JPS61152786A - Hydraulic medium mixture - Google Patents

Hydraulic medium mixture

Info

Publication number
JPS61152786A
JPS61152786A JP59273722A JP27372284A JPS61152786A JP S61152786 A JPS61152786 A JP S61152786A JP 59273722 A JP59273722 A JP 59273722A JP 27372284 A JP27372284 A JP 27372284A JP S61152786 A JPS61152786 A JP S61152786A
Authority
JP
Japan
Prior art keywords
working medium
temperature
perfluorooctane
ccl2
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59273722A
Other languages
Japanese (ja)
Inventor
Masato Fukushima
正人 福島
Kazuki Jinushi
地主 一樹
Teruo Sakayori
酒寄 輝夫
Kunihiko Terase
邦彦 寺瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP59273722A priority Critical patent/JPS61152786A/en
Publication of JPS61152786A publication Critical patent/JPS61152786A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

PURPOSE:The titled mixture suitable for heat pump. etc., having high heat recovery efficiency, slightly being influenced by various metallic materials of each part of devices, lubricant, water content, etc., comprising n-perfluorooctane and a specific halogenated hydrocarbon as essential components. CONSTITUTION:The aimed mixture comprising (A) n-perfluorooctane (n-C8F18), and (B) a halogenated hydrocarbon (preferably 1-4C hydrocarbon, such as CCl4, CHBrCl2, CCl3, CCl3, CHClFCCl2F, CCl2=CCl2, etc.) having 5-110 deg.C standard boiling point difference between the components A and B, as essential components.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ヒートポンプ等に使用し得る新規な作動媒体
混合物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel working medium mixture that can be used in heat pumps and the like.

[従来の技術] 重油や石油等の燃料を燃焼して得られる温度よりも低い
中低温域の熱源からエネルギーを回収する研究が進み、
海洋温度差発電−9地熱バイナリ−発電、廃熱回収発電
、太陽熱発電、あるいはヒートポンプによる昇温、ヒー
トパイプによる熱交換技術等が実用化ないしは試験され
ている。これらの回収技術に用いる作動媒体には、水を
はじめプロパンやブタン等の炭化水素類、トリクロロモ
ノフルオロメタン(R−11)や1.2−ジクロロテト
ラフルオロエタン(R−114)等のフロン類、又はア
ンモニア等が知られている。
[Conventional technology] Research is progressing to recover energy from heat sources in the medium and low temperature range, which is lower than the temperature obtained by burning fuels such as heavy oil and petroleum.
Ocean temperature difference power generation - 9 Geothermal binary power generation, waste heat recovery power generation, solar thermal power generation, temperature increase using heat pumps, heat exchange technology using heat pipes, etc. have been put into practical use or are being tested. The working media used in these recovery techniques include water, hydrocarbons such as propane and butane, and fluorocarbons such as trichloromonofluoromethane (R-11) and 1,2-dichlorotetrafluoroethane (R-114). , ammonia, etc. are known.

[発明の解決しようとする問題点] フロン類は毒性が少なく、非可燃性で化学的にも安定で
あり、沸点の異なる各種フロンが容易に入手できること
から、作動媒体としての評価研究が活発に行なわれてい
る0本発明は、熱回収効率、特に、冷凍庫、冷蔵庫、冷
暖房機器、給油器あるいは廃熱回収を目的としたヒート
ポンプシステムの効率が高いフロン類、を新規に提供す
るものである。
[Problems to be solved by the invention] Since fluorocarbons have low toxicity, are non-flammable, and are chemically stable, and various fluorocarbons with different boiling points are easily available, evaluation research as a working medium has been actively conducted. The present invention provides novel fluorocarbons that have high heat recovery efficiency, particularly for freezers, refrigerators, air-conditioning equipment, oil dispensers, or heat pump systems for the purpose of waste heat recovery.

