に向つてコの字形の空間
部を有し、この空間部に囲まれた部分の先端に上
記第2の接点を固定し、温度が上昇すると上記第
2の接点を上記第1の接点より引離す方向に変位
するバイメタルである特許請求の範囲第1項記載
の冷凍装置の冷媒洩れ検出装置。 3 上記バイメタルが、上記導線に支持された端
部とは反対方向の自由端に向つてコの字形の空間
部を有し、この空間部に囲まれた部分の先端に上
記第2の接点を固定し、温度が上昇すると上記第
2の接点を上記第1の接点より引離す方向に変位
するバイメタルである特許請求の範囲第2項に記
載の冷凍装置の冷媒洩れ検出装置。
[Claims] 1. A high-pressure circuit that cools and liquefies refrigerant gas compressed and sent out by a compressor, an expansion valve that expands the refrigerant from this high-pressure circuit, and a refrigerant from the expansion valve that absorbs heat from the outside. A contact point is provided in the low-pressure circuit that circulates the vaporized refrigerant to the compressor, and the high-pressure circuit, and when the pressure and temperature of the refrigerant become below set values before starting and during operation of the compressor. In the refrigerant leak detection device for a refrigeration system, the pressure-temperature switch has a pressure-temperature switch that detects the pressure and temperature of the refrigerant, and the pressure-temperature switch opens to prevent the compressor from operating. A metal diaphragm that is displaced by a change in temperature, a first contact fixed to the side opposite to the refrigerant side of the diaphragm, and a second contact opposite to the first contact, and a conductor from the outside. and a bimetal connected to the refrigerant, and when the pressure of the refrigerant is below the set value at room temperature, the pair of contacts are separated and the compressor is not started, and after the compressor is operated, the pressure of the refrigerant is below the set value. If the temperature is the same as above 1.
A refrigerant leak detection device for a refrigeration system, characterized in that it is a switch that operates to separate a pair of contacts and stop the operation of the compressor. 2. The bimetal has a U-shaped space toward the free end opposite to the end supported by the conductive wire, and the second contact is provided at the tip of the part surrounded by the space. The refrigerant leak detection device for a refrigeration system according to claim 1, which is a bimetal that is fixed and is displaced in a direction to separate the second contact from the first contact when the temperature rises. 3 The bimetal has a U-shaped space toward the free end in the direction opposite to the end supported by the conductor, and the second contact is placed at the tip of the part surrounded by this space. The refrigerant leak detection device for a refrigeration system according to claim 2, which is a bimetal that is fixed and is displaced in a direction to separate the second contact from the first contact when the temperature rises.
JP1465978A 1978-02-10 1978-02-10 Coolant leak detecting device of refrigerator Granted JPS54108045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1465978A JPS54108045A (en) 1978-02-10 1978-02-10 Coolant leak detecting device of refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1465978A JPS54108045A (en) 1978-02-10 1978-02-10 Coolant leak detecting device of refrigerator

Publications (2)

Publication Number Publication Date
JPS54108045A JPS54108045A (en) 1979-08-24
JPS6115347B2 true JPS6115347B2 (en) 1986-04-23

Family

ID=11867331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1465978A Granted JPS54108045A (en) 1978-02-10 1978-02-10 Coolant leak detecting device of refrigerator

Country Status (1)

Country Link
JP (1) JPS54108045A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372767B2 (en) * 1987-11-26 1991-11-19 Komatsu Mfg Co Ltd

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372767B2 (en) * 1987-11-26 1991-11-19 Komatsu Mfg Co Ltd

Also Published As

Publication number Publication date
JPS54108045A (en) 1979-08-24

Similar Documents

Publication Publication Date Title
US3047696A (en) Superheat control
JP2005291679A (en) Refrigerating system
US20090235673A1 (en) Detection of refrigerant release in co2 refrigerant systems
JP4196450B2 (en) Supercritical refrigeration cycle
JP2001147048A (en) Superheat extent controller for refrigeration circuit
JPH1089778A (en) Deep freezer
JPS6115347B2 (en)
US3686892A (en) Compressor protector responsive to low refergerant charge
US2752760A (en) Expansion valve with bulb control
US3702065A (en) Automobile air conditioning compressor superheat safety and ambient switch
JP2002022299A (en) Cooling cycle
JP2516405B2 (en) Gas leak detection structure in refrigeration cycle
JPH09135917A (en) Fire extinguishing device for automobile
JP3528433B2 (en) Vapor compression refrigeration cycle
US3786650A (en) Air conditioning control system
JP2000230650A (en) Pressure control valve
JPH053865U (en) Air conditioner
JP2008265686A (en) Refrigeration cycle device for vehicle
JP3505209B2 (en) Refrigeration equipment
JPH0972622A (en) Freezing device
JP2000074513A (en) Supercritical refrigerating cycle
JPS6325255B2 (en)
JPH0798159A (en) Discrete air-conditioner
JPH0854148A (en) Refrigerating device
JPS6255598B2 (en)