JP2543631Y2 - Split bearing - Google Patents

Split bearing

Info

Publication number
JP2543631Y2
JP2543631Y2 JP1991103949U JP10394991U JP2543631Y2 JP 2543631 Y2 JP2543631 Y2 JP 2543631Y2 JP 1991103949 U JP1991103949 U JP 1991103949U JP 10394991 U JP10394991 U JP 10394991U JP 2543631 Y2 JP2543631 Y2 JP 2543631Y2
Authority
JP
Japan
Prior art keywords
bearing
concave curved
joint
spherical
split
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1991103949U
Other languages
Japanese (ja)
Other versions
JPH0552353U (en
Inventor
祥司 八賀
Original Assignee
ジューキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジューキ株式会社 filed Critical ジューキ株式会社
Priority to JP1991103949U priority Critical patent/JP2543631Y2/en
Publication of JPH0552353U publication Critical patent/JPH0552353U/en
Application granted granted Critical
Publication of JP2543631Y2 publication Critical patent/JP2543631Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pivots And Pivotal Connections (AREA)
  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】この考案は、ねじ等の締着部材に
よって分割可能な一対の軸受け構成体によって構成され
る割り軸受けに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a split bearing constituted by a pair of bearing members which can be divided by a fastening member such as a screw.

【0002】[0002]

【従来の技術】両端部を支持された軸、もしくはクラン
クロッドのような折曲形状をなす軸の中間部分に何らか
の部材を回動自在に連結させるような場合、あるいは、
球軸に対し、所定の部材を3次元的に移動し得るよう連
結するような場合において、その連結部分には、従来よ
り図5に示すような割り軸受けが用いられている。ここ
に示す割り軸受けは、ロッドAの端部に一体形成された
第1の軸受け構成体1とこれに対向する第2の軸受け構
成体2とを有し、これらをねじ3,4によって締着固定
することにより、軸Bに挿通された球軸Cに対し、ロッ
ドAを3次元的に回動し得るよう連結させるものであ
る。
2. Description of the Related Art When some member is rotatably connected to a shaft supported at both ends or an intermediate portion of a bent shaft such as a crank rod, or
In a case where a predetermined member is connected to a spherical axis so as to be movable three-dimensionally, a split bearing as shown in FIG. The split bearing shown here has a first bearing structure 1 integrally formed at the end of a rod A and a second bearing structure 2 opposed thereto, and these are fastened by screws 3 and 4. By fixing, the rod A is connected to the spherical axis C inserted through the axis B so that the rod A can rotate three-dimensionally.

【0003】すなわち、前記各軸受け構成体1,2に
は、前記球軸Cと嵌合する凹球面1a,2aが形成され
ると共に、その両側部には、第1,第2の接合面1b,
2b、1c,2cが同一平面上に形成されており、ま
た、第1の軸受け構成体1には、ねじ3,4を挿通させ
るための挿通孔1d,1eが、第2の軸受け構成体2に
はねじ3,4を螺合させるための螺孔2d,2eがそれ
ぞれ形成されている。そして、前記球軸CにロッドAを
連結させる場合には、球軸Cを挟んで両凹球面1a,2
aを対向させ、第1の軸受け構成体の挿通孔1d,1e
に挿通させたねじを第2の軸受け構成体2の螺孔2d,
2eに螺合させて、接合面1bと2b、1cと2cを接
合させる。これにより、球軸Cは両凹球面1a,2aに
て形成された軸挿通孔内に移動可能に収納され、ロッド
Aは球軸Cに対し3次元的に移動し得るよう連結され
る。
That is, each of the bearing components 1 and 2 has concave spherical surfaces 1a and 2a fitted to the spherical axis C, and has first and second joint surfaces 1b on both sides thereof. ,
2b, 1c, and 2c are formed on the same plane, and the first bearing component 1 is provided with insertion holes 1d and 1e for inserting the screws 3 and 4, respectively. Are formed with screw holes 2d and 2e for screwing the screws 3 and 4, respectively. When connecting the rod A to the spherical axis C, the biconcave spherical surfaces 1a, 2
a and the insertion holes 1d and 1e of the first bearing structure
Into the screw holes 2d of the second bearing structure 2,
2e, and the joining surfaces 1b and 2b, 1c and 2c are joined. Thereby, the spherical axis C is movably housed in the shaft insertion hole formed by the biconcave spherical surfaces 1a and 2a, and the rod A is connected to the spherical axis C so as to be able to move three-dimensionally.