[問題点を解決するための手段] 本発明はn−パーフルオロオクタン、及びn−パーフル
オロオクタンとの標準沸点差が5〜110℃であるハロ
ゲン化炭化水素を必須成分とすることを特徴とする作動
媒体混合物に関するものである。
[Means for Solving the Problems] The present invention is characterized in that n-perfluorooctane and a halogenated hydrocarbon having a standard boiling point difference of 5 to 110°C with n-perfluorooctane are essential components. The invention relates to working medium mixtures that

n−パーフルオロオクタン(n−CsF+s )の標準
沸点は105℃であるが、これとの沸点差が5〜110
℃のハロゲン化炭化水素を混合した非共沸媒体は、混合
前の単独成分に比べ、ヒートポンプシステムの成績係数
や加熱能力等が改善し得ることを見い出した。 n−0
8F18との標準沸点差が5〜110℃のハロゲン化炭
化水素としては、以下の炭素数1〜4の化合物が好まし
い。
The standard boiling point of n-perfluorooctane (n-CsF+s) is 105°C, but the difference in boiling point from this is 5 to 110°C.
It has been found that a non-azeotropic medium mixed with a halogenated hydrocarbon at ℃ can improve the coefficient of performance, heating capacity, etc. of a heat pump system compared to the single component before mixing. n-0
As the halogenated hydrocarbon having a standard boiling point difference of 5 to 110°C with 8F18, the following compounds having 1 to 4 carbon atoms are preferable.

メタン誘導体として、CG11 、CChF、CHGI
3eCICI2 F 、CH2C12、CBrC13、
CBrz 012 、CBr3 CI 、CBr1C1
z F 。
As methane derivatives, CG11, CChF, CHGI
3eCICI2F, CH2C12, CBrC13,
CBrz 012 , CBr3 CI , CBr1C1
zF.

CBr2CIF、GBr2F2 、CHBrC12、C
HBr2CI、CHBr5 +CHBrCIF 、CH
Br2 F 、CH2B re 1 、CH2Br2.
012 BrF 、CH3Br 。
CBr2CIF, GBr2F2, CHBrC12, C
HBr2CI, CHBr5 +CHBrCIF, CH
Br2 F , CH2B re 1 , CH2Br2.
012 BrF, CH3Br.

を挙げることができる。can be mentioned.

エタン誘導体として、 CC1xCC13,CG13C
CI2F。
As an ethane derivative, CC1xCC13, CG13C
CI2F.

CG12FCC1zF、CChCCIFz 、CC1z
FCCIFz 、CC15CF3゜CCIhCC1h 
、CC1zFCh 、CBr1zCBrFz 、CC1
5CF3゜CHCl2 CCl2 F 、CC13CH
CIF、CHChCClh 、CHCIFCCh F 
CG12FCC1zF, CChCCIFz, CC1z
FCCIFz, CC15CF3゜CCIhCC1h
, CC1zFCh , CBr1zCBrFz , CC1
5CF3゜CHCl2 CCl2 F , CC13CH
CIF, CHChCClh, CHCIFCChF
.

CC15CF3.CHClzCh 、GHCIFCCI
Fz 、CHClzCHCIz 。
CC15CF3. CHClzCh , GHCIFCCI
Fz, CHClzCHCIz.

(:C13GHzCI 、CH2ClCCl2F、CH
CIFCHCIF、C)IC12CHF2゜CClF2
0H2CI、CC1FCHF2.CH2ClCF3.C
ClF20H2F。
(:C13GHzCI, CH2ClCCl2F, CH
CIFCHCIF, C) IC12CHF2゜CCIF2
0H2CI, CC1FCHF2. CH2ClCF3. C
ClF20H2F.

CHに12CH2C1,CCl3CH3,CHCIFG
HzCI、CC12FCH:+。
12CH2C1, CCl3CH3, CHCIFG in CH
HzCI, CC12FCH: +.

CH2ClCF3 、CHhCHtF、C1hC;IC
1hC1、CIC120H+ 。
CH2ClCF3, CHhCHtF, C1hC; IC
1hC1, CIC120H+.

CH2CICHz F 、CHCIFcHa 、CH2
FGHz F 、CH2CICHsを挙げることができ
る。
CH2CICHz F , CHCIFcHa , CH2
FGHz F , CH2CICHs can be mentioned.

エチレン誘導体として、CCh−CC1z−GOIF−
GCI2*CClF51CGIF、CGIF−CGIF
、CC1z−CFz 、CHCl−CCl2 。
As an ethylene derivative, CCh-CC1z-GOIF-
GCI2*CCIF51CGIF, CGIF-CGIF
, CC1z-CFz, CHCl-CCl2.

CHCI冒CCIF、CG12−〇HF、0101.H
ClCl、CHCl璽cue t 。
CHCI affected CCIF, CG12-〇HF, 0101. H
ClCl, CHCl cue t.

012厘CCl2.CHCl禦CHF、C)101翼C
)IF 、を挙げることができる。
012 CCl2. CHCl 禦CHF, C) 101 wing C
) IF.

環状化合物として、CCl2−にC1z−Oh−Ch 
As a cyclic compound, C1z-Oh-Ch to CCl2-
.

