JPS61153019A - Equi-speed joint - Google Patents

Equi-speed joint

Info

Publication number
JPS61153019A
JPS61153019A JP27344084A JP27344084A JPS61153019A JP S61153019 A JPS61153019 A JP S61153019A JP 27344084 A JP27344084 A JP 27344084A JP 27344084 A JP27344084 A JP 27344084A JP S61153019 A JPS61153019 A JP S61153019A
Authority
JP
Japan
Prior art keywords
ball
joint
yoke
ball groove
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27344084A
Other languages
Japanese (ja)
Inventor
Hiroshi Kotani
小谷 博
Yoshiyuki Inoue
井上 義幸
Yasushi Kadota
康 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP27344084A priority Critical patent/JPS61153019A/en
Publication of JPS61153019A publication Critical patent/JPS61153019A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/24Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts comprising balls, rollers, or the like between overlapping driving faces, e.g. cogs, on both coupling parts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pivots And Pivotal Connections (AREA)

Abstract

PURPOSE:To achieve smooth rotation by forming at least one of a ball and a ball groove with reinforced plastic having lower resiliency and producing pressure contacting force through resilient deformation at the contacting section between the ball and the ball groove. CONSTITUTION:The yoke joint in equi-speed joint is formed by burrying a steel material as a core metal 3 into the reinforced plastic material. The ball groove 2 for containing the ball 1 is finished with minus tolerance against the curvature of ball 1 when molding. Consequently, when assembling, the ball 1 is inserted into the ball groove 2 then they are pressure contacted continuously through resilient deformation of the plastic material. As a result, the ball 1 can be contained tightly in the ball groove 2 to simplify adjusting of pre- pressurization thus to enable smooth transmission of rotation from input side yoke to the output side yoke even for high joint angle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はジヨイント角度(入出力ヨークがなす角)が高
角度でかつ回転方向の遊びを問題とする用途、例えば自
動車用ハンドルジヨイントに使用するワイス型等の等速
ジヨイントに関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is applicable to applications where the joint angle (the angle formed by the input/output yoke) is high and play in the rotational direction is a problem, such as steering wheel joints for automobiles. Regarding constant velocity joints such as Weiss type.

〔従来の技術〕[Conventional technology]

例えばワイス型等速ジヨイントは一般に等速性が良好で
、なめらかに回転することが知られている。
For example, it is known that a Weiss type constant velocity joint generally has good uniform velocity and rotates smoothly.

例えば第4図aS bに示すように、ワイス型等速ジヨ
イントは入出力ヨーク11.12とボール13.14と
よシなる。ヨーク11.12は軸方向に延長する継手部
を有し、各継手部の側面には互いに共働してボールを保
持するボール溝15.16.17.18が設けられてい
る。溝の断面は半径rの円弧でボール19はボール溝加
と只一点で接触している。
For example, as shown in FIG. 4aSb, the Weiss type constant velocity joint consists of an input/output yoke 11.12 and a ball 13.14. The yoke 11.12 has axially extending joints, each joint being provided with ball grooves 15, 16, 17, 18 on the side surfaces thereof which cooperate with each other to hold the balls. The cross section of the groove is an arc of radius r, and the ball 19 is in contact with the ball groove at only one point.

入出力ヨーク11.12はジヨイント角αをもって組み
立てられ、ボール13.14はそれぞれ溝15.16 
: 17.18の各交差部分において保持され、つねに
その位置を正確に保持することにより、等速性が保たれ
、なめらかに回転するようになっている。
The input and output yokes 11.12 are assembled with a joint angle α, and the balls 13.14 are respectively in grooves 15.16.
: It is held at each intersection of 17 and 18, and by always holding that position accurately, uniform velocity is maintained and smooth rotation is achieved.