【0004】[0004]

【考案が解決しようとする課題】ところで、この種の軸
受けでは、締着固定された各構成体の各凹球面の位置決
め精度が、円滑な回動性能を得る上で重要な要素とな
る。すなわち、各凹球面1aと2aとを正確に合致させ
る必要がある。しかしながら、通常の割り軸受けでは、
第1の軸受け構成体1に形成されている挿通孔1d,1
eと、ねじとの間に、要求される位置決め精度に比して
著しく大きな隙間が形成されているため、各軸受け構成
体の相互の位置出しには困難を極め、多大な時間と労力
を要し、その精度にもばらつきが生じた。もっとも、第
2の軸受け構成体2の螺孔2d,2eを高精度に形成す
れば、このような問題を解消することも可能ではある
が、螺孔2d,2eを高精度に形成することは極めて困
難であり、しかも大幅なコスト増大を招くため、現実に
は実施不可能であった。
However, in this type of bearing, the positioning accuracy of each concave spherical surface of each of the tightened and fixed components is an important factor in obtaining smooth turning performance. That is, it is necessary that the concave spherical surfaces 1a and 2a match exactly. However, with a normal split bearing,
Insertion holes 1d, 1 formed in first bearing component 1
Since a gap is formed between the e and the screw, which is significantly larger than the required positioning accuracy, it is extremely difficult to position the bearing components relative to each other, requiring a great deal of time and labor. However, the accuracy also varied. However, if the screw holes 2d and 2e of the second bearing component 2 are formed with high precision, such a problem can be solved. However, it is not possible to form the screw holes 2d and 2e with high precision. In practice, it was extremely difficult and resulted in a significant increase in cost, so that it was practically impossible.

【0005】また、各構成体1,2の接合面に図6に示
すようなセレーションEを形成し、これによって高精度
な位置決めを容易に行い得るようにしたものも提案され
ている。しかしながら、この場合にも各構成体の製造コ
ストの増大を回避することはできず、また、セレーショ
ンEは形状的に応力集中が生じ易い形状であり、しかも
軸の回転により交番加重等が加わる場合には、図7に示
すように滑り方向への加重が加わるため、摩耗や亀裂が
発生し易いという、耐久性の面での問題も生じる。
Further, there has been proposed a structure in which serrations E as shown in FIG. 6 are formed on the joint surfaces of the structural members 1 and 2 so that highly accurate positioning can be easily performed. However, in this case as well, an increase in the manufacturing cost of each component cannot be avoided, and the serration E has a shape in which stress concentration is likely to occur in shape, and in addition, when the shaft is rotated, an alternating load or the like is applied. As shown in FIG. 7, since a load is applied in the sliding direction, wear and cracks are easily generated, which causes a problem in durability.

【0006】この考案は上記従来の問題点に着目してな
されたもので、各軸受け構成体の位置決めを高精度かつ
容易に行うことができると共に、安価に構成することが
でき、長期の使用にも絶え得る耐久性に優れた割り軸受
けの提供を目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and enables the positioning of each bearing component to be performed with high precision and ease, and can be configured at a low cost, and can be used for a long time. The aim is to provide a split bearing with excellent durability.

【0007】[0007]