L−一一一一」 CGIF−CGIF−Ch−Ch、  CGIF−Oh
−Ch−Ch。
CGIF-CGIF-Ch-Ch, CGIF-Oh
-Ch-Ch.

L−一一一一一一」   L−一一一一一」CHCl−
CC12−CFz−CF2.  CC1z−Oh−CF
z−C1h。
L-11111"L-11111" CHCl-
CC12-CFz-CF2. CC1z-Oh-CF
z-C1h.

L−一一一一一一」   L−一一一一一」を挙げるこ
とができる。 − これら、ハロゲン化炭化水素は、単独で又は2種以上の
混合物として使用し得る。特に異性体においては、物性
が近似しており、混合使用してても性能に悪影響なく使
用し得る。
"L-11111" can be mentioned. - These halogenated hydrocarbons can be used alone or as a mixture of two or more. In particular, isomers have similar physical properties and can be used in mixtures without adversely affecting performance.

以下1本発明の作動媒体を用いたヒートポンプシステム
のフローシートを示す第1図に従って本発明の詳細な説
明する。第1図の1は圧縮機、2は凝縮器、3.3′は
負荷流体用配管、4は減圧装置、5は蒸発器、8,8′
は熱源流体用配管を示す。
The present invention will be described in detail below with reference to FIG. 1, which shows a flow sheet of a heat pump system using the working medium of the present invention. In Figure 1, 1 is a compressor, 2 is a condenser, 3.3' is a load fluid piping, 4 is a pressure reducing device, 5 is an evaporator, 8, 8'
indicates piping for heat source fluid.

第1図に示すヒートポンプシステムにおいて作動媒体は
圧縮az中で管3より導入される負荷流体により冷却さ
れて凝縮する。一方、負荷流体は凝縮機2中で管6によ
り導入され管B′から排出される熱源流体により加熱さ
れた後、再び圧縮alに吸引された上記のサイクルを繰
り返す。
In the heat pump system shown in FIG. 1, the working medium is cooled and condensed in the compression az by the load fluid introduced through the pipe 3. On the other hand, the load fluid is introduced into the condenser 2 through the pipe 6, heated by the heat source fluid discharged through the pipe B', and then sucked into the compressed Al again, repeating the above cycle.

第2図及び第3図は第1図に示すヒートポンプシステム
における作動媒体のサイクルを圧力−エンタルピー線図
上に記入したものである。
FIGS. 2 and 3 show the cycles of the working medium in the heat pump system shown in FIG. 1 on pressure-enthalpy diagrams.

作動媒体の飽和蒸気を断熱圧縮した場合、湿り状態にな
るものを第2図に、乾き状態になるものを第3図に示す
When saturated vapor as a working medium is adiabatically compressed, a wet state is shown in Fig. 2, and a dry state is shown in Fig. 3.

第1図の圧縮機による作動媒体の変化は第2図及び第3
図の符号8から9あるいは13から14の変化に、凝縮
器による作動媒体の変化は9→lO→11→あるいは1
4+15→18→17の変化に、減圧装置による作動媒
体の変化は11から12あるいは17から18の変化に
、蒸発器による作動媒体の変化は12から8あるいは1
8から13の変化にそれぞれ対応する。
Changes in the working medium caused by the compressor in Figure 1 are shown in Figures 2 and 3.
In the change from 8 to 9 or 13 to 14 in the figure, the change in working medium due to the condenser is 9 → lO → 11 → or 1
The change in working medium due to the pressure reducing device is from 11 to 12 or from 17 to 18, and the change in working medium due to the evaporator is from 12 to 8 or 1.
This corresponds to the change from 8 to 13, respectively.

