JPS6115184B2 - - Google Patents

Info

Publication number
JPS6115184B2
JPS6115184B2 JP57158407A JP15840782A JPS6115184B2 JP S6115184 B2 JPS6115184 B2 JP S6115184B2 JP 57158407 A JP57158407 A JP 57158407A JP 15840782 A JP15840782 A JP 15840782A JP S6115184 B2 JPS6115184 B2 JP S6115184B2
Authority
JP
Japan
Prior art keywords
conductive
short fiber
fibers
particles
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57158407A
Other languages
Japanese (ja)
Other versions
JPS5947474A (en
Inventor
Masao Matsui
Sei Yoshimoto
Hiroshi Naito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Kanebo Gohsen Ltd
Original Assignee
Kanebo Ltd
Kanebo Gohsen Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd, Kanebo Gohsen Ltd filed Critical Kanebo Ltd
Priority to JP15840782A priority Critical patent/JPS5947474A/en
Publication of JPS5947474A publication Critical patent/JPS5947474A/en
Publication of JPS6115184B2 publication Critical patent/JPS6115184B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Multicomponent Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導電性短繊維に関する。 カーボンブラツク等を混合したポリマーからな
る導電層と、通常ポリマーからなる導電性複合繊
維は周知である。しかしながらカーボンブラツク
を含有する繊維は黒色又は灰色に着色しておりそ
の欠点の改良が望まれる。一方導電性無機物粒
子、例えば金属酸化物、金属ハロゲン化物、金属
硫化物などの半導体粒子、無機物粒子の表面に金
属又は上記半導体の導電性皮膜を有する粒子など
の中には白度が高いものもいくつかあり、それら
を用いて白度の高い導電性繊維を得ることが出来
る。一般に無機導電粒子をポリマーに混合して充
分な導電性を得るためには、極めて高い(例えば
50重量%以上)混合率で混合する必要があるが、
多量の無機粒子を均一に混合することは極めて困
難である。なお一般に粒子径が小さいほど小さい
混合率で充分な導電性が得られるが、実際には粒
子径が小さいほど、凝集性が高くその均一な分散
は困難である。このように無機導電性粒子を充分
な導電性を得るほど高い混合率でポリマー中に均
一に分散混合することは極めて困難で、このため
無機導電性粒子を多量に含む導電性ポリマーと、
非導電性ポリマーからなる複合繊維の円滑な製造
は困難である。 本発明の目的は製造が容易且つ優れた導電性を
有する無機導電性粒子を含む新規な導電性短繊維
を提供するにある。 本発明の導電性短繊維は、(a)導電性無機物粒子
と熱可塑性ポリマーからなる導電層と繊維形成性
ポリマーからなる保護層とが複合されてなり、(b)
繊維を形成するポリマーの結晶部分の配向度が89
%以下であり、且つ(c)潤滑剤によつて対金属動摩
擦係数又は/及び対繊維静摩擦係数が非潤滑時の
80%以下に低減されていることを特徴とするもの
である。 ここで導電性無機物粒子(以下導電粒子と記
す)とは、充分な導電性、例えば200Kg/cm2の圧力
で圧縮時の体積抵抗率(以下比抵抗と記す)が
104Ω・cm以下、特に102Ω・cm以下の微粒子で、
例えば金属、金属酸化物、金属ハロゲン化物など
の粒子及び無機粒子の表面に金属、金属化合物等
の導電性皮膜を付与したものがあげられる。金属
化合物は一般に半導体であるが少量の活性化剤
(ドーパント)を添加することにより導電性を飛
躍的に強めたものは、特に本発明の目的に好適で
ある。白度の高いものとしては白色無機粒子(例
えば酸化チタン、酸化亜鉛、シリカ、酸化マグネ
シウムなど)の表面に金属又は金属化合物の導電
性皮膜を付与したものがあげられる。導電性皮膜
の例としては、金、銀、アルミニウム、銅、タン
グステンなどの金属皮膜、酸化亜鉛、酸化アルミ
ニウム、酸化ジルコニウム、酸化インジウムなど
の金属酸化物膜、沃化銅、硫化銅、などの金属ハ
ロゲン化物又は硫化物の皮膜があげられる。また
上記金属及び金属化合物からなる微粒子も本発明
に有用である。 金属粒子は一般に白度が劣るが、導電性が優れ
ており、高い導電性を必要とする導電性繊維の製
造に有用である。勿論必要に応じ上記各種粒子を
2種以上混合して使用することが出来る。導電粒
子の粒径は、平均(重量平均)1μm以下が必要
であり、0.5μm以下が、特に好ましい。一方ポ
リマー中への分散性の点からは粒径は平均0.01μ
m程度以上が必要であり、0.1μm以上が特に好
ましい。これらを総合して平均粒径は0.1〜0.5μ
mが特に好ましく、0.15〜0.35μmが最も好まし
い。 導電粒子の重量平均直径は、粒子を電子顕微鏡
で観測し単粒子に分離して多数(1000個以上)の
粒子の直径(長径と短径の平均)を測定し、0.01
μm間隔で分画した粒径分布を求め、式()及び
()によつて計算する。 粒子直径D=6/πρW () 但しNi:i番目の分画の粒子数 Wi:i番目の分画の粒子の重量 W :粒子の重量 ρ :粒子の密度 導電粒子と混合する熱可塑性ポリマーは特に限
定されない。一般に例えばポリエチレン、ポリプ
ロピレン、ポオキシメチレン、ポリエチレンオキ
シドのような結晶化度の高い(60%以上)ポリマ
ーの方が導電性のすぐれている。しかしこのよう
なポリマーは耐熱性や染色性の点で劣るので、通
常の繊維によく用いられるポリアミド、ポリエス
テル、ポリアクリロニトリル系などが好ましい。
これらのやゝ結晶性の劣るポリマーは導電粒子と
混合した場合導電性がやゝ低いという傾向があ
る。しかし本発明の複合短繊維においてはこれら
のポリマーを用いても充分な導電性を得ることが
出来る。 導電層は充分な導電性を有していなくてはなら
ない。その比抵抗は1×108Ω・cm程度以下が必
要であり、107Ω・cm以下が好ましく、106Ω・cm
以下が最も好ましい。単繊維1本の長さ1cm当り
の電気抵抗は1013Ω/cm程度以下が必要であり、
1012Ω/cm以下が好ましく、1011Ω/cm以下が最も
好ましい。 複合繊維の保護層すなわち非導電層に用いるポ
リマーは、繊維形成性であれば特に限定されな
い、しかし本発明繊維は、最も多く商業生産され
ているポリアミド、ポリエステル及びポリアクリ
ロニトリルなどと混合されて使用される機会が多
いことから、それらとなじみ易く耐熱性や染色性
などが類似するポリアミド、ポリエステル、ポリ
アクリロニトリル系ポリマーを用いることが好ま
しい。また導電層のポリマーと保護層のポリマー
とは同一でも異なつていてもよいが、接着性の点
や、耐熱性、染色性などから同一又は同種のもの
が好ましい。それらに用いるポリマーとしては、
例えばナイロン6、ナイロン12、ナイロン6
6、ナイロン610、ナイロン612などのポリ
アミド及びそれらを成分とするコポリアミド、ポ
リエチレンテレフタレート、ポリブチレンテレフ
タレート、ポリエチレンオキシベンゾエートなど
のポリエステル及びそれらを成分とするコポリエ
ステル、ポリアクリロニトリル及び共重合ポリア
クリロニトリルがあげられる。 導電層と保護層の複合形状及び複合比率は任意
である。第2図は導電層3が2つの保護層4に挾
持された3層複合の例である。その他の複合形状
の例は、例えば特開昭57―6762号及び特願昭56―
69061号に示されており、それら以外の公知のも
のも応用し得る。 本発明の短繊維の特徴は、ポリマーの結晶部分
の配向度が低いことが特徴である。具体的には延
伸倍率の低い半延伸状態又は未延伸状態の短繊維
である。このような低配向とすることによる利点
は(1)導電性が優れている、(2)一般に導電性が劣る
粒径がやや大きく分散性が優れる導電粒子を使用
しても充分な導電性が得られる、(3)一般に導電性
は劣るが耐熱性が染色性の点で好ましいポリアミ
ド、ポリエステル、ポリアクリロニトリルなどの
ポリマーを使うことが出来る、などであり実際的
である。低配向とすることの欠点は、使用時、例
えば他の繊維と混紡する工程などで外力によつて
延伸され導電性が低下又は消失する傾向があるこ
とである。 従来、外力によつて容易に延伸されるような未
延伸糸又は半延伸糸は実用性がなくほとんど利用
されることがなかつた。本発明者等は、導電複合
短繊維を未延伸糸又は半延伸糸とすることの上記
利点の大きさに着目し、欠点を改良して本発明を
完成したものである。 未延伸糸や半延伸糸等の低配向糸の摩擦係数は
一般に充分に延伸された高配向糸にくらべて高
く、2〜3倍に達することもある。しかしこれを
適切な潤滑剤(仕上油剤等)を用いて、非潤滑時
の80%以下、特に70%以下、最も好ましくは60%
以下に低減することにより、支障なく例えば混紡
することが出来、又混紡工程等での延伸による導
電性の低下を大巾に改善し得ることが判明した。 本発明の短繊維は、通常の帯電性の繊維に少量
混紡して使用することが出来る。混紡率は多くの
場合0.1〜10%程度であり、極めて低率の混紡で
ある。この混紡は例えば帯電性繊維と導電性繊維
の両者を綿状、ウエブ状、又は/及びスライバー
状で夫々混合することも出来、又トウ状で混合
(合糸混織)した後、巻縮、切断等を行ない、混
合した綿を得ることも出来る。一旦かなり高率
(例えば10〜60%程度)で混合した後、更にそれ
を帯電性繊維で稀釈することも出来る。これらの
混合工程の方法に応じて対金属摩擦係数及び対繊
維摩擦係数を低減させる必要がある。 本発明の繊維は、(1)紡糸後延伸しないか、低い
延伸倍率、例えば通常の延伸倍率の80%以下の倍
率で延伸すること又は/及び延伸後適当な熱処理
(例えば収縮熱処理など)を行ない、繊維を形成
するポリマーの結晶部分の配向度を89%以下にす
ること及び、(2)繊維表面に潤滑剤(以下油剤と記
す)を付与し対金属動摩擦係数を非潤滑時の80%
以下に低下させることによつて製造することが出
来る。 第1図は、平均粒径0.25μmの導電性粒子と熱
可塑性樹脂よりなる導電層と、繊維形成性ポリマ
ーからなる保護層とが溶融複合紡糸された未延伸
糸の延伸倍率と、導電層の導電性(比抵抗)及
び、その複合繊維を1%混合した編物の摩擦帯電
圧との関係の具体例を示す。図から明らかなよう
に比抵抗は延伸倍率が高いほど高く、倍率2倍以
上で107Ω・cmを越えて2.5倍で18Ω・cm程度とな
る。一方複合繊維を混用した編物の帯電圧は延伸
倍率が2.5倍を越えると急激に高くなり、3倍以
上では全く制電性を示さない。制電性を示す延伸
倍率の上限は2.6倍程度、比抵抗は18Ω・cm程度
であり、この時の複合繊維を形成するポリマーの
結晶部分の配向度は約89%であり、未延伸糸(延
伸倍率1.0)のそれは約64%であつた。一般にポ
リマー中への分散が容易で最も扱い易い、粒径
0.15〜0.5μm程度の導電性粒子を用いる場合、
配向度89%以下、特に89%以下で導電性(制電
性)が優れ、配向度90%以上で導電性(制電性)
が失なわれることが多い。 配向度はX線回折法で、測定することが出来
る。すなわち、繊維軸に平行な結晶面によるX線
回折の主要な分散ピークのデバイ環に沿つた分散
曲線の半価巾θを測定し、式()によつて計算す
る。 配向度(%)=180゜−θ/180゜×100 () 本発明短繊維は、帯電性繊維に少量(例えば1
%)混紡等の手段で混用されて使用される。従つ
て他繊維中へ容易に均一に分散することと、混紡
工程等で外力による延伸で導電性が低下又は消失
することを極力防ぐ必要があらり、そのために摩
擦係数を低減しなければならない。第3図は長繊
維の対繊維摩擦係数の測定法を示す模式図であ
る。試料長繊維5は張力調整器6入口張力測定器
9を経て撚れ部Aで撚り摩擦を与えられ出口張力
測定器14を経てワインダー16に巻取られる。
ローラー7,10,11,12及び15は固定軸
を有するものでボールベアリング等を用いた摩擦
の極力低いものとする。ローラー8及び13は張
力計に結合されている。撚り部Aでは繊維は2回
撚られ、開き角Bは60゜とする。一般に摩擦係数
μは式()によつて示される。 μ=C logT2/T1 () 但しT1 :入口張力 T2 :出口張力 C :常数(測定条件が一定の場合) log:常用対数 入口張力は調整器6によつて0.1g/d程度に調
整する。測定雰囲気は25℃、65%RHとする。油
剤を含む糸と含まぬ糸との入口張力、出口張力を
夫々測定しlog(T2/T1)を求め、油剤を含む糸
のlog(T2/T1)と油剤を含まぬ糸のlog(T2
T1)との比率によつて、油剤による摩擦係数の低
減又は増大を評価することが出来る。動摩擦係数
は糸速度20m/minで測定し、静摩擦係数は糸速
度2mm/minで測定する。第3図の方法は短繊維
については測定出来ないが、適切な油剤を選択す
るための手段としては測定誤差が少なく有用であ
る。すなわち第3図の方法で選んだ油剤(及び付
与量)を、導電性未延伸糸又は半延伸糸に付与し
て本発明短繊維を製造することが出来る。 第4図は短繊維の摩擦係数測定法を示す模式図
である。この方法はレーダー法に準じるもので試
料短繊維17をローラー18にかけ、一端に荷重
19による張力T1を加え、他端の張力T2を張力
計20で測定する。対金属摩擦係数μMはローラ
ー18として鏡面仕上(0.1S程度以下)クロムメ
ツキした直径8mmのものを用いて測定する。対繊
維摩擦係数μFは、ローラー18として試料繊維
を直径15mm程度の円型枠に円筒状に張つたものを
用いる。動摩擦係数はローラー18の表面速度40
m/min、静摩擦係数は4mm/minで測定する。荷
重19は0.1mg/dとする。第4図の方法で荷重1
9をT1とし、張力計20の測定値をT2とすると
式()の関係が成立し、油剤を含む試料のlog
(T2/T1)と油剤を含まぬ試料のlog(T2/T1)の
比率で、油剤による摩擦係数の増減を評価するこ