【課題を解決するための手段】この発明は、凹曲面とそ
の左右両側に第1,第2の接合面を有する軸受け構成体
を一対備え、所定の締着部材によって前記各凹曲面が対
向するように各軸受け構成体のそれぞれの第1及び第2
の接合面同志を同一平面上で密接させて固定することに
より、前記両凹曲面の組み合わせにより凹球面又は円筒
状の軸挿通孔を形成するようにした割り軸受けであっ
て、前記各軸受け構成体の締着部材による締着時におい
て、その初期においては両軸受け構成体の接合面の外側
が接触した後、序々に内側に向かって接合するように構
成したことを特徴とする。
SUMMARY OF THE INVENTION The present invention comprises a pair of bearing structures having a concave curved surface and first and second joint surfaces on both left and right sides thereof, and the concave curved surfaces are opposed to each other by a predetermined fastening member. The respective first and second of each bearing arrangement
Split bearings in which the joint surfaces are closely contacted and fixed on the same plane to form a concave spherical or cylindrical shaft insertion hole by a combination of the biconcave curved surfaces, wherein each of the bearing components At the initial stage of the fastening by the fastening member, after the outer surfaces of the joint surfaces of the two bearing components come into contact with each other, the bearing members are sequentially joined inward.

【0008】[0008]

【作用】この発明において、各軸受け構成体は、各々が
分離した状態においては第1,第2の接合面が所定角度
(180度未満)の交叉角度をもって交叉し、両凹曲面
も真球、あるいは真円よりやや偏倚した状態にある。こ
のため、各軸受け構成体の締着開始当初は、各凹曲面は
軸に完全に嵌合せず、凹曲面の端縁部が軸の周面に当接
した状態となっており、締着を進めるに従って各凹曲面
は軸の周面に沿って移動して行き、各構成体は弾性変形
して行く。そして、各接合面が外側から内側に向かって
同一平面上で接合した時点で、各凹曲面は完全な球面形
状あるいは円筒形状をなすが、この間、各凹曲面は軸の
外周面にガイドされて拡大して行くため、最終的に両凹
曲面の端縁部はずれなく確実に合致し、各軸受け構成体
は互いに正確に位置決めされる。
In the present invention, in each of the bearing structures, when they are separated from each other, the first and second joining surfaces intersect at an intersection angle of a predetermined angle (less than 180 degrees). Alternatively, it is slightly deviated from a perfect circle. For this reason, at the beginning of the tightening of each bearing component, each concave curved surface is not completely fitted to the shaft, and the edge of the concave curved surface is in contact with the peripheral surface of the shaft. As the process proceeds, each concave curved surface moves along the circumference of the shaft, and each component undergoes elastic deformation. Then, at the time when each joining surface is joined from the outside to the inside on the same plane, each concave curved surface forms a complete spherical shape or a cylindrical shape, and during this time, each concave curved surface is guided by the outer peripheral surface of the shaft. Because of the enlargement, the edges of the bi-concave surfaces will eventually be reliably fitted without slippage, and the bearing components will be accurately positioned relative to one another.

【0009】[0009]

【実施例】以下、この考案の実施例を図1ないし図4に
基づき説明する。図1ないし図3はこの考案の第1実施
例を示す図であり、ここに示す割り軸受けは、球面形状
を有する球軸Cに対して適用するものである。図におい
て、11は第1の軸受け構成体、12は第2の軸受け構
成体である。この実施例における第1の軸受け構成体1
1は、曲面部11aと曲面部(以下、凹曲面という)1
1aの両側部に形成された平面形状をなす第1,第2の
接合面11b,11c、及びねじ13,14を挿通させ
る挿通孔11d,11eが形成されており、また、第2
の軸受け構成体12は前記第1の軸受け構成体と同形の
凹曲面12aと第1,第2の接合面12b,12cが形
成されると共に、ねじ13,14を螺合させるねじ孔1
2d,12eが形成されている。従って、これらの点
は、前記従来技術にて示したものと同様であるが、各部
の形状が次のように異なる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 to 3 show a first embodiment of the present invention. The split bearing shown here is applied to a spherical axis C having a spherical shape. In the figure, reference numeral 11 denotes a first bearing component, and 12 denotes a second bearing component. First bearing structure 1 in this embodiment
1 is a curved surface portion 11a and a curved surface portion (hereinafter referred to as a concave curved surface) 1
First and second joint surfaces 11b and 11c, which are formed on both sides of 1a, and insertion holes 11d and 11e through which screws 13 and 14 are inserted, are formed.
The bearing structure 12 has a concave curved surface 12a and first and second joint surfaces 12b and 12c having the same shape as the first bearing structure, and a screw hole 1 for screwing the screws 13 and 14.
2d and 12e are formed. Therefore, these points are the same as those shown in the above-mentioned prior art, but the shape of each part is different as follows.