本発明の作動媒体を用いた第1図のヒートポンプシステ
ムの運転条件として蒸発器における作動媒体の蒸発路り
温度(符号7あるいは13の温度、以下、蒸発温度とい
う)という凝縮器における作動媒体の凝縮始めの温度(
符号9あるいは15の温度、以下、凝縮温度という)を
設定した。第1表から第4表に本発明の作動媒体を用い
た上記のヒートポンプシステムにおける成績係数、圧縮
機単位馬力当りの加熱能力および作動媒体の循環量を記
す0表から理解されるように、混合することにより、混
合前の単独成分に比べ性能が改善されている。又、n−
C(IFIBに対して例えば、 R−21(ジクロロモ
ノフルオロメタン)、 R−113(1,1,2−)ジ
クロロ−1,2,2−トリフルオロメタン)、 R−1
23(1,1−ジクロロ−2,2,2−トリフルオロエ
タン)、又はR−133(1−クロロ−1,2,2−ン
トリフルオロエタン)をIl量(モル分率で約o、al
でよい)混合するだけで、それぞれ単独成分よりも性能
が改善されることも、ひとつの特徴である。好ましい混
合割合(モル比)は1例えばR−21:n−C5F+e
ではl二o、4〜t:10、R−113:n−C5F+
aでは1:1〜1:10、R−123:n−CaFta
では1 : 0.8〜1 : 10. R−133:n
−C3F+8ではl:tl、5〜1:10である。
The operating conditions of the heat pump system shown in FIG. 1 using the working medium of the present invention are the evaporation path temperature of the working medium in the evaporator (temperature 7 or 13, hereinafter referred to as evaporation temperature), and the condensation of the working medium in the condenser. Starting temperature (
A temperature of 9 or 15 (hereinafter referred to as condensation temperature) was set. As can be understood from Tables 1 to 4, which show the coefficient of performance, heating capacity per unit horsepower of the compressor, and circulation amount of the working medium in the above heat pump system using the working medium of the present invention, the mixing By doing so, the performance is improved compared to the single component before mixing. Also, n-
C (for IFIB, for example, R-21 (dichloromonofluoromethane), R-113 (1,1,2-)dichloro-1,2,2-trifluoromethane), R-1
23 (1,1-dichloro-2,2,2-trifluoroethane) or R-133 (1-chloro-1,2,2-trifluoroethane) in an Il amount (about o in molar fraction, al
One of their characteristics is that just by mixing them, the performance is better than that of each component alone. The preferred mixing ratio (molar ratio) is 1, for example R-21:n-C5F+e
So l2o, 4~t:10, R-113:n-C5F+
1:1 to 1:10 for a, R-123:n-CaFta
Then 1:0.8 to 1:10. R-133:n
-C3F+8 is l:tl, 5 to 1:10.

本発明の作動媒体混合物は中低温熱源を利用したヒート
ポンプシステムに応用する場合に特に有効であるが、ラ
ンキンサイクル用あるいは、その他各種の熱回収技術用
の作動媒体として使用することもできる0本発明の作動
媒体混合物は熱安定性が優れており、通常の使用条件に
おいては安定剤を必要としないが、過酷な使用条件のた
め熱安定性の向上が必要な場合には、ジメチルホスファ
イト、ジイソプロピルホスファイト、ジフェニルホスフ
ァイト等のホスファイト系化合物、又はチオホスファイ
ト系化合物、あるいはトリフェノキシホスフインサ、ル
ファイド、トリメチルホスフィンサルファイド等のホス
フィンサルファイド系化合物、その他の安定剤を作動媒
体100重量部に対し、1重量部前後の少量添加すれば
よい。
The working medium mixture of the present invention is particularly effective when applied to a heat pump system using a medium-low temperature heat source, but it can also be used as a working medium for Rankine cycle or various other heat recovery technologies. The working medium mixture has excellent thermal stability and does not require stabilizers under normal conditions of use, but if improved thermal stability is required due to severe conditions of use, dimethyl phosphite, diisopropyl Phosphite-based compounds such as phosphite, diphenylphosphite, thiophosphite-based compounds, or phosphine sulfide-based compounds such as triphenoxyphosphine, rulphide, trimethylphosphine sulfide, and other stabilizers per 100 parts by weight of the working medium. , may be added in a small amount of around 1 part by weight.