とが出来る。第4図の測定はやゝ誤差が大きいの
で、測定を20回繰返して平均で評価する。第3図
の方法は5回の測定を平均して評価する。いずれ
の場合もローラーやガイドを清浄に保ち、油剤を
含まぬ試料を測定する場合はそれらを完全に洗浄
して使用し、油剤を含む試料を測定する場合は、
対象とする油剤のみが付着した状態で測定する。
張力の測定はストレインゲージ等を用い記録計で
記録し、2分間以上測定して張力が安定した時の
値を読取る。 油剤を含まぬ試料は、油剤を含む試料から溶剤
等で、繊維を膨潤、収縮させぬように注意しつつ
油剤を抽出除去して、得ることが出来る。 油剤は、例えば砿物油(流動パラフイン等)、
動植物油脂、脂肪酸、脂肪酸エステル、高級アル
コール、シリコン油などの平潤剤、カチオン活性
剤、アニオン活性剤、ノニオン活性剤等を調合し
て得られる。一般に平潤剤が多いと対金属動摩擦
係数μdMは低下するが、対繊維静摩擦係数μSF
が増大する傾向がある。逆にアニオン活性剤が多
いほどμSFが低下しμdMは増大する傾向があ
る。ノニオン活性剤はμdMを低下させるがμSF
を増大するものが多い。本発明の目的を達するた
めにはμdM,μSFの双方を低減するような油剤
を調合、選択する必要がある。このような調合、
選択は、例えば某糸時に種々の油剤を用いて未延
伸糸又は延伸糸の連続フイラメントを製造し第3
図の方法で比較して、実施し得る。第3図のロー
ラー11の代りに鏡面仕上クロムメツキ丸棒(直
径8mm)を用い、撚り部Aを省略して、μdMを
測定することが出来る。 本発明繊維は、導電性粒子と熱可塑性ポリマー
からなる導電層成分と通常の繊維形成性成分とを
溶融、湿式、乾式などの方法で複合紡糸し、切断
及び適切な油剤を適切な量付与して得ることが出
来る。必要に応じて、比較的低い倍率で延伸する
こと、緊張下又は弛緩下の熱処理、収縮処理、染
色等を行なうことが出来る。油剤の付与は紡糸巻
取時に行なつてもよく、トウ状又はステープル状
で浸漬法や噴霧法で行なつてもよい。油剤は水系
エマルジヨン、溶剤溶液、又は稀釈剤を含まぬ純
油剤の形で付与することも出来る。一般に油剤付
着量(純分)は0.1〜1.5%、特に0.3〜0.7%程度
が好適であることが多い。付着量が多すぎるとμ
SFが増大する傾向がある。 溶融紡糸等で紡糸速度が大きいと(1500m/mi
n以上、特に2000m/min以上)、未延伸糸の配向
度はすでにかなり高く、後で延伸すると制電性が
消失する現象が見られる。更に高い例えば3000
m/min以上の紡糸速度では、未延伸でもすでに
過度に配向して、制電性が失なわれる場合があ
る。しかし過度に配向して制電性を失なわれた場
合でも、適切な収縮処理(熱収縮、膨潤剤と加熱
との併用など)で配向度を低下させ、導電性及び
制電性を復活させ得る場合も多い。 本発明の短繊維は、他の帯電性の繊維、例えば
絹、羊毛、セルロースアセテート、ポリアミド、
ポリエステル、ポリオレフイン、ポリビニル系、
ポリアクリロニトリル系などの各種天然及び人造
繊維と混用して糸、編物、織物、不織布、ロー
プ、紐、カーペツトなど各種繊維製品を製造する
ことが出来る。通常の制電性付与目的であれば製
品中の導電性複合繊維の混用率(重量)が0.1〜
5%程度で充分であり、特にすぐれた制電性を必
要とするときは、混用率は1〜50%程度とするこ
とが出来る。 上記混用の最も重要な手段の1つである混紡に
おいて、本発明短繊維は他繊維中への均一分散性
に優れ、且つ混紡工程での外力(延伸)による導
電性の低下又は消失現象が少なく、最終製品の制
電性がすぐれている。 以下の実施例において、部、%は特記しない限
り重量比率とする。 実施例 1 酸化チタン(TiO2)の表面に導電性酸化錫
(SnO2)の皮膜を形成した平均粒径0.25μm(バ
ラツキ範囲0.20〜0.30μm)、比抵抗6.3Ω・cm、
白度86%の淡灰青色の導電粒子をE1とする。E
1の酸化錫含有率は15%、酸化錫を活性化するた
めの酸化アンチモン含有率は1.5%である。 粒子E1を75部、分子量14000のナイロン12粉
末25部、ステアリン酸マグネシウム0.5部を混合
し、2軸混練機で3回繰返して溶融混練して導電
性ポリマーCP1を得た。 艶消剤としてTiO2粒子1.6%を含む分子量
14000のナイロン12と、導電性ポリマーCP1と
を第2図のような構造に複合比(体積)10/1で溶
融紡糸した。複合した両成分を260℃、直径0.25
mmのオリフイスより紡出し、冷却、オイリングし
ながら600m/minの速度で巻取り60d/4fの未延伸
糸UF1を得た。 オイリングに用いた油剤は、ラウリルフオスフ
エート(カリ塩)80部、ポリエチレングリコール
300モルモノステアレート10部及びオレイン酸モ
ノグリセライド10部を配合したもので、5%水分
散液として使用する。未延伸糸の油分付着量は
0.6%である。 未延伸糸UF1を65℃の延伸ビン上で種々の延
伸倍率で延伸し、この配向度、導電性及び制電性
を測定した。すなわち、得られた未延伸糸及び延
伸糸はそのままでX線による配向度及び導電性を
測定し、更に160デニール/32フイラメント、強
度4.6g/dのナイロン12延伸糸(非導電性)と
撚数80T/Mで合撚した糸を210デニール/54フイ
ラメントのナイロン6延伸糸の丸編物に6mm間隔
で編込み、その編物の摩擦帯電圧を測定した。複
合糸の混入率は延伸倍率によつて異なり、延伸倍
率3倍のとき約0.9%、2倍のとき約1.3%、1倍
(未延伸糸)のとき約2.5%である。摩擦帯電圧
は、試料をよく洗濯して油分等を除去し、乾燥後
25℃、33%RHの雰囲気中に12時間放置した後、
同じ雰囲気中で測定する。すなわち清潔な綿布で
試料を強く15回摩擦し、1分後の帯電圧を測定す
る。 延伸倍率と配向度、導電性(比抵抗)、制電
制、強度及び伸度との関係を第1表及び第1図に
示す。また、対金属動摩擦係数μdM及び対繊維
静摩擦係数μSFの、油剤を石油エーテルで抽出
除去した糸のそれに対する比率を第1表に示す。
The present invention relates to conductive short fibers. Conductive layers made of polymers mixed with carbon black or the like and conductive composite fibers made of ordinary polymers are well known. However, fibers containing carbon black are colored black or gray, and improvement of this drawback is desired. On the other hand, some conductive inorganic particles, such as semiconductor particles such as metal oxides, metal halides, and metal sulfides, and particles having a conductive film of metal or the above-mentioned semiconductor on the surface of the inorganic particles, have high whiteness. There are several types, and using them, it is possible to obtain conductive fibers with high whiteness. Generally, in order to obtain sufficient conductivity by mixing inorganic conductive particles into a polymer, extremely high
It is necessary to mix at a mixing ratio of 50% by weight or more, but
It is extremely difficult to uniformly mix a large amount of inorganic particles. In general, the smaller the particle size, the more sufficient conductivity can be obtained with a smaller mixing ratio; however, in reality, the smaller the particle size, the higher the agglomeration, making uniform dispersion difficult. In this way, it is extremely difficult to uniformly disperse and mix inorganic conductive particles into a polymer at a mixing ratio high enough to obtain sufficient conductivity.
It is difficult to smoothly manufacture composite fibers made of non-conductive polymers. An object of the present invention is to provide a novel conductive short fiber containing inorganic conductive particles that is easy to manufacture and has excellent conductivity. The conductive short fiber of the present invention is a composite of (a) a conductive layer made of conductive inorganic particles and a thermoplastic polymer, and a protective layer made of a fiber-forming polymer, and (b)
The degree of orientation of the crystalline part of the polymer that forms the fiber is 89
% or less, and (c) due to the lubricant, the coefficient of kinetic friction against metal and/or the coefficient of static friction against fiber is lower than that in non-lubricated state.
It is characterized by being reduced to 80% or less. Here, conductive inorganic particles (hereinafter referred to as conductive particles) have sufficient conductivity, for example, a volume resistivity (hereinafter referred to as specific resistance) when compressed at a pressure of 200 Kg/cm 2 .
Fine particles of 10 4 Ω・cm or less, especially 10 2 Ω・cm or less,
Examples include particles of metals, metal oxides, metal halides, etc., and inorganic particles provided with conductive films of metals, metal compounds, etc. on the surfaces thereof. Metal compounds are generally semiconductors, but those whose conductivity is dramatically enhanced by adding a small amount of activator (dopant) are particularly suitable for the purpose of the present invention. Examples of high whiteness include white inorganic particles (for example, titanium oxide, zinc oxide, silica, magnesium oxide, etc.) with a conductive film of metal or metal compound applied to the surface. Examples of conductive films include metal films such as gold, silver, aluminum, copper, and tungsten, metal oxide films such as zinc oxide, aluminum oxide, zirconium oxide, and indium oxide, and metals such as copper iodide and copper sulfide. Examples include halide or sulfide films. Fine particles made of the above metals and metal compounds are also useful in the present invention. Although metal particles generally have poor whiteness, they have excellent electrical conductivity and are useful for producing conductive fibers that require high electrical conductivity. Of course, two or more of the above-mentioned various particles can be mixed and used if necessary. The average (weight average) particle size of the conductive particles must be 1 μm or less, and particularly preferably 0.5 μm or less. On the other hand, from the point of view of dispersibility in the polymer, the average particle size is 0.01μ.