【0010】すなわち、この実施例における第1、第2
の接合面11b,12b及び11c,12cは各軸受け
構成体11、12に何等外力が加わらない定常時におい
て、図1(b)に示すように所定角度(180度未満)
で屈曲する2平面にそれぞれ位置している。つまり第
1、第2の接合面は、 第4図(b)にも示すように、
対向する第1の接合面11c,12cを軸方向に向かっ
て互いに離間する傾斜面に形成すると共に、対向する第
2の接合面11b、12bを軸挿通方向に向かって互い
に離間する傾斜面に形成している。そして、 第1の軸
受け構成体12のねじ孔12d、12eに螺合させて行
くことにより、 各軸受け構成体は、 外力へ向けて弾
性変形してゆき、最終的に相対向する各接合面は、同一
の平面上にて完全に接合させることができるようになっ
ている。従って、定常時、締着時のいずれにおいても、
同一平面上に接合面1bと1c,及び、1b、2cが位
置する従来のものとはこの点で異なる。
That is, the first and second embodiments in this embodiment
In a steady state in which no external force is applied to each of the bearing components 11, 12, the joint surfaces 11b, 12b and 11c, 12c have a predetermined angle (less than 180 degrees) as shown in FIG.
Are located on two planes that are bent. That is,
As shown in FIG. 4 (b), the first and second joining surfaces
The opposing first joint surfaces 11c and 12c are oriented in the axial direction.
Formed on inclined surfaces separated from each other by
2 in the axial direction.
Formed on an inclined surface spaced apart from the other . Then, by being screwed into the screw holes 12d and 12e of the first bearing component 12, each bearing component is elastically deformed toward an external force. , Can be completely joined on the same plane. Therefore, both during steady state and during fastening,
This is different from the prior art in which the joining surfaces 1b and 1c and 1b and 2c are located on the same plane.

【0011】また、前記凹曲面11a,12aは、次の
ようににして形成される。すなわち、この各軸受け構成
体 には球軸Cより小径の球面を粗加工しておき、前述
のようにして第1の軸受け構成体11と、第2の軸受け
構成体12とをねじ13,14にて締着する。この後、
粗加工された相対向する曲面に仕上げ加工を施し、球軸
Cに対して所定のクリアランスをとった完全な球面を形
成し、これを凹曲面11a,12aとする。従って、こ
の凹曲面11a,12aは、締着状態においては従来と
同様に半球面形状をなし、それらの組み合わせによって
球面形状をなす軸挿通孔を形成するが、締着状態を解除
した場合には、各軸受け構成体11,12の弾性回復に
伴って各凹曲面11a,12aは半球面をやや内方へ偏
倚させた形状となる。つまり、定常時における凹曲面1
1a,12aの形状は従来と異なる。
The concave curved surfaces 11a and 12a are formed as follows. That is, in each bearing component, a spherical surface having a smaller diameter than the spherical axis C is rough-processed, and the first bearing component 11 and the second bearing component 12 are connected to the screws 13 and 14 as described above. Fasten with. After this,
Finishing is performed on the roughly opposed curved surfaces to form a complete spherical surface having a predetermined clearance with respect to the spherical axis C, and these are defined as concave curved surfaces 11a and 12a. Therefore, the concave curved surfaces 11a and 12a have a hemispherical shape as in the related art in the tightened state as in the related art, and a shaft insertion hole having a spherical shape is formed by combining them, but when the tightened state is released. The respective concave curved surfaces 11a and 12a have a shape in which the hemispherical surface is slightly deviated inward with the elastic recovery of the bearing components 11 and 12. That is, the concave curved surface 1 in the steady state
The shapes of 1a and 12a are different from the conventional one.