ジヨイント角αが小さい場合には、共働するボール溝の
交差角はA、B側ともKかなシ大きく、ボールはボール
溝の交差点にほぼ正確に保持されとくに問題はない。し
かしながら、ジヨイント角αが大きくなると、B@に位
置するボール14は共働するボール溝17.18の交差
角が大きくなるため確実に保持されるが、逆にム側に位
置するボール13は共働するボール$15.16の交差
角が極端に小さくなるため、ボールとボール溝との僅か
な寸法差が原因となって遊びが生ずる。
When the joint angle α is small, the intersecting angles of the cooperating ball grooves are large by K on both sides A and B, and the ball is held almost exactly at the intersection of the ball grooves without any particular problem. However, when the joint angle α increases, the ball 14 located at B@ is held securely because the intersecting angle of the cooperating ball grooves 17 and 18 becomes large, but conversely, the ball 13 located on the B side is held together. Since the crossing angle of the working balls becomes extremely small, play occurs due to slight dimensional differences between the balls and the ball grooves.

また、負荷荷重から生ずるヨーク継手部の僅かな弾性変
形による隙間もボールの遊びを助長し、そのため回転中
ボールが人、出力ヨークのボール溝の交差点に正確に保
持されなくなシ、なめらかな回転が不可能となる。
In addition, the gap caused by slight elastic deformation of the yoke joint caused by the applied load also promotes play in the ball, which prevents the ball from being held accurately at the intersection of the ball groove of the output yoke during rotation, and prevents smooth rotation. becomes impossible.

この現象は、ジヨイント角αが大急くなるほど顕著であ
る。
This phenomenon becomes more pronounced as the joint angle α becomes steeper.

要するに、ワイス型等速ジヨイントを例えば自動車用ハ
ンドルジヨイントのようにジヨイント角度が高角度でか
つ回転方向の遊びを問題とする用途に適用した場合、従
来のワイス型等速ジヨイントでは第4図aのB側に位置
するボールは問題ないが、A側に位置するボールは、保
持がきわめて不安定(回転中、入出力ヨークのボールが
溝の交差点に正確に保持されなくなる。)となり、なめ
らかな回転ができなくなるという欠点を避けられない。
In short, when a Weiss type constant velocity joint is applied to an application where the joint angle is high and play in the rotational direction is a problem, such as a steering wheel joint for an automobile, the conventional Weiss type constant velocity joint is There is no problem with balls located on the B side of The disadvantage of not being able to rotate cannot be avoided.

また、最悪事態として、この反負荷側に位置する上記不
安定なボールが運転中の振動により脱落し、この種等速
ジョイレトとして致命的な不具合が発生する危険がある
In the worst case scenario, the unstable ball located on the opposite load side may fall off due to vibration during operation, causing a fatal problem for this type of constant velocity joylet.

ここでワイス型等速ジョイン)Kおけるボールの遊びに
ついてさらに検討する。
Here, we will further consider the play of the ball in the Weiss type constant velocity join.

ジヨイント角度αが大きい場合、第4図aにおいてム側
位置のボール13とボール溝15.16の間に隙間が生
ずる。この原因として「ボールとボール溝との間の曲率
半径の差」ならびに「負荷状態時のヨーク継手部の微小
な弾性変形」が問題となる。
When the joint angle α is large, a gap is created between the ball 13 located on the side of the ball and the ball grooves 15 and 16 in FIG. 4a. The causes of this are the "difference in the radius of curvature between the ball and the ball groove" and the "minor elastic deformation of the yoke joint under load."

とζろで、とのワイス型等速ジヨイントを安定して使用
するには、「ボールとボール溝との間の曲率半径の差」
をなくすこと、すなわちボールに対しヨーク継手部に設
けたボール溝の曲率を50.09GKすることが必要で
ある。
In order to stably use the Weiss-type constant velocity joint with
In other words, it is necessary to make the curvature of the ball groove provided in the yoke joint part relative to the ball 50.09GK.