It is necessary to have a thickness of approximately 0.1 μm or more, and particularly preferably 0.1 μm or more. Overall, the average particle size is 0.1~0.5μ
m is particularly preferred, and 0.15 to 0.35 μm is most preferred. The weight average diameter of conductive particles is determined by observing the particles with an electron microscope, separating them into single particles, and measuring the diameter (average of the major axis and minor axis) of a large number of particles (1000 or more).
Determine the particle size distribution fractionated at μm intervals, and use the formula () and
Calculate by (). Particle diameter D = 6/πρW () where Ni: Number of particles in the i-th fraction Wi: Weight of particles in the i-th fraction W: Weight of particles ρ: Density of particles The thermoplastic polymer to be mixed with the conductive particles is Not particularly limited. Generally, polymers with a high degree of crystallinity (60% or more), such as polyethylene, polypropylene, polyoxymethylene, and polyethylene oxide, have better conductivity. However, such polymers are inferior in terms of heat resistance and dyeability, so polyamide, polyester, polyacrylonitrile, etc., which are often used for ordinary fibers, are preferred.
These polymers with rather poor crystallinity tend to have rather low conductivity when mixed with conductive particles. However, in the composite staple fiber of the present invention, sufficient electrical conductivity can be obtained even when these polymers are used. The conductive layer must have sufficient electrical conductivity. Its specific resistance must be about 1×10 8 Ω・cm or less, preferably 10 7 Ω・cm or less, and 10 6 Ω・cm
The following are most preferred. The electrical resistance per 1 cm length of a single fiber must be approximately 10 13 Ω/cm or less,
It is preferably 10 12 Ω/cm or less, most preferably 10 11 Ω/cm or less. The polymer used for the protective layer, that is, the non-conductive layer, of the composite fiber is not particularly limited as long as it is fiber-forming. Therefore, it is preferable to use polyamide, polyester, and polyacrylonitrile polymers that are compatible with these polymers and have similar heat resistance, dyeability, etc. Further, the polymer of the conductive layer and the polymer of the protective layer may be the same or different, but from the viewpoint of adhesiveness, heat resistance, dyeability, etc., they are preferably the same or of the same type. The polymers used for these are:
For example, nylon 6, nylon 12, nylon 6
6. Polyamides such as nylon 610 and nylon 612, copolyamides containing these as components, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene oxybenzoate, and copolyesters containing these as components, polyacrylonitrile, and copolymerized polyacrylonitrile. It will be done. The composite shape and composite ratio of the conductive layer and the protective layer are arbitrary. FIG. 2 shows an example of a three-layer composite in which a conductive layer 3 is sandwiched between two protective layers 4. Examples of other composite shapes include, for example, Japanese Patent Application Laid-Open No. 57-6762 and Japanese Patent Application No. 1983-
No. 69061, and other known methods can also be applied. The short fiber of the present invention is characterized by a low degree of orientation in the crystalline portion of the polymer. Specifically, it is a short fiber in a semi-stretched state or an unstretched state with a low stretching ratio. The advantages of having such a low orientation are (1) excellent conductivity, and (2) sufficient conductivity even when using conductive particles with slightly larger particle sizes and excellent dispersibility, which generally have poor conductivity. (3) Polymers such as polyamide, polyester, and polyacrylonitrile, which generally have poor conductivity but are preferable in terms of heat resistance and dyeability, can be used, so it is practical. A disadvantage of having low orientation is that during use, for example, during the process of blending with other fibers, the fibers are stretched by external force and their conductivity tends to decrease or disappear. Conventionally, undrawn yarns or semi-drawn yarns that can be easily drawn by external force have been impractical and have rarely been used. The present inventors focused on the above-mentioned advantages of using undrawn or semi-drawn conductive composite short fibers, improved the disadvantages, and completed the present invention. The coefficient of friction of low oriented yarns such as undrawn yarns and semi-drawn yarns is generally higher than that of fully oriented highly oriented yarns, sometimes reaching 2 to 3 times as much. However, by using an appropriate lubricant (finishing oil, etc.), this can be reduced to 80% or less, especially 70% or less, and most preferably 60% of the non-lubricated state.
It has been found that by reducing the amount below, for example, blending can be carried out without any trouble, and the decrease in conductivity due to stretching in the blending process can be greatly improved. The short fibers of the present invention can be used by blending a small amount with ordinary chargeable fibers. The blending rate is approximately 0.1 to 10% in most cases, which is an extremely low blending rate. For example, this blend can be made by mixing both chargeable fibers and conductive fibers in the form of cotton, web, and/or sliver, or by mixing them in the form of a tow (doubled yarn blend) and then crimping and shrinking them. Mixed cotton can also be obtained by cutting, etc. Once mixed at a fairly high percentage (eg 10-60%), it can be further diluted with chargeable fibers. It is necessary to reduce the coefficient of friction against metal and the coefficient of friction against fibers depending on the method of these mixing steps. The fiber of the present invention (1) is not stretched after spinning or is stretched at a low stretching ratio, for example, 80% or less of the normal stretching ratio, or/and is subjected to an appropriate heat treatment (such as shrinkage heat treatment) after stretching. (2) Apply a lubricant (hereinafter referred to as oil) to the fiber surface to reduce the coefficient of kinetic friction with metal to 80% of the non-lubricated state.