【0012】このようにこの実施例においては、各軸受
け構成体11,12の第1の接合面と第2の接合面との
なす角度を所定角度(180度未満)とすること以外
は、図5に示す従来のものと同様の加工工程にて製造す
ることができる。従って、製造コストは図5に示すもの
とほぼ同様であり、セレーションなどを接合面に形成す
る従来のもの(図6参照)に比し、大幅に製造コストを
低減することができる。
As described above, in this embodiment, except that the angle between the first joint surface and the second joint surface of each of the bearing members 11 and 12 is set to a predetermined angle (less than 180 degrees). 5 can be manufactured by the same processing steps as the conventional one shown in FIG. Therefore, the manufacturing cost is substantially the same as that shown in FIG. 5, and the manufacturing cost can be greatly reduced as compared with the conventional one in which serrations and the like are formed on the joint surface (see FIG. 6).

【0013】以上のように構成された割り軸受けにおい
て、球軸Cに対して各軸受け構成体11,12を連結さ
せる場合には、各軸受け構成体11,12の凹曲面11
a,12aを球軸Cを挟んで対向させ、第1の接合面1
1bと12b、第2の接合面11cと12cがそれぞれ
接合するまで各軸受け構成体11,12をねじ13,1
4によって締着させれば良い。
In the split bearing configured as described above, when connecting each bearing component 11, 12 to the spherical axis C, the concave curved surface 11 of each bearing component 11, 12 is used.
a, 12a are opposed to each other across the spherical axis C, and the first joint surface 1
1b and 12b, and the respective bearing components 11, 12 until the second joint surfaces 11c and 12c are joined, respectively.
4 may be used for fastening.

【0014】この締着動作において、その当初は、各軸
受け構成体11,12の凹曲面11a,12aがそれぞ
れ真球面より偏倚した状態となっているため、各凹曲面
11a,12aは軸に完全に嵌合せず、接合面11b,
12b及び11c,12cの外側が接触した状態となっ
ている(図2(a)参照)。この後、ねじ13,14を
締め付けて行くに従って各接合面が図2(b)に示すよ
うに徐々に内側に向かって接合面積を増加するように移
動して行き、各軸受け構成体11,12は内側に向かっ
て弾性変形して行く。そして、各接合面11bと12
b,11cと12cがそれぞれ同一平面上で接合した時
点で、各凹曲面11a,12aは真球面となる(図2
(c)参照)。
In this fastening operation, initially, the concave curved surfaces 11a, 12a of the bearing components 11, 12 are respectively deviated from the true spherical surfaces, so that the concave curved surfaces 11a, 12a are completely formed on the shaft. To the joint surface 11b,
The outer sides of 12b and 11c, 12c are in contact with each other (see FIG. 2A). Thereafter, as the screws 13 and 14 are tightened, the joint surfaces gradually move inward as shown in FIG. 2B so as to increase the joint area, and the respective bearing components 11 and 12 are moved. Is elastically deformed inward. Then, each joint surface 11b and 12
When b, 11c and 12c are respectively joined on the same plane, each concave curved surface 11a and 12a becomes a true spherical surface (FIG. 2).
(C)).

【0015】このように、各凹曲面11a,12aはね
じ13,14による締着動作によって球軸Cの外周面に
ガイドされて均等に拡大して行くため、最終的に両凹曲
面11a,12aの端縁部は正確に合致した状態で接合
され、球軸Cに対し良好な回動性が得られる。従って、
この実施例によれば、作業者が特に位置決め作業を行わ
なくとも各軸受け構成体11,12を正確に位置合わせ
することができ、組み立て作業に要する時間及び労力を
大幅に削減することができる。また、各軸受け構成体1
1,12は、平面形状をなす接合面同志が接合する構成
となっているため、長期の使用にあっても接合面に亀裂
が生じるといった不都合が発生することはなく、優れた
耐久性を得ることができる。
As described above, since each concave curved surface 11a, 12a is guided by the outer peripheral surface of the spherical axis C by the tightening operation by the screws 13, 14, the concave curved surfaces 11a, 12a are ultimately enlarged uniformly. Are joined in a state in which they are exactly matched, and a good rotation property with respect to the spherical axis C is obtained. Therefore,
According to this embodiment, the bearing components 11, 12 can be accurately aligned without the operator performing any particular positioning operation, and the time and labor required for the assembly operation can be greatly reduced. Also, each bearing component 1
Since the joining surfaces 1 and 12 have a configuration in which joining surfaces having a planar shape are joined to each other, even when used for a long time, there is no inconvenience such as cracking of the joining surfaces, and excellent durability is obtained. be able to.