第1表(蒸発温度=100″C9凝縮温度150℃)第
2表(蒸発温度:100℃、凝縮温度150℃)第3表
(蒸発温度;100℃、凝縮温度150℃)第4表(蒸
発温度:100℃、凝縮温度150℃)[発明の効果] 本発明の作動媒体混合物は、混合前の単独成分に比べ、
例えばヒートポンプの加熱能力や成績係数を改善するこ
とができる。又、n−CaFtaは高温熱安定性すなわ
ち、装置各部の各種金属材料や潤滑油あるいは水分等の
影響を受けにくいため、n−CaFtaを含む本発明の
作動媒体混合物は、高温熱安定性をも改善することがで
きる。
Table 1 (Evaporation temperature = 100'' C9 condensation temperature 150℃) Table 2 (Evaporation temperature: 100℃, Condensation temperature 150℃) Table 3 (Evaporation temperature: 100℃, Condensation temperature 150℃) Table 4 (Evaporation temperature: 100℃, Condensation temperature 150℃) Temperature: 100°C, condensation temperature 150°C) [Effects of the invention] Compared to the individual components before mixing, the working medium mixture of the present invention has
For example, the heating capacity and coefficient of performance of heat pumps can be improved. Furthermore, n-CaFta has high-temperature thermal stability, that is, it is not easily affected by various metal materials, lubricating oil, moisture, etc. in various parts of the device, so the working fluid mixture of the present invention containing n-CaFta also has high-temperature thermal stability. It can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を説明するためのヒートポン
プのフローシート、第2図および第3図は本発明の作動
媒体を用いたサイクルを圧力−エンタルピー線図に記入
した図である。
FIG. 1 is a flow sheet of a heat pump for explaining one embodiment of the present invention, and FIGS. 2 and 3 are pressure-enthalpy diagrams showing cycles using the working medium of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、n−パーフルオロオクタン、及びn−パーフルオロ
オクタンとの標準沸点差が5〜11.0℃であるハロゲ
ン化炭化水素を必須成分とすることを特徴とする作動媒
体混合物。
1. A working medium mixture comprising as essential components n-perfluorooctane and a halogenated hydrocarbon having a standard boiling point difference of 5 to 11.0°C with n-perfluorooctane.
JP59273722A 1984-12-27 1984-12-27 Hydraulic medium mixture Pending JPS61152786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59273722A JPS61152786A (en) 1984-12-27 1984-12-27 Hydraulic medium mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59273722A JPS61152786A (en) 1984-12-27 1984-12-27 Hydraulic medium mixture

Publications (1)

Publication Number Publication Date
JPS61152786A true JPS61152786A (en) 1986-07-11

Family

ID=17531648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59273722A Pending JPS61152786A (en) 1984-12-27 1984-12-27 Hydraulic medium mixture

Country Status (1)

Country Link
JP (1) JPS61152786A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991017231A1 (en) * 1990-05-10 1991-11-14 Allied-Signal Inc. Lubricants useful with 1,1-dichloro-2,2,2-trifluoroethane
US5185089A (en) * 1990-05-10 1993-02-09 Allied-Signal Inc. Lubricants useful with 1,1-dichloro-2,2,2-trifluoroethane
WO1994023008A1 (en) * 1993-04-01 1994-10-13 Minnesota Mining And Manufacturing Company Azeotropic compositions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991017231A1 (en) * 1990-05-10 1991-11-14 Allied-Signal Inc. Lubricants useful with 1,1-dichloro-2,2,2-trifluoroethane
US5185089A (en) * 1990-05-10 1993-02-09 Allied-Signal Inc. Lubricants useful with 1,1-dichloro-2,2,2-trifluoroethane
WO1994023008A1 (en) * 1993-04-01 1994-10-13 Minnesota Mining And Manufacturing Company Azeotropic compositions
US5494601A (en) * 1993-04-01 1996-02-27 Minnesota Mining And Manufacturing Company Azeotropic compositions
US5560861A (en) * 1993-04-01 1996-10-01 Minnesota Mining And Manufacturing Company Azeotropic compositions

Similar Documents

Publication Publication Date Title
JP2841451B2 (en) Working medium
JP2576161B2 (en) Working medium mixture
Chandrasekharan Exergy analysis of vapor compression refrigeration system using R12 and R134a as refrigerants
JP2576162B2 (en) Working medium mixture
JPS63308085A (en) Operation medium mixture
EP0110389B1 (en) Working fluids for rankine cycle
JPS61152786A (en) Hydraulic medium mixture
US4562995A (en) Working fluids for Rankine cycle
JPS63308084A (en) Operation medium mixture
JP2507437B2 (en) Working medium mixture
Hewitt et al. Advanced cycles and replacement working fluids in heat pumps
JPH0461910B2 (en)
JPS60245686A (en) Hydraulic medium mixture
EP0101856B1 (en) Working fluids for rankine cycle
JPH01153786A (en) Working medium mixture
Frank et al. Advanced waste heat recovery system based on organic rankine cycle
JPS6137855A (en) Working medium mixture
JPS60255884A (en) Mixed hydraulic fluid
JPH01139683A (en) Working medium mixture
JPS60212481A (en) Operating medium mixture
JPH01141982A (en) Working medium mixture
JP2536560B2 (en) Working medium mixture
JPH01139677A (en) Working medium mixture
JPS6312506B2 (en)
JPH0119719B2 (en)