It can be manufactured by reducing the amount below. Figure 1 shows the drawing ratio of an undrawn yarn obtained by melt-spinning a conductive layer made of conductive particles with an average particle size of 0.25 μm and a thermoplastic resin, and a protective layer made of a fiber-forming polymer, and the drawing ratio of the conductive layer. A specific example of the relationship between conductivity (specific resistance) and the frictional charging voltage of a knitted fabric containing 1% of the composite fiber is shown below. As is clear from the figure, the specific resistance increases as the stretching ratio increases, exceeding 10 7 Ω·cm at a stretching ratio of 2 times or more, and reaching approximately 1 8 Ω·cm at a stretching ratio of 2.5 times. On the other hand, the charging voltage of a knitted fabric containing composite fibers increases rapidly when the stretching ratio exceeds 2.5 times, and does not show any antistatic properties when the stretching ratio exceeds 3 times. The upper limit of the stretching ratio that exhibits antistatic properties is about 2.6 times, and the specific resistance is about 18 Ω cm. At this time, the degree of orientation of the crystalline part of the polymer that forms the composite fiber is about 89%, and the unstretched That of the yarn (drawing ratio 1.0) was about 64%. Particle size that is generally easy to disperse in polymers and is the easiest to handle
When using conductive particles of about 0.15 to 0.5 μm,
Excellent conductivity (antistatic properties) when the degree of orientation is 89% or less, especially 89% or less, and conductivity (antistatic properties) when the degree of orientation is 90% or more.
is often lost. The degree of orientation can be measured by X-ray diffraction. That is, the half-width θ of the dispersion curve along the Debye ring of the main dispersion peak of the X-ray diffraction due to the crystal plane parallel to the fiber axis is measured and calculated using the formula (). Orientation degree (%) = 180° - θ / 180°
%) They are mixed and used by means such as blending. Therefore, it is necessary to easily and uniformly disperse it into other fibers, and to prevent as much as possible the conductivity from decreasing or disappearing due to stretching by external force during the blending process, etc., and for this purpose, the coefficient of friction must be reduced. FIG. 3 is a schematic diagram showing a method for measuring the coefficient of friction of long fibers against fibers. The sample long fiber 5 passes through a tension adjuster 6 and an inlet tension measuring device 9, is subjected to twisting friction at the twisting portion A, passes through an outlet tension measuring device 14, and is wound into a winder 16.
The rollers 7, 10, 11, 12, and 15 have fixed shafts and are made with ball bearings or the like to minimize friction. Rollers 8 and 13 are connected to a tensiometer. In the twisting part A, the fibers are twisted twice, and the opening angle B is 60°. Generally, the friction coefficient μ is expressed by equation (). μ=C logT2/T1 () However, T 1 : Inlet tension T 2 : Outlet tension C : Constant (when measurement conditions are constant) log : Common logarithm Inlet tension is adjusted to about 0.1 g/d by regulator 6 do. The measurement atmosphere is 25℃ and 65%RH. Measure the inlet tension and outlet tension of the thread containing oil and the thread without oil, calculate log(T 2 /T 1 ), and calculate the log(T 2 /T 1 ) of the thread containing oil and the thread without oil. log( T2 /
The reduction or increase in the friction coefficient due to the oil agent can be evaluated based on the ratio to T 1 ). The dynamic friction coefficient is measured at a yarn speed of 20 m/min, and the static friction coefficient is measured at a yarn speed of 2 mm/min. Although the method shown in FIG. 3 cannot measure short fibers, it is useful as a means for selecting an appropriate oil with little measurement error. That is, the short fibers of the present invention can be produced by applying the oil agent (and the amount applied) selected by the method shown in FIG. 3 to the conductive undrawn yarn or semi-drawn yarn. FIG. 4 is a schematic diagram showing a method for measuring the coefficient of friction of short fibers. This method is similar to the radar method, in which a sample short fiber 17 is placed on a roller 18, a tension T 1 due to a load 19 is applied to one end, and the tension T 2 at the other end is measured with a tension meter 20. The coefficient of friction against metal μM is measured using a mirror-finished (approximately 0.1S or less) chrome-plated roller 18 with a diameter of 8 mm. The coefficient of friction against fiber μF is determined by using a roller 18 in which sample fibers are stretched in a cylindrical shape around a circular frame with a diameter of about 15 mm. The coefficient of dynamic friction is the surface speed of roller 18 40
m/min, and the static friction coefficient is measured at 4 mm/min. Load 19 is 0.1 mg/d. Load 1 using the method shown in Figure 4.
9 as T 1 and the measured value of the tension meter 20 as T 2 , the relationship of equation () is established, and the log of the sample containing oil agent
(T 2 /T 1 ) and the log (T 2 /T 1 ) of the sample without oil can be used to evaluate the increase or decrease in the coefficient of friction due to oil. The measurement shown in Figure 4 has a rather large error, so the measurement is repeated 20 times and evaluated as an average. The method shown in FIG. 3 is evaluated by averaging five measurements. In either case, keep the rollers and guides clean; when measuring samples that do not contain oil, wash them thoroughly before use; when measuring samples that contain oil,
Measure with only the target oil attached.
The tension is measured using a strain gauge or the like and recorded with a recorder, and the value is read when the tension is stabilized after measuring for 2 minutes or more. A sample containing no oil can be obtained by extracting and removing the oil from a sample containing an oil using a solvent or the like, taking care not to swell or shrink the fibers. Examples of oils include perilla oil (liquid paraffin, etc.),
It is obtained by blending animal and vegetable fats and oils, fatty acids, fatty acid esters, higher alcohols, leveling agents such as silicone oil, cationic activators, anionic activators, nonionic activators, and the like. In general, when there is a large amount of lubricant, the coefficient of kinetic friction against metal μdM decreases, but the coefficient of static friction against fiber μSF