【0016】ところで、上記のような接合面11bと1
1c、12bと12cのなす所定角度(180度−α)
は、各軸受け構成部材11,12を締着した際に各凹曲
面11a,12aにて形成される軸挿通孔の真球度に関
係することが実験的に確かめられている。図3はこの角
度αと、真球度との関係を示す線図である。この図から
も明らかなように、真球度はある所定の角度α1(この
場合、0.7度)で最良となり、これより増大及び減少
するに従って真球度は低下する。従って、角度αの設定
は、このα1近傍に設定する必要がある。また、上記真
球度曲線は、球軸Cと、各構成体との間に形成すべきク
リアランスの大小によっても変化することが実験的に確
認されている。すなわち、クリアランスを増大させれ
ば、真球度曲線は、図3の破線にて示すように右方向へ
と移動し、クリアランスを減少させれば、真球度曲線は
一点鎖線に示すように左方へと移動することが確認され
ている。このため、角度αの設定には、必要とするクリ
アランスをも考慮する必要がある。
By the way, the bonding surfaces 11b and 1
Predetermined angle formed by 1c, 12b and 12c (180 degrees-α)
Has been experimentally confirmed to be related to the sphericity of the shaft insertion hole formed by the concave curved surfaces 11a and 12a when the bearing components 11 and 12 are fastened. FIG. 3 is a diagram showing the relationship between the angle α and the sphericity. As is clear from this figure, the sphericity is best at a certain angle α1 (0.7 degrees in this case), and the sphericity decreases as the angle increases and decreases. Accordingly, it is necessary to set the angle α near α1. It has been experimentally confirmed that the sphericity curve changes depending on the magnitude of the clearance to be formed between the spherical axis C and each component. That is, if the clearance is increased, the sphericity curve moves to the right as shown by the broken line in FIG. 3, and if the clearance is reduced, the sphericity curve moves to the left as shown by the one-dot chain line. It has been confirmed that it will move toward you. Therefore, in setting the angle α, it is necessary to consider the required clearance.

【0017】以上、上記実施例では、球軸Cに対して適
用する割り軸受けを例にとり説明したが、この考案は、
円筒状をなす軸Dに対しても適用可能である。すなわ
ち、図4に示す第2実施例のように円筒状の軸Dに対す
る割り軸受けを構成する場合には、第1、第2の軸受け
構成体21、22の各接合面21b,21c、22b,
22cを、所定角度(180度未満の角度)で交叉する
平面上に位置するよう形成すると共に、各軸受け構成体
21,22をねじ13,14にて締着した状態で、円筒
形状をなす挿通孔が形成されるよう凹曲面21a,22
aを形成すれば良い。これによれば、前記第1実施例と
同様の効果を期待できる。なお、上記各実施例では、各
軸受け構成体の締着にねじ13,14を用いた場合を示
したが、締着部材としては、特にねじに限らず、その他
の部材を用いることも可能であり、この考案は上記実施
例に限定されるものではない。なお、両軸受け構成体1
1,12、21,22の少なくとも一方の軸受け構成体
の第1,第2の接合面のなす角度を所定角度(180度
未満)としても良く、また一方の軸受け構成体の第1,
第2の接合面のなす角度を180度未満とし他方の軸受
け構成体の第1,第2の接合面のなす角度を180度を
越える角度としても良い.
In the above embodiment, the split bearing applied to the spherical axis C has been described as an example.
It is also applicable to the axis D having a cylindrical shape. That is, when a split bearing for a cylindrical shaft D is configured as in the second embodiment shown in FIG. 4, the joint surfaces 21b, 21c, 22b, and 21b of the first and second bearing components 21 and 22 are formed.
22c is formed so as to be located on a plane intersecting at a predetermined angle (an angle of less than 180 degrees), and a cylindrical insertion is formed in a state where the bearing members 21 and 22 are fastened with screws 13 and 14. Concave curved surfaces 21a, 22 so that holes are formed
a may be formed. According to this, the same effect as in the first embodiment can be expected. In each of the above-described embodiments, the case where the screws 13 and 14 are used for fastening the bearing components is shown. However, the fastening members are not limited to screws, and other members can be used. The present invention is not limited to the above embodiment. In addition, the double-bearing structure 1
The angle formed by the first and second joint surfaces of at least one of the bearing structures 1, 12, 21, and 22 may be a predetermined angle (less than 180 degrees).
The angle formed by the second joint surface may be less than 180 degrees, and the angle formed by the first and second joint surfaces of the other bearing structure may be an angle exceeding 180 degrees.

