JPH0461910B2 - - Google Patents

Info

Publication number
JPH0461910B2
JPH0461910B2 JP59159099A JP15909984A JPH0461910B2 JP H0461910 B2 JPH0461910 B2 JP H0461910B2 JP 59159099 A JP59159099 A JP 59159099A JP 15909984 A JP15909984 A JP 15909984A JP H0461910 B2 JPH0461910 B2 JP H0461910B2
Authority
JP
Japan
Prior art keywords
working medium
present
heat
heat pump
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59159099A
Other languages
Japanese (ja)
Other versions
JPS6137856A (en
Inventor
Masato Fukushima
Teruo Sakayori
Makoto Segami
Kunihiko Terase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP59159099A priority Critical patent/JPS6137856A/en
Publication of JPS6137856A publication Critical patent/JPS6137856A/en
Publication of JPH0461910B2 publication Critical patent/JPH0461910B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ヒートポンプ等に使用し得る新規な
作動媒体混合物に関する。 〔従来技術〕 重油や石油等の燃料を燃焼して得られる温度よ
りも低い中低温域の熱源からエネルギーを回収す
る研究が進み、海洋温度差発電、地熱バイナリー
発電、廃熱回収発電、太陽熱発電、あるいはヒー
トポンプによる昇温、ヒートパイプによる熱交換
技術等が実用化ないしは試験されている。これら
の熱回収技術に用いる作動媒体には、水をはじめ
プロパンやブタン等の炭化水素類、トリクロロモ
ノフルオロメタン(R−11)や、1,2−ジクロ
ロテトラフルオロエタン(R−114)等のフロン
類、又はアンモニア等が知られている。 〔発明の目的〕 フロン類は毒性が少なく、非可燃性で化学的に
も安定であり、沸点の異なる各種フロンが容易に
入手できることから、作動媒体としての評架価研
究が活発に行なわれている。本発明者等は、熱回
収効率特に、冷凍庫、冷蔵庫、冷暖房機器、給湯
機器あるいは廃熱回収を目的としたヒートポンプ
システムの効率が高いフロン類の探索を進めた結
果、モノクロロジジフルオロメタンとジクロロト
リフルオロエタンとを必須成分とする作動媒体混
合物が有効であることを見い出すことができた。
本発明は、このような作動媒体混合物を新規に提
供するものである。 〔発明の構成〕 本発明における、ジクロロトリフルオロエタン
には、1,1−ジクロロ−2,2,2−トリフル
オロエタン(R−123),1,2−ジクロロ−1,
2,2−トリフルオロエタン(R−123a)そし
て、1,1−ジクロロ−1,2,2−トリフルオ
ロエタン(R−123b)の3種の異性体が知られ
ているが、互いに物性が類似しているため、これ
らを単独で用いてもよく、また、これらの混合物
を用いてもよい。以下の説明においてはR−22
(モノクロロジフルオロメタン)とR−123を混合
使用する例を示す。 以下、本発明の作動媒体を用いたヒートポンプ
システムのフローシートを示す第1図に従つて本
発明を詳細に説明する。第1図の1は圧縮機、2
は凝縮器、3,3′は負荷流体用配管、4は減圧
装置、5は蒸発器、6,6′は熱源流体配管を示
す。 第1図に示すヒートポンプシステムおいて作動
媒体は圧縮機1で圧縮された後凝縮器2に導か
れ、該凝縮器2中で管3より導入される負荷両体
により冷却されて凝縮する。一方、負荷流体は凝
縮器2中で逆に加熱され管3′を経て負荷加熱に
供される。つぎに凝縮した作動媒体は減圧装置4
により減圧された後蒸発器5に導かれ、該蒸発器
5中で管6より導入され管6′から排出される熱
源流体により加熱された後、再び圧縮機1に吸引
され上記のサイクルを繰り返す。 第2図及び第3図は第1図に示すヒートポンプ
システムにおける作動媒体のサイクルを圧力−エ
ンタルピー線図上に記入したものである。作動媒
体の飽和蒸気を断熱圧縮した場合、湿り状態にな
るものを第2図に、乾き状態になるものを第3図
に示す。 第1図の圧縮機による作動媒体の変化は第2図
及び第3図の符号8から9あるいは13から14
の変化に、凝縮器による作動媒体の変化は9→10
→11→あるいは14→15→16→17の変化に、減圧装
置による作動媒体の変化は11から12あるいは17か
ら18の変化に、蒸発器による作動媒体の変化は12
から8あるいは18から13の変化にそれぞれ対応す
る。 本発明の作動媒体を用いた第1図のヒートポン
プシステムの運転条件として蒸発器における作動
媒体の蒸発終り温度(符号7あるいは13の温
度。以下、蒸発温度という)と凝縮器における作
動媒体の凝縮始めの温度(符号9あるいは15の
温度。以下、凝縮温度という)を設定した。第1
表から第2表に本発明の作動媒体を用いた上記の
ヒートポンプシステムにおける成績係数、圧縮機
単位馬力当りの加熱能力および作動媒体の循環量
を、比較例とともに記す。 表から理解されるようにR−22とR−123との
混合モル比が約1:100〜1:0.7の範囲となる本
発明の作動媒体を用いたヒートポンプの成績係数
および加熱能力はR−22およびR−123をそれぞ
れ単独で用いた場合に比べ改善されており、現
在、良く用いられているジクロロジフルオロエタ
ン(R−12)と比べても大きく改善されている。 本発明の作動媒体混合物は中低温熱源を利用し
たヒートポンプシステムに応用する場合に特に有
効であるが、ランキンサイク用あるいは、その他
各種の熱回収技術用の作動媒体として使用するこ
ともできる。本発明の作動媒体混合物は熱安定性
が優れており、通常の使用条件においては安定剤
を必要としないが、苛酷な使用条件のため熱安定
性の向上が必要な場合には、ジメチルホスフアイ
ト、ジイソプロピルホスフアイト、ジフエニルホ
スフアイト等のホスフフアイト系化合物、又はチ
オホスフアイト系化合物、あるいはトリフエノキ
シホスフインサルフアイド、トリメチルホスフイ
ンサルフアイド等のホスフインサルフアイド系化
合物、その他の安定剤を作動媒体100重量部に対
し、1重量前後の少量添加すれればよい。
[Industrial Field of Application] The present invention relates to a novel working medium mixture that can be used in heat pumps and the like. [Prior technology] Research into recovering energy from heat sources in the medium and low temperature range, which is lower than that obtained by burning fuels such as heavy oil and petroleum, is progressing, and this has led to advances in ocean thermal power generation, geothermal binary power generation, waste heat recovery power generation, and solar thermal power generation. , temperature raising using heat pumps, heat exchange technology using heat pipes, etc. are being put into practical use or being tested. The working media used in these heat recovery technologies include water, hydrocarbons such as propane and butane, and trichloromonofluoromethane (R-11) and 1,2-dichlorotetrafluoroethane (R-114). Fluorocarbons, ammonia, etc. are known. [Purpose of the Invention] Fluorocarbons have low toxicity, are non-flammable, and are chemically stable, and various fluorocarbons with different boiling points are easily available, so research on their evaluation as working media has been actively conducted. There is. As a result of our search for fluorocarbons with high heat recovery efficiency, particularly for freezers, refrigerators, air conditioning equipment, hot water supply equipment, and heat pump systems for the purpose of waste heat recovery, we discovered monochlorodidifluoromethane and dichlorotrifluorocarbons. It has been found that a working medium mixture containing fluoroethane as an essential component is effective.
The present invention provides such a novel working medium mixture. [Structure of the invention] In the present invention, dichlorotrifluoroethane includes 1,1-dichloro-2,2,2-trifluoroethane (R-123), 1,2-dichloro-1,
Three isomers are known: 2,2-trifluoroethane (R-123a) and 1,1-dichloro-1,2,2-trifluoroethane (R-123b), but they have different physical properties. Due to their similarity, they may be used alone or a mixture thereof. In the following explanation, R-22
An example of using a mixture of (monochlorodifluoromethane) and R-123 is shown below. Hereinafter, the present invention will be explained in detail with reference to FIG. 1, which shows a flow sheet of a heat pump system using the working medium of the present invention. 1 in Figure 1 is a compressor, 2
1 is a condenser, 3 and 3' are load fluid pipes, 4 is a pressure reducing device, 5 is an evaporator, and 6 and 6' are heat source fluid pipes. In the heat pump system shown in FIG. 1, the working medium is compressed by a compressor 1 and then led to a condenser 2, where it is cooled and condensed by both loads introduced through a pipe 3. On the other hand, the load fluid is reversely heated in the condenser 2 and passed through the pipe 3' for load heating. Next, the condensed working medium is transferred to the pressure reducing device 4
After being depressurized, it is led to the evaporator 5, where it is heated by the heat source fluid introduced through the tube 6 and discharged through the tube 6', and then sucked into the compressor 1 again to repeat the above cycle. . FIGS. 2 and 3 show the cycles of the working medium in the heat pump system shown in FIG. 1 on pressure-enthalpy diagrams. When saturated vapor as a working medium is adiabatically compressed, a wet state is shown in Fig. 2, and a dry state is shown in Fig. 3. Changes in the working medium due to the compressor in FIG. 1 are indicated by reference numerals 8 to 9 or 13 to 14 in FIGS.
The change in working medium due to the condenser is 9 → 10
→11→ or 14→15→16→17, the change in working medium due to the pressure reducing device is from 11 to 12 or from 17 to 18, and the change in working medium due to the evaporator is 12
This corresponds to the change from 8 to 13 or from 18 to 13, respectively. The operating conditions of the heat pump system shown in FIG. 1 using the working medium of the present invention are the end temperature of evaporation of the working medium in the evaporator (temperature 7 or 13, hereinafter referred to as evaporation temperature) and the start of condensation of the working medium in the condenser. (temperature number 9 or 15; hereinafter referred to as condensation temperature) was set. 1st
Table 2 shows the coefficient of performance, heating capacity per unit horsepower of the compressor, and circulation amount of the working medium in the heat pump system using the working medium of the present invention, together with comparative examples. As can be understood from the table, the coefficient of performance and heating capacity of a heat pump using the working medium of the present invention in which the mixing molar ratio of R-22 and R-123 is in the range of about 1:100 to 1:0.7 are R- This is an improvement over the case where each of 22 and R-123 is used alone, and it is also greatly improved compared to dichlorodifluoroethane (R-12), which is commonly used at present. The working medium mixture of the present invention is particularly effective when applied to a heat pump system using a medium-low temperature heat source, but it can also be used as a working medium for Rankin-Sikes or various other heat recovery techniques. The working medium mixture of the present invention has excellent thermal stability and does not require stabilizers under normal conditions of use; however, when it is necessary to improve thermal stability due to severe conditions of use, dimethyl phosphite can be used. , phosphite-based compounds such as diisopropyl phosphite and diphenyl phosphite, or thiophosphite-based compounds, or phosphine sulfide-based compounds such as triphenoxyphosphine sulfide and trimethylphosphine sulfide, and other stabilizers as the working medium. It may be added in a small amount of about 1 weight per 100 parts by weight.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明の作動媒体混合物は、熱回収率特にヒー
トポンプシステムの効率すなわち加熱、冷却効率
に優れ、混合前の単独成分に比し、大幅な改善が
認められる。
The working medium mixture of the present invention is excellent in heat recovery efficiency, particularly in heat pump system efficiency, that is, heating and cooling efficiency, and is significantly improved compared to the single component before mixing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を説明するためのヒ
ートポンプのフローシート、第2図および第3図
はR−22/R−123混合系を作動媒体として用い
たサイクルを圧力−エンタルピー線図に記入した
図である。
Figure 1 is a flow sheet of a heat pump for explaining one embodiment of the present invention, and Figures 2 and 3 are pressure-enthalpy diagrams of a cycle using an R-22/R-123 mixed system as the working medium. This is a diagram filled in.

Claims (1)

【特許請求の範囲】 1 モノクロロジフルオロメタンとジクロロトリ
フルオロエタンを必須成分とすることを特徴とす
る作動媒体混合物。 2 モノクロロジフルオロメタンとジクロロトリ
フルオロエタンとの混合モル比が1:100〜1:
0.7である特許請求の範囲第1項記載の作動媒体
混合物。
[Scope of Claims] 1. A working medium mixture characterized by containing monochlorodifluoromethane and dichlorotrifluoroethane as essential components. 2 The mixing molar ratio of monochlorodifluoromethane and dichlorotrifluoroethane is 1:100 to 1:
0.7.
JP59159099A 1984-07-31 1984-07-31 Working medium mixture Granted JPS6137856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59159099A JPS6137856A (en) 1984-07-31 1984-07-31 Working medium mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59159099A JPS6137856A (en) 1984-07-31 1984-07-31 Working medium mixture

Publications (2)

Publication Number Publication Date
JPS6137856A JPS6137856A (en) 1986-02-22
JPH0461910B2 true JPH0461910B2 (en) 1992-10-02

Family

ID=15686212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59159099A Granted JPS6137856A (en) 1984-07-31 1984-07-31 Working medium mixture

Country Status (1)

Country Link
JP (1) JPS6137856A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749889B2 (en) * 1988-04-27 1995-05-31 株式会社荏原製作所 heat pump
JPH02267473A (en) * 1989-04-06 1990-11-01 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2764489B2 (en) * 1991-10-29 1998-06-11 株式会社荏原製作所 Refrigeration system refrigerant and refrigeration system using the refrigerant

Also Published As

Publication number Publication date
JPS6137856A (en) 1986-02-22

Similar Documents

Publication Publication Date Title
JP2576161B2 (en) Working medium mixture
JP2841451B2 (en) Working medium
JP2576162B2 (en) Working medium mixture
JPS63308085A (en) Operation medium mixture
JPS63308084A (en) Operation medium mixture
EP0110389B1 (en) Working fluids for rankine cycle
JP2507437B2 (en) Working medium mixture
JPH0461910B2 (en)
JPH075881B2 (en) Working medium mixture
JPH01153786A (en) Working medium mixture
EP0101856B1 (en) Working fluids for rankine cycle
JPS60245686A (en) Hydraulic medium mixture
JPS6137855A (en) Working medium mixture
JPH01141982A (en) Working medium mixture
JPS6131488A (en) Operating medium mixture
JP2536560B2 (en) Working medium mixture
JPH01139683A (en) Working medium mixture
JP2536545B2 (en) Working medium mixture
JPS61152786A (en) Hydraulic medium mixture
JPS60255884A (en) Mixed hydraulic fluid
JPH01139677A (en) Working medium mixture
JPS60212481A (en) Operating medium mixture
JPH01168785A (en) Working medium mixture
JPS6312506B2 (en)
JPH01139676A (en) Working medium mixture