tends to increase. Conversely, as the amount of anionic activator increases, μSF tends to decrease and μdM increases. Nonionic activators reduce μdM but μSF
There are many things that increase the. In order to achieve the purpose of the present invention, it is necessary to prepare and select an oil agent that reduces both μdM and μSF. Such a formulation,
For example, a continuous filament of an undrawn yarn or a drawn yarn is manufactured by using various oils at the time of making a certain yarn, and then
Comparisons can be made using the method shown in the figure. μdM can be measured by using a mirror-finished chrome-plated round bar (diameter 8 mm) in place of the roller 11 in FIG. 3 and omitting the twisted part A. The fibers of the present invention are produced by composite spinning a conductive layer component consisting of conductive particles and a thermoplastic polymer and a normal fiber-forming component by a method such as melting, wet or dry, cutting and applying an appropriate amount of an appropriate oil agent. You can get it. If necessary, stretching at a relatively low magnification, heat treatment under tension or relaxation, shrinkage treatment, dyeing, etc. can be performed. The oil may be applied at the time of spinning and winding, or may be applied in the form of a tow or staple by a dipping method or a spraying method. The oil can also be applied in the form of an aqueous emulsion, a solvent solution, or a pure oil without diluent. Generally, the amount of oil deposited (purity) is often preferably 0.1 to 1.5%, particularly about 0.3 to 0.7%. If the amount of adhesion is too large, μ
SF tends to increase. When the spinning speed is high in melt spinning etc. (1500m/mi
n or more, particularly 2000 m/min or more), the degree of orientation of the undrawn yarn is already quite high, and a phenomenon in which the antistatic property disappears when it is stretched later is observed. Even higher e.g. 3000
At a spinning speed of m/min or more, even if unstretched, the material may become excessively oriented and lose its antistatic properties. However, even if the antistatic property is lost due to excessive orientation, the degree of orientation can be reduced by appropriate shrinkage treatment (heat shrinkage, combined use of a swelling agent and heating, etc.) and the conductivity and antistatic property can be restored. There are many cases where you can get it. The short fibers of the present invention can be made of other electrically chargeable fibers such as silk, wool, cellulose acetate, polyamide,
Polyester, polyolefin, polyvinyl,
It can be mixed with various natural and artificial fibers such as polyacrylonitrile to produce various textile products such as yarn, knitted fabrics, woven fabrics, nonwoven fabrics, ropes, strings, and carpets. If the purpose is to provide normal antistatic properties, the mixing ratio (weight) of conductive composite fiber in the product is 0.1~
About 5% is sufficient, and when particularly excellent antistatic properties are required, the mixing ratio can be about 1 to 50%. In blending, which is one of the most important methods for blending, the short fibers of the present invention have excellent uniform dispersibility into other fibers, and are less likely to reduce or lose electrical conductivity due to external force (stretching) during the blending process. , the final product has excellent antistatic properties. In the following examples, parts and percentages are by weight unless otherwise specified. Example 1 A film of conductive tin oxide (SnO 2 ) was formed on the surface of titanium oxide (TiO 2 ), average particle size 0.25 μm (variation range 0.20 to 0.30 μm), specific resistance 6.3 Ω・cm,
Light gray-blue conductive particles with a whiteness of 86% are designated as E1. E
The tin oxide content of No. 1 is 15%, and the antimony oxide content for activating tin oxide is 1.5%. 75 parts of particles E1, 25 parts of nylon 12 powder having a molecular weight of 14,000, and 0.5 part of magnesium stearate were mixed and melt-kneaded three times using a twin-screw kneader to obtain conductive polymer CP1. Molecular weight with 1.6% TiO2 particles as matting agent
14,000 nylon 12 and conductive polymer CP1 were melt-spun into a structure as shown in Figure 2 at a composite ratio (volume) of 10/1. Combined both components at 260℃, diameter 0.25
It was spun from a mm orifice, cooled, and wound at a speed of 600 m/min while oiling to obtain an undrawn yarn UF1 of 60 d/4 f. The oil used for oiling was 80 parts of lauryl phosphate (potassium salt) and polyethylene glycol.
It contains 10 parts of 300 mol monostearate and 10 parts of oleic acid monoglyceride, and is used as a 5% aqueous dispersion. The amount of oil attached to undrawn yarn is
It is 0.6%. The undrawn yarn UF1 was stretched at various stretching ratios on a stretching bottle at 65° C., and its degree of orientation, conductivity, and antistatic property were measured. That is, the degree of orientation and conductivity of the obtained undrawn yarn and drawn yarn were measured by X-ray as they were, and then twisted with nylon 12 drawn yarn (non-conductive) having a 160 denier/32 filament and a strength of 4.6 g/d. Yarns twisted at several 80 T/M were knitted into a circular knitted fabric of 210 denier/54 filament nylon 6 drawn yarn at intervals of 6 mm, and the frictional charging voltage of the knitted fabric was measured. The mixing ratio of the composite yarn varies depending on the draw ratio, and is about 0.9% when the draw ratio is 3 times, about 1.3% when the draw ratio is 2 times, and about 2.5% when the draw ratio is 1 times (undrawn yarn). Frictional charging voltage can be determined by washing the sample thoroughly to remove oil, etc., and drying it.
After being left in an atmosphere of 25℃ and 33%RH for 12 hours,
Measured in the same atmosphere. That is, rub the sample strongly with a clean cotton cloth 15 times, and measure the electrostatic voltage after 1 minute. Table 1 and FIG. 1 show the relationship between the stretching ratio and the degree of orientation, electrical conductivity (specific resistance), antistatic properties, strength, and elongation. Furthermore, Table 1 shows the ratio of the coefficient of dynamic friction against metal μdM and the coefficient of static friction against fiber μSF of the yarn whose oil agent was extracted and removed with petroleum ether.