【0018】[0018]

【発明の効果】以上説明したとおり、この考案は、凹曲
面とその左右両側に第1,第2の接合面を有する軸受け
構成体を一対備え、これらを所定の締着部材によって締
着することにより、前記各軸受け構成体に形成された各
凹曲面により円筒状あるいは球面状の挿通孔を形成する
ようにした割り軸受けにおいて、前記各軸受け構成体の
締着部材による締着時において、その初期においては両
構成体の接合面の外側が接触した後、序々に内側に向か
って接合するように構成したため、各軸受け構成体の位
置決めを高精度かつ容易に行うことができると共に、安
価に構成することができ、優れた耐久性を得ることがで
きる。
As described above, the present invention comprises a pair of bearing components having a concave curved surface and first and second joint surfaces on both left and right sides thereof, which are fastened by a predetermined fastening member. Thus, in a split bearing in which a cylindrical or spherical insertion hole is formed by each concave curved surface formed in each of the bearing components, an initial state of each of the bearing components at the time of fastening by the fastening member is reduced. In the above, after the outer surfaces of the joining surfaces of both components come into contact with each other, the components are sequentially joined inward, so that the positioning of each bearing component can be performed with high accuracy and easily, and the configuration is inexpensive. And excellent durability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)はこの考案の第1実施例を示す斜視図で
あり、(b)は同図(a)に示した両軸受け構成体にお
ける第1の接合面と第2の接合面とのなす角度を示す説
明平面図である。
FIG. 1 (a) is a perspective view showing a first embodiment of the present invention, and FIG. 1 (b) is a first joint surface and a second joint surface of the double-bearing structure shown in FIG. 1 (a). FIG. 5 is an explanatory plan view showing an angle formed by

【図2】図1に示したねじによる締着動作に伴う両軸受
け構成体の状態を示す縦断側面図であり、(a)はねじ
による締着を開始した当初の状態を示し、(b)は
(a)に示した状態からさらに締着動作を進めた状態を
示し、(c)は両軸受け構成体を完全に締着した状態を
示している。
FIGS. 2A and 2B are longitudinal sectional side views showing a state of a double-bearing structure accompanying a fastening operation by a screw shown in FIG. 1; FIG. 2A shows an initial state in which fastening by a screw is started; (A) shows a state in which the fastening operation has been further advanced from the state shown in (a), and (c) shows a state in which both bearing components are completely fastened.

【図3】図1に示した角度αと真球度との関係を示す線
図である。
FIG. 3 is a diagram showing a relationship between an angle α and a sphericity shown in FIG. 1;

【図4】(a)はこの考案の第2実施例を示す斜視図、
(b)は(a)に示したものの第1の接合面と第2の接
合面の形成状態を示す説明斜視図である。
FIG. 4A is a perspective view showing a second embodiment of the present invention,
(B) is an explanatory perspective view showing the state of formation of the first joint surface and the second joint surface shown in (a).

【図5】(a)は従来の割り軸受けを示す斜視図であ
り、(b)は(a)に示したものの平面図である。
FIG. 5A is a perspective view showing a conventional split bearing, and FIG. 5B is a plan view of the split bearing shown in FIG.

【図6】従来の他の割り軸受けにおける接合面を示す斜
視図である。
FIG. 6 is a perspective view showing a joining surface of another conventional split bearing.