然しなから、現在の加工技術では鉄系材料の弾性係数が
大きい九め加工精度を±OKすることは不可能であシ、
また公差をつけるにしても現在の鉄鋼材料では弾性係数
が大きいためマイナス公差では組立てが不可能とな9、
必然的にプラス公差となる。従ってボール溝曲率は50
.0−以上となり、ジヨイントの使用条件が高角度にな
るほど回転方向の遊びが大きくなる。
However, with current processing technology, it is impossible to achieve ±OK machining accuracy for iron-based materials, which have a large elastic modulus.
Furthermore, even if tolerances are set, the elastic modulus of current steel materials is large, making it impossible to assemble with negative tolerances9.
This inevitably results in a positive tolerance. Therefore, the ball groove curvature is 50
.. 0- or more, and the higher the angle of use of the joint, the greater the play in the rotational direction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、ヨーク継手部に形成したボール溝とボールが
、ジヨイントの組み立て後、常に圧接され次状態を保持
し、ジヨイント角度が高角度でも回転方向のガタがなく
、安定した回転性能が得られる等速ジヨイントを提供す
る。
In the present invention, after the joint is assembled, the ball groove and the ball formed in the yoke joint part are always pressed against each other to maintain the following state, and even if the joint angle is high, there is no play in the rotational direction and stable rotational performance can be obtained. Provides a constant velocity joint.

〔問題点を解決するための手段および作用〕本発明によ
れば、等速ジヨイントのボールおよび該ボールを組込む
ためのボール溝を有するヨーク継手部の少なくともいず
れか一方を弾性係数の小さい強化プラスチックで製作す
るとともに、上記ボール溝とボールとの組み立て時の弾
性変形によシボール卦よびボール溝の接触部に圧接力を
生じるようにすることによって、加工時(成形時)に精
度に多少のバラツキがあっても強化プラスチック材料の
弾性変形の容易さから予圧量に大きな差が出す、安定し
た性能が得られ、例えば自動車用ハンドルジ−インドに
使用できる等速ジヨイントを得ることができる。
[Means and effects for solving the problem] According to the present invention, at least one of the ball of the constant velocity joint and the yoke joint portion having the ball groove for incorporating the ball is made of reinforced plastic with a small elastic modulus. At the same time as manufacturing, the elastic deformation during assembly of the ball groove and ball creates a pressure contact force at the contact area between the ball hexagram and the ball groove, thereby eliminating some variation in accuracy during processing (forming). Even if the reinforced plastic material is easily elastically deformed, stable performance can be obtained with a large difference in the amount of preload, and a constant velocity joint that can be used, for example, in a steering wheel for an automobile can be obtained.

また、本発明はこれを実施する際、強化プラスチックで
製作したボールまたはヨーク継手部の内部に鉄鋼材料を
埋設することにより、等速ジヨイントに十分な強度を持
念せることかできる。
Furthermore, when carrying out this invention, the constant velocity joint can be provided with sufficient strength by embedding a steel material inside the ball or yoke joint made of reinforced plastic.

〔実施例〕 以下、第1図DJ!/r、p第2図を参照し実施例に基
づいて本発明を説明する。
[Example] Below, Figure 1 DJ! /r,p The present invention will be described based on an example with reference to FIG.

第1図a −cは、強化プラスチック材料の内部に鉄鋼
材料を芯金3として埋設し、成形した等速ジヨイントの
ヨーク継手部の断面図を示し、ボール1が収容されるボ
ール溝2は、成形時ボール1の曲率半径に対しマイナス
公差で仕上げられている(第1図a)か或いは楕円形状
(第1図b)を呈し、組み立て時のボール挿入後、弾性
変形によりボールとボール溝は常に圧接状態にあり、こ
の実施例ではボールに対するボール溝曲率が完全に50
.OIKなるようにされている(第1図C)。なお、ボ
ール溝を円でなく双曲線等の二次曲線にすることも可能
である。
Figures 1a-c show cross-sectional views of the yoke joint of a constant velocity joint formed by embedding a steel material as a core bar 3 inside a reinforced plastic material, and the ball groove 2 in which the ball 1 is accommodated. When molded, the ball 1 is finished with a negative tolerance to its radius of curvature (Fig. 1a) or has an elliptical shape (Fig. 1b), and after the ball is inserted during assembly, the ball and ball groove are deformed due to elastic deformation. It is always in a pressure contact state, and in this embodiment, the ball groove curvature with respect to the ball is completely 50.
.. It is designed to be OIK (Fig. 1C). Note that it is also possible to make the ball groove not a circle but a quadratic curve such as a hyperbola.

第2図a、bに示すように、強化プラスチック製のヨー
ク継手部5の内部には鉄鋼材料製の芯金4が埋設され、
ヨーク継手、部を補強するとともに予圧量を調整するよ
うになっている。また、第2図aにおいてはボール6の
径を変えることにより、芯金を埋設した強化プラスチッ
ク部分の弾性変形で予圧を与えることができ、強化プラ
スチック材料の弾性係数が小さいことを利用し、加工精
度のバラツキ等で強化グラスチック部分の弾性変形層に
差が生じても予圧量の変動を小さくすることができる。
As shown in FIGS. 2a and 2b, a core bar 4 made of steel is embedded inside the yoke joint part 5 made of reinforced plastic.
The yoke joint is reinforced and the amount of preload is adjusted. In addition, in Fig. 2a, by changing the diameter of the ball 6, it is possible to apply preload by elastic deformation of the reinforced plastic part in which the core metal is embedded, and by utilizing the small elastic modulus of the reinforced plastic material, processing is possible. Even if a difference occurs in the elastic deformation layer of the reinforced glass part due to variations in accuracy, the variation in the amount of preload can be reduced.

さらに、第2図すにおいてはヨーク継手部にスリット7
を入れヨーク継手部の弾性変形を利用して予圧を与える
ようになっており、芯金部と強化プラスチック部の形状
を変えることによシ見掛は上の弾性係数を調整し、最適
の予圧量を得ることかで。
Furthermore, in Figure 2, there is a slit 7 in the yoke joint.
The preload is applied by using the elastic deformation of the yoke joint, and by changing the shape of the core metal part and reinforced plastic part, the apparent elastic modulus is adjusted to achieve the optimal preload. By getting the quantity?

きる。Wear.

第3図は強化プラスチック製のボール6の内部に鉄鋼材
料製の芯材としての鋼球6′が埋設されたもので、第2
図a、bと同様の作用が得られる。もちろんヨーク継手
部或いはボールを強化プラスチックのみで形成してもよ
い。
Figure 3 shows a ball 6 made of reinforced plastic with a steel ball 6' as a core material embedded inside the ball 6 made of reinforced plastic.
The same effect as in Figures a and b can be obtained. Of course, the yoke joint portion or the ball may be formed only of reinforced plastic.

さらに、上記の実施例ではワイス型等速ジヨイントにつ
いて説明したが、ボールを使用した他の形式の等速ジヨ
イント例えばツエツパ型等速ジヨイント等に対しても本
発明は適用可能である。
Furthermore, although the Weiss type constant velocity joint has been described in the above embodiment, the present invention is also applicable to other types of constant velocity joints using balls, such as the Tetsuppa type constant velocity joint.

〔発明の効果〕〔Effect of the invention〕

上記のように、本発明はボールおよびヨーク継手部の少
なくともいずれか一方を強化プラスチック材料で製作す
るとともに、上記継手部に形成されるボール溝にボール
が組み立て時に圧接するようにしたので、弾性係数の小
さい強化プラスチック材料の利用によりボールが遊びな
しにボール溝に収容され、予圧量の調整が簡単となり、
その結果ジ目インド角が高角度になっても入力側ヨーク
から出力側ヨークに確実、かつ円滑に回転を伝達するこ
とができる。
As described above, in the present invention, at least one of the ball and yoke joint parts is made of a reinforced plastic material, and the ball is pressed into contact with the ball groove formed in the joint part during assembly, so that the elastic modulus is By using a reinforced plastic material with a small diameter, the ball is accommodated in the ball groove without play, making it easy to adjust the amount of preload.
As a result, rotation can be reliably and smoothly transmitted from the input-side yoke to the output-side yoke even if the joint angle becomes high.

ま九、鉄鋼材料を芯金として埋設した場合には上記予圧
量の調整が容易となるばかりでなく、その強度を向上さ
せることも可能である。
(9) When a steel material is buried as a core metal, not only is it easy to adjust the amount of preload, but also the strength can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a ”−cは本発明による等速ジヨイントの人、
出力ヨークのボール溝部の断面図。 第2図a、bは同じくボール保持部の断面図。 第3図は本発明の他のボール保持部の断面図。 第4図aは従来のワイス型等速ジヨイントの側面図、同
じくbはボールとボール溝との関係を示す断面図。 1・・・ボール   2・・・ボール溝3.4・・・芯
金  5・・・ヨーク継手部6・・・ボール   6′
・・・鋼球 7・・・スリット
Figure 1 a''-c is a person with a constant velocity joint according to the present invention,
FIG. 3 is a cross-sectional view of the ball groove portion of the output yoke. FIGS. 2a and 2b are sectional views of the ball holding part. FIG. 3 is a sectional view of another ball holding part of the present invention. FIG. 4a is a side view of a conventional Weiss type constant velocity joint, and FIG. 4b is a sectional view showing the relationship between the ball and the ball groove. 1...Ball 2...Ball groove 3.4...Core metal 5...Yoke joint part 6...Ball 6'
...Steel ball 7...Slit

Claims (2)

【特許請求の範囲】[Claims] (1)ボールおよび該ボールを組込むためのボール溝を
有するヨーク継手部の少なくとも一方の部材を弾性係数
の小さい強化プラスチックで製作するとともに、上記ボ
ール溝とボールとの組み立て時の弾性変形によりボール
およびボール溝の接触部に圧接力を生じさせるようにし
たことを特徴とする、等速ジョイント。
(1) At least one member of the yoke joint having a ball and a ball groove for incorporating the ball is made of reinforced plastic with a small elastic modulus, and the ball and the ball are elastically deformed when the ball is assembled with the ball groove. A constant velocity joint characterized by generating a pressure contact force at the contact portion of the ball groove.
(2)強化プラスチックで製作したボールまたはヨーク
継手部の内部に鉄鋼材料の芯金が埋設されていることを
特徴とする、特許請求の範囲第1項記載の等速ジョイン
ト。
(2) A constant velocity joint according to claim 1, characterized in that a core metal made of steel is embedded inside a ball or yoke joint made of reinforced plastic.
JP27344084A 1984-12-26 1984-12-26 Equi-speed joint Pending JPS61153019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27344084A JPS61153019A (en) 1984-12-26 1984-12-26 Equi-speed joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27344084A JPS61153019A (en) 1984-12-26 1984-12-26 Equi-speed joint

Publications (1)

Publication Number Publication Date
JPS61153019A true JPS61153019A (en) 1986-07-11

Family

ID=17527939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27344084A Pending JPS61153019A (en) 1984-12-26 1984-12-26 Equi-speed joint

Country Status (1)

Country Link
JP (1) JPS61153019A (en)

Similar Documents

Publication Publication Date Title
US5855519A (en) Ball fixed type constant velocity joint having low rotational backlash
US4760752A (en) Plastic deformation relief
GB2161581A (en) Drive assembly coupling
EP1452759A1 (en) Oldham Coupling for motor
JPS61153019A (en) Equi-speed joint
JPS61153018A (en) Equi-speed joint for applying initial pressure against ball
JPH0275424A (en) Method for caulking sintered parts
JP2632938B2 (en) Plate Oldham Fittings
JPS642974Y2 (en)
JP2004108475A (en) Linear drive actuator and its manufacturing method
JP2791593B2 (en) Ball joint ball seat
JP2005061537A (en) Ball joint
JPS6317857Y2 (en)
JPH0448339Y2 (en)
KR100738474B1 (en) Slip joint of universal joint
JP2518944Y2 (en) Constant velocity universal joint
JPH02278015A (en) Structure of shaft end node of oldham's coupling
JPH0665622U (en) Cross roller bearing
JPH04312212A (en) Coupling and manufacture of rotational force transmitting member to be used therefor
US4979930A (en) Endless belt for transmission
GB2332728A (en) Eccentric vibration isolator
JP2543631Y2 (en) Split bearing
JP2019086071A (en) Coupling structure and its coupling method
JPH0247296Y2 (en)
JPS6024986Y2 (en) cross shaft universal joint