【表】 第1表及び第1図から明らかなように、延伸倍
率2.5倍以上、配向度90%以上、比抵抗1×108
Ω・cm以上では制電性が失なわれる。制電性の見
地からは延伸倍率2.0以下、配向度89%以下、特
に86%以下、が好ましく比抵抗は107Ω・cm程度
以下特に106Ω・cm程度以下、が好ましい。ま
た、例えば延伸倍率2.02では導電糸の強度は2
g/d、伸度は110%であり、強い外力(張力な
ど)によつて引伸ばされると導電性を失なう可能
性が高い。 未延伸糸UF1と同じ紡糸条件で、600d/40fの
未延伸UF2を得、それを30本収束してトウし、
延伸倍率1.0(未延伸)、2.0、2.45、2.85、3.25で
夫々延伸し、押込法で巻縮し、95℃で水蒸気処理
し、39/47mmでバイアスカツトして5種の短繊維
SF1〜SF5を得た。この短繊維を夫々通常のナ
イロン6の19デニール、三角断面、39/55mmのバ
イアスカツトしたステープルに対して0.5%混紡
し(スライバー法)で紡績糸を得、タフテイング
法でループパイル(パイル高さ9mm)植毛し、染
色、仕上げしてカーペツトCP1〜CP5を得た。
各カーペツトの上を皮底靴で歩行した時の人体の
帯電圧を25℃、33%RHで測定した結果、短繊維
の配向度、比抵抗、強伸度及び対金属動摩擦係数
μdM,対繊維静摩擦係数μSFの、油剤を抽出除
去した時のそれに対する比率を第4図の方法で測
定した結果を第2表に示す。
[Table] As is clear from Table 1 and Figure 1, the stretching ratio is 2.5 times or more, the degree of orientation is 90% or more, and the specific resistance is 1×10 8
If it exceeds Ω・cm, the antistatic property will be lost. From the standpoint of antistatic properties, the stretching ratio is preferably 2.0 or less and the degree of orientation is 89% or less, particularly 86% or less, and the specific resistance is preferably about 10 7 Ω·cm or less, particularly about 10 6 Ω·cm or less. For example, at a stretching ratio of 2.02, the strength of the conductive thread is 2.
The g/d and elongation are 110%, and there is a high possibility that it will lose its conductivity if it is stretched by strong external force (such as tension). Undrawn yarn UF2 of 600d/40f was obtained under the same spinning conditions as undrawn yarn UF1, and 30 yarns were converged and towed.
Five types of short fibers were obtained by stretching at a stretching ratio of 1.0 (unstretched), 2.0, 2.45, 2.85, and 3.25, crimping by pressing, steam treatment at 95°C, and bias cutting at 39/47 mm.
SF1 to SF5 were obtained. These short fibers are blended at 0.5% with regular nylon 6, 19 denier, triangular cross section, 39/55 mm bias-cut staples (sliver method) to obtain spun yarn, and tufting method is used to create loop pile (pile height 9mm) was flocked, dyed and finished to obtain carpets CP1 to CP5.
The electrostatic voltage of the human body when walking on each carpet with leather sole shoes was measured at 25℃ and 33% RH.The results showed the degree of orientation of short fibers, specific resistance, strength and elongation, coefficient of kinetic friction against metal μdM, and resistance against fibers. Table 2 shows the results of measuring the ratio of the static friction coefficient μSF to that when the oil was extracted and removed using the method shown in FIG.

【表】 比較のために、紡糸油剤として、砿物油
(RW.100秒)70部、オクチルホスフエートジエタ
ノールアミン塩8部、オレイン酸カリ塩3部、ポ
リエチレングリコール400モルジラウレート10
部、ポリエチレンオキサイド10モルノニルフエニ
ルエーテル7部、ラウリルアルコール2部の混合
物を10%水分散液で使用し、以下前記短繊維SF
1〜SF5と同様にして得た短繊維CF1〜CF5
について同様の実験を行ない第3表の結果を得
た。
[Table] For comparison, as spinning oil agents, 70 parts of millet oil (RW.100 seconds), 8 parts of octyl phosphate diethanolamine salt, 3 parts of potassium oleate salt, 400 moles of polyethylene glycol, 10 moles dilaurate
A mixture of 10 parts of polyethylene oxide, 7 parts of nonyl phenyl ether, and 2 parts of lauryl alcohol was used as a 10% aqueous dispersion.
Short fibers CF1 to CF5 obtained in the same manner as 1 to SF5
A similar experiment was conducted with respect to the following, and the results shown in Table 3 were obtained.

【表】 上記比較例において、カーペツトの制電性が劣
る理由は、第1に導電繊維の他繊維維中への分散
が不良であり、混合の均一性が劣ること、第2に
混紡工程中で延伸され導電性が低下又は消失した
ものが多かつたことによると推測される。 実施例 2 実施例1のナイロン12のかわりに、分子量
17000のナイロン6を用いて、以下SF1〜SF5
と同様にして短繊維SF6〜SF10を得た。また
SF6〜SF10の油剤を洗滌して取除き、代りに
分子量10000のポリエチレングリコール/ポリプ
ロピレングリコール等モルランダム共重合体92
部、オクチルホスフエートカリ塩5部、ソルビタ
ンモノラウレート3部の混合物の5%水分散液を
噴霧機で油分0.6%になるよう付与し乾燥して短
繊維CF1〜CF10を得た。各短繊維の性質及び
それを0.5%混紡したカーペツトの人体帯電圧の
測定結果を第4表に示す。
[Table] In the comparative example above, the reasons why the antistatic properties of the carpet are poor are: firstly, the dispersion of the conductive fibers into other fibers is poor, resulting in poor mixing uniformity, and secondly, during the blending process. This is presumed to be due to the fact that in many cases the conductivity decreased or disappeared due to stretching. Example 2 Instead of nylon 12 in Example 1, molecular weight
Using 17000 nylon 6, the following SF1 to SF5
Short fibers SF6 to SF10 were obtained in the same manner as above. Also
Wash and remove the SF6 to SF10 oil and replace it with polyethylene glycol/polypropylene glycol equimolar random copolymer 92 with a molecular weight of 10,000.
A 5% aqueous dispersion of a mixture of 5 parts of potash octyl phosphate, and 3 parts of sorbitan monolaurate was applied using a sprayer so that the oil content was 0.6%, and dried to obtain short fibers CF1 to CF10. Table 4 shows the properties of each short fiber and the measurement results of the human body electrostatic potential of a carpet made by blending 0.5% of each short fiber.

【表】 本発明による実施例SF6〜SF9が比較例SF1
0,CF6〜CF10にくらべて優れていることが
明らかであろう。
[Table] Examples SF6 to SF9 according to the present invention are comparative example SF1
It is clear that this is superior to 0.0, CF6 to CF10.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は無機導電粒子と熱可塑性ポリマーから
なる導電層と繊維形成性ポリマーからなる保護層
とが複合された繊維の延伸倍率と導電性及び制電
性の関係の具体例を示すものである。第2図は導
電層と保護層の複合形状の具体例を示す複合繊維
の横断面図である。第3図及び第4図は摩擦係数
の比較又は測定法を示す模式図である。
Figure 1 shows a specific example of the relationship between the draw ratio and the conductivity and antistatic properties of a fiber that is a composite of a conductive layer made of inorganic conductive particles and a thermoplastic polymer, and a protective layer made of a fiber-forming polymer. . FIG. 2 is a cross-sectional view of a composite fiber showing a specific example of a composite shape of a conductive layer and a protective layer. FIGS. 3 and 4 are schematic diagrams showing a comparison or measurement method of friction coefficients.

Claims (1)

【特許請求の範囲】 1 (a)導電性無機物粒子と熱可塑性ポリマーから
なる導電層と繊維形成性ポリマーからなる保護層
とが複合されてなり、(b)繊維を形成するポリマー
の結晶部分の配向度が89%以下であり、且つ、(c)
潤滑剤によつて対金属動摩擦係数及び対繊維静摩
擦係数が非潤滑時の80%以下に低減されているこ
とを特徴とする短繊維。 2 導電性無機物粒子が金属粒子、金属化合物粒
子及び金属又は金属化合物からなる導電性皮膜を
有する粒子の群から選ばれた少なくとも1種のも
のである特許請求の範囲第1項記載の短繊維。 3 導電性無機物粒子の平均直径が0.1〜0.5μm
の範囲である特許請求の範囲第1項記載の短繊
維。 4 保護層及び導電層を形成するポリマーがポリ
アミド、ポリエステル又はアクリル系ポリマーで
ある特許請求の範囲第1項記載の短繊維。 5 保護層及び導電層を形成するポリマーが同一
又は同種のものである特許請求の範囲第1項記載
の短繊維。 6 短繊維が2.5倍以下の延伸倍率によつて延伸
された半延伸糸又は未延伸糸である特許請求の範
囲第1項記載の短繊維。 7 短繊維の対金属動摩擦係数及び対繊維静摩擦
係数が、潤滑剤によつて非潤滑時の70%以下に低
減されている特許請求の範囲第1項記載の短繊
維。
[Scope of Claims] 1 (a) A conductive layer made of conductive inorganic particles and a thermoplastic polymer and a protective layer made of a fiber-forming polymer, (b) a composite of a crystalline portion of the polymer forming the fibers. The degree of orientation is 89% or less, and (c)
A short fiber characterized by having a coefficient of dynamic friction against metal and a coefficient of static friction against fibers reduced by a lubricant to 80% or less of the non-lubricated state. 2. The short fiber according to claim 1, wherein the conductive inorganic particles are at least one selected from the group of metal particles, metal compound particles, and particles having a conductive film made of a metal or a metal compound. 3 The average diameter of conductive inorganic particles is 0.1 to 0.5 μm
The short fiber according to claim 1, which falls within the range of . 4. The short fiber according to claim 1, wherein the polymer forming the protective layer and the conductive layer is polyamide, polyester, or acrylic polymer. 5. The short fiber according to claim 1, wherein the polymers forming the protective layer and the conductive layer are the same or of the same kind. 6. The short fiber according to claim 1, wherein the short fiber is a semi-drawn yarn or an undrawn yarn drawn at a draw ratio of 2.5 times or less. 7. The short fiber according to claim 1, wherein the coefficient of dynamic friction with respect to metal and the coefficient of static friction with respect to fibers of the short fiber are reduced by a lubricant to 70% or less of the non-lubricated state.
JP15840782A 1982-09-10 1982-09-10 Conductive staple fiber Granted JPS5947474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15840782A JPS5947474A (en) 1982-09-10 1982-09-10 Conductive staple fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15840782A JPS5947474A (en) 1982-09-10 1982-09-10 Conductive staple fiber

Publications (2)

Publication Number Publication Date
JPS5947474A JPS5947474A (en) 1984-03-17
JPS6115184B2 true JPS6115184B2 (en) 1986-04-23

Family

ID=15671074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15840782A Granted JPS5947474A (en) 1982-09-10 1982-09-10 Conductive staple fiber

Country Status (1)

Country Link
JP (1) JPS5947474A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174744A (en) * 1985-01-30 1986-08-06 Nec Corp Integrated circuit device and manufacture thereof
US4835056A (en) * 1985-08-05 1989-05-30 Basf Corporation Conductive fiber and method for making same
US4743505A (en) * 1985-08-27 1988-05-10 Teijin Limited Electroconductive composite fiber and process for preparation thereof
US5318845A (en) * 1988-05-27 1994-06-07 Kuraray Co., Ltd. Conductive composite filament and process for producing the same
JP4821032B2 (en) * 2001-06-13 2011-11-24 浩 泓本 Automatic needle element reinforcement
US7618704B2 (en) 2003-09-29 2009-11-17 E.I. Du Pont De Nemours And Company Spin-printing of electronic and display components
US8143326B2 (en) 2004-09-28 2012-03-27 E.I. Du Pont De Nemours And Company Spin-printing of electronic and display components
US8252385B2 (en) 2005-03-25 2012-08-28 E I Du Pont De Nemours And Company Spin-printing of electronic and display components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526246A (en) * 1978-08-14 1980-02-25 Toray Ind Inc Highly oriented and electrically conductive conjugate fiber with excellent fiber performance
JPS55112315A (en) * 1979-02-22 1980-08-29 Asahi Chem Ind Co Ltd Antistatic acrylic conjugate fiber
JPS5649017A (en) * 1979-09-19 1981-05-02 Japan Exlan Co Ltd Side-by-side type electrically conductive composite fiber
JPS56169810A (en) * 1980-06-03 1981-12-26 Teijin Ltd Antistatic filament

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526246A (en) * 1978-08-14 1980-02-25 Toray Ind Inc Highly oriented and electrically conductive conjugate fiber with excellent fiber performance
JPS55112315A (en) * 1979-02-22 1980-08-29 Asahi Chem Ind Co Ltd Antistatic acrylic conjugate fiber
JPS5649017A (en) * 1979-09-19 1981-05-02 Japan Exlan Co Ltd Side-by-side type electrically conductive composite fiber
JPS56169810A (en) * 1980-06-03 1981-12-26 Teijin Ltd Antistatic filament

Also Published As

Publication number Publication date
JPS5947474A (en) 1984-03-17

Similar Documents

Publication Publication Date Title
CA2252138C (en) Process for making poly(trimethylene terephthalate) yarn
US2353270A (en) Process for forming synthetic fibers
US4457973A (en) Conductive composite filaments and methods for producing said composite filaments
US4420534A (en) Conductive composite filaments and methods for producing said composite filaments
EP0052897B1 (en) A sized multifilament yarn of an aromatic polyamide, a yarn package, a woven fabric and a process for making said yarn
CN101285217A (en) PVC fibers and method of manufacture
JPS6115184B2 (en)
JP2646349B2 (en) Clothing yarn
JP4229115B2 (en) Nanofiber assembly
JPS60224812A (en) Electrically conductive composite fiber
JPS6156334B2 (en)
US5648010A (en) Lubricant for air entanglement replacement
US2438968A (en) Production of textile filaments, fibers, and yarns
US3511677A (en) Process for preparation of a sized zero-twist synthetic fiber yarn and product thereof
JP2005009048A (en) Fabric consisting of composite spun yarn and use of the same
JP4270202B2 (en) Nanofiber assembly
JP3210787B2 (en) Conductive mixed yarn
JP2007197868A (en) Method for producing crimped yarn for dust-controlling mat, and method for producing dust-controlling mat
JPS58132121A (en) Preparation of electrically conductive fiber
JP7394439B2 (en) Conductive multifilament, method for manufacturing conductive multifilament, woven or knitted fabric, and brush
JP3164411B2 (en) Polyamide crimped yarn and method for producing the same
DE2129958A1 (en) Process for producing a multi-strand thermoplastic synthetic textured yarn
JP2006124860A (en) Crimped yarn for carpet, method for producing the same, and carpet
KR810001780B1 (en) Compound filament with electric-condition
JP2020045599A (en) Undrawn electroconductive composite fiber and method of manufacturing bcf using the same