【図7】図6に示したものに亀裂が生じた状態を示す側
面図である。
FIG. 7 is a side view showing a state where a crack has occurred in the one shown in FIG. 6;

【符号の説明】[Explanation of symbols]

11 第1の軸受け構成体 12 第2の軸受け構成体 11a,12a 凹曲面 11b,12b 第1の接合面 11c,12c 第2の接合面 13,14 ねじ(締着部材) 21 第1の軸受け構成体 22 第2の軸受け構成体 21a,22a 凹曲面 21b,22b 第1の接合面 21c,22c 第2の接合面 DESCRIPTION OF SYMBOLS 11 1st bearing structure 12 2nd bearing structure 11a, 12a Concave curved surface 11b, 12b 1st joining surface 11c, 12c 2nd joining surface 13, 14 Screw (fastening member) 21 1st bearing structure Body 22 Second bearing component 21a, 22a Concave curved surface 21b, 22b First joint surface 21c, 22c Second joint surface

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】一対の軸受構成体よりなり、各軸受構成体
は、第1、第2の接合面を有する共に、両接合面の間に
凹曲面の組合せにより凹球面を有し、所定の締着部材に
よって前記各凹曲面の組合せにより凹球面又は円筒状の
軸挿入孔を形成するようにした割り軸受において、前記一対の対向する第1の接合面を軸挿通方向に向かっ
て互いに離間する傾斜面に形成するとともに、 前記一
対の対向する第2の接合面を軸挿通方向に向かって互い
に離間する傾斜面に形成したことを特徴とする 割り軸
受。
The present invention comprises a pair of bearing components, each bearing component having first and second joint surfaces, and having a concave spherical surface formed by a combination of concave curved surfaces between both joint surfaces. In a split bearing in which a concave spherical surface or a cylindrical shaft insertion hole is formed by a combination of the concave curved surfaces by a fastening member, the pair of opposed first joining surfaces are oriented in a shaft insertion direction.
And formed on inclined surfaces separated from each other by
The pair of opposing second joining surfaces are moved toward each other in the shaft insertion direction.
A split bearing formed on an inclined surface spaced apart from the split bearing.
JP1991103949U 1991-12-17 1991-12-17 Split bearing Expired - Fee Related JP2543631Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991103949U JP2543631Y2 (en) 1991-12-17 1991-12-17 Split bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991103949U JP2543631Y2 (en) 1991-12-17 1991-12-17 Split bearing

Publications (2)

Publication Number Publication Date
JPH0552353U JPH0552353U (en) 1993-07-13
JP2543631Y2 true JP2543631Y2 (en) 1997-08-13

Family

ID=14367676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991103949U Expired - Fee Related JP2543631Y2 (en) 1991-12-17 1991-12-17 Split bearing

Country Status (1)

Country Link
JP (1) JP2543631Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0900822D0 (en) * 2009-01-20 2009-03-04 Airbus Uk Ltd Bearing assembly

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531804A (en) * 1976-06-29 1978-01-10 Toshiba Corp Bearing support for rotary electric machine

Also Published As

Publication number Publication date
JPH0552353U (en) 1993-07-13

Similar Documents

Publication Publication Date Title
JP2810940B2 (en) End for torque transmission
KR101024883B1 (en) Tripod type constant velocity joint
JPS6216495Y2 (en)
KR20050034537A (en) Tightening fixture and tightening bolt
WO1992014943A1 (en) Constant velocity universal joint and method for making same
US4840601A (en) Self balancing universal joint
JP2543631Y2 (en) Split bearing
JP2009008174A (en) Joining structure of steering shaft and yoke
US4229871A (en) Method for prestressing an axially retained homokinetic joint
JPS62298012A (en) Head fixing structure
JP3177496B2 (en) Rotating body fixture
JP2001140895A (en) Rolling element
JP3305286B2 (en) Spring washer
JPH11141563A (en) Rotor fixture
JPH10141385A (en) Shaft fastening structure of shaft coupling
JP3042817U (en) Universal joint
JP2024042739A (en) connector
JP5297933B2 (en) Constant velocity joint
JP3052835U (en) Shaft coupling
JPH0215137Y2 (en)
JP2918831B2 (en) Rotating body fixture
JP2533656Y2 (en) Universal shaft coupling
JP3014448U (en) Screw fixing device
JPH0133848Y2 (en)
JP2580115Y2 (en) Joint between shaft and universal joint yoke

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R323533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees