JPS6115079Y2 - - Google Patents

Info

Publication number
JPS6115079Y2
JPS6115079Y2 JP18100980U JP18100980U JPS6115079Y2 JP S6115079 Y2 JPS6115079 Y2 JP S6115079Y2 JP 18100980 U JP18100980 U JP 18100980U JP 18100980 U JP18100980 U JP 18100980U JP S6115079 Y2 JPS6115079 Y2 JP S6115079Y2
Authority
JP
Japan
Prior art keywords
main pipe
pipe
main
work
drainage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18100980U
Other languages
Japanese (ja)
Other versions
JPS57105333U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18100980U priority Critical patent/JPS6115079Y2/ja
Publication of JPS57105333U publication Critical patent/JPS57105333U/ja
Application granted granted Critical
Publication of JPS6115079Y2 publication Critical patent/JPS6115079Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、土留工に於ける矢板保持と、仮設桟
橋の主杭に係わる。 従来ビルの地下構築や、路面下に公共施設物を
設置する際には、鋼矢板、H鋼杭掛矢板土留など
種々の工法が行われている。特に中、大型工事の
場合、鋼矢板、H鋼の打込み、引抜きの際発生す
る騒音と振動が、公害源の一つとして社会問題と
なり、市街地などでは法の制限も厳しく、それら
の作業は、相対に難渋化している。そこで現在そ
の打開策として、打込みには削孔機とバイブロ、
ジエツトポンプとバイブロという併用の2方式が
採用されているが、前者は削孔中にH鋼杭などを
建込んだのち僅かに打込み、まわりに貧配合のモ
ルタルや他の材料を詰る必要があり、また後者は
鋼矢板やH鋼杭に、ジエツト用高圧パイプの保持
バンドを溶着させるなど、時間や経費のかかる諸
雑工が付随している。また引抜工法では、微振動
バイブロ、滑車引抜機、油圧引抜機などの新機種
の開発もなされているが、一般的には未だ振動作
用が伴うバイブロが多用されている。 また掘削底面が附近の地下水位より低い場合、
当然排水設備を設けるが、当該工事がドライワー
クを要求されているときは、土と水が完全に分離
できる、ウエルポイント、ヴキユームデイープウ
エルなど、地下水を真空度と大気圧で強制的に集
水排除する工法がとられている。しかしその場
合、本工事を施工する業者とは別に、排水専問業
者に委託されるケースが多く、相応の工事費の負
担は避けられない。したがつて一般的には設備が
簡単で費用が安く、操作も容易な釜場排水が主流
である。 しかしこの排水方法は、掘削個所に浸透してき
た水を、掘削底面よりやや深い集中場所に自然流
下させ、水中ポンプか自吸式ポンプで排出するも
のであるが、掘削の進行に伴い釜場の掘下や移動
を繰返すため、掘削作業は暫々中断され、流下す
る水は土粒子を溶かし汚濁し、土砂の一部は泥状
となり、特に雨後の排水と掘削は、汚濁水と汚泥
を撒きちらす結果となる。そのため近隣や一般に
迷惑をかけ、さらに下流の下水管や排水路を泥土
で埋め、果はその補償や後始末に困惑するケース
も少くない。 本案は特に上述の欠点を排除すると共に、新な
施工上の利点を加えるため、考案したものであ
り、以下図面について詳述する。 第1図に示すように、掘削深度に応じた直径、
厚さ、長さの主管1の外装は、まず上端適位置
に、後述の各種キヤツプ取付用の、ボルト貫入孔
2を適数穿つておく。そして主管1の上方に、矢
板の嵌挿部と鋼材取付用のボルト孔が連穿され
た、ガイドアングル3は、第2図に示すように、
バンド4を溶着させ、そのバンド4で、主管1に
密着させると共に、着脱自在となるようボルトで
緊締する。 さらに下方根入部の周壁には、第3図に示すよ
うに、外周面に対し、開口率15〜20%のスロツト
を穿設し、ストレーナー5とする。そして主管1
の下端には、ノズル24の嵌合孔11をもつ逆円
錐台形の尖頭金具6を、主管1に嵌合さて、主管
1の外側から捻込ボルトによつて緊締する。 さらに内装は、主管1の上端から根入部下方適
位置迄に貫設した、2対若しくは2対以上の、圧
気パイプ7を配設し、第4図に示すように、主管
1の透孔から、圧気パイプ7の外面を溶接8し
て、主管1の内壁に固着させる。しかし主管1の
上端から2m附近迄は、後述のリングスペーサー
35を挿入させるため、溶接8はしない。 また主管1根入部下方適位置に、第5図に示す
ように圧気パイプ7の周壁より主管1の周壁を透
過する、螺状の噴気孔9を穿つて、第6図に示す
ような、中空ボルト10を螺入させる。さらに圧
気パイプ7の上端は外側に、下側は内側に夫々接
続用のネジが刻まれる。 尚、ガイドアングル3は、上述のように主管1
にバンド4の作用で着脱自在となるが、左右のガ
イドアングル3の上下の取付位置と、バンド4を
二重に配することによつて、取付角度を任意に選
ぶことができる。 本案は上述の構成となるが、主管1とガイドア
ングル3は夫々掘削深度に対応した、所要の長さ
と剛度を要求される。従つてそれに一般的に適合
した、寸度を次頁表に示す。 本案は次頁表に示すように、大小工事の土留と
仮橋などの主杭と、場合によつては深井戸用ケー
シングとして用いられるが、それらの打込み、引
抜きの作業と各種排水工法の利用方法、主管1の
各種剛材の取付方法など、具体的実施例を次に述
べる。 本案の主管1を、騒音と振動を伴わずに打設す
るには、先に述べた削孔機とバイブロの併用と、
This invention relates to the retention of sheet piles in earth retaining works and the main piles of temporary piers. Conventionally, when constructing buildings underground or installing public facilities under road surfaces, various construction methods such as steel sheet piles, H-steel piles, and sheet piles have been used. Particularly in the case of medium- to large-scale construction work, the noise and vibration generated when driving and pulling out steel sheet piles and H-shaped steel become a social problem as a source of pollution, and in urban areas, there are strict legal restrictions on such work. It has become relatively difficult. Therefore, as a solution to this problem, we are currently using a drilling machine and a vibro for driving.
Two methods have been adopted, a jet pump and a vibro, but the former requires installing H-steel piles etc. during drilling, driving them in slightly, and filling the surrounding area with poorly mixed mortar or other materials. In addition, the latter involves various time-consuming and costly work, such as welding a retaining band for the high-pressure jet pipe to the steel sheet pile or H-steel pile. In the drawing method, new models such as micro-vibration vibros, pulley pullers, and hydraulic pullers have been developed, but in general, vibros with vibration effects are still widely used. Also, if the bottom of the excavation is lower than the nearby groundwater level,
Naturally, drainage equipment will be provided, but if the construction requires dry work, use a well point, vacuum deep well, etc. where soil and water can be completely separated, to forcibly drain underground water using vacuum and atmospheric pressure. Construction methods are being used to eliminate water collection. However, in such cases, in many cases, the work is outsourced to a specialist drainage company separate from the company that performs the main work, and a corresponding amount of construction costs are unavoidable. Therefore, in general, pot drainage is the mainstream, as it has simple equipment, low cost, and easy operation. However, with this drainage method, the water that has seeped into the excavation area is allowed to flow down naturally to a concentrated area slightly deeper than the bottom of the excavation, and is then discharged using a submersible pump or a self-priming pump. Due to repeated digging and movement, excavation work is suspended for a while, and the flowing water dissolves soil particles and becomes polluted, and some of the soil becomes muddy.Drainage and excavation after rain, in particular, spreads polluted water and sludge. This results in a flickering result. As a result, they cause a nuisance to neighbors and the general public, and there are many cases in which downstream sewer pipes and drainage channels are filled with mud, leaving the residents at a loss as to compensation and cleanup. The present invention has been devised specifically to eliminate the above-mentioned drawbacks and add new construction advantages, and will be described in detail below with reference to the drawings. As shown in Figure 1, the diameter depends on the excavation depth,
First, an appropriate number of bolt penetration holes 2 for attaching various caps, which will be described later, are bored in the exterior of the main pipe 1, which has a certain thickness and length, at appropriate positions at the upper end. As shown in FIG. 2, the guide angle 3 has a sheet pile insertion part and a bolt hole for attaching steel material continuously drilled above the main pipe 1.
A band 4 is welded, and the band 4 is brought into close contact with the main pipe 1, and is tightened with a bolt so that it can be attached and detached. Furthermore, as shown in FIG. 3, a slot with an opening ratio of 15 to 20% relative to the outer circumferential surface is bored in the peripheral wall of the lower root part to form a strainer 5. and master 1
An inverted truncated cone-shaped pointed metal fitting 6 having a fitting hole 11 for the nozzle 24 is fitted into the main pipe 1 at the lower end thereof, and is tightened from the outside of the main pipe 1 with a screw bolt. Furthermore, the interior is equipped with two or more pairs of pressurized air pipes 7 that penetrate from the upper end of the main pipe 1 to an appropriate position below the root, and as shown in FIG. , the outer surface of the pneumatic pipe 7 is welded 8 to be fixed to the inner wall of the main pipe 1. However, welding 8 is not performed up to approximately 2 m from the upper end of the main pipe 1 in order to insert a ring spacer 35, which will be described later. In addition, a spiral blowhole 9 is bored at a suitable position below the root of the main pipe 1, as shown in FIG. Screw in the bolt 10. Furthermore, connection screws are carved on the outside of the upper end of the pressure pipe 7 and on the inside of the lower end, respectively. Note that the guide angle 3 is connected to the main pipe 1 as described above.
Although it can be attached and detached freely by the action of the band 4, the attachment angle can be arbitrarily selected by the upper and lower attachment positions of the left and right guide angles 3 and by doubling the bands 4. Although the present invention has the above-mentioned configuration, the main pipe 1 and the guide angle 3 are each required to have a required length and rigidity corresponding to the excavation depth. Therefore, the dimensions generally adapted to this are shown in the table on the next page. As shown in the table on the next page, this project will be used as main piles for earth retaining and temporary bridges in large and small construction projects, and in some cases as casings for deep wells, and the work of driving and pulling them out and the use of various drainage methods. Specific examples, such as methods and methods of attaching various rigid materials to the main pipe 1, will be described below. In order to install the main pipe 1 of this project without noise and vibration, the combination of the above-mentioned hole drilling machine and vibro,

【表】 ジエツトポンプとバイブロの併用方式の2工法を
利用して行なうが、前者の工法では削孔された孔
壁と、主管1の外壁にできる一定空間を、何らか
の材料で埋めなければならない。この空間を例え
ば、砂利、砕石を投入して、地下水の流入を図
る、公知のヴキユームデイープウエル排水工法を
採用するときは、極めて適した工法となる。しか
し主管1を土留の主杭として用いるには、その空
間を埋めた軟い土砂が、土留作業の際に崩落する
危険性と、雨水によつて流出する可能性もあるの
で、比較的地山を痛めない後者の工法を利用する
ことを重点にして説明する。 先づウオータージエツトの装置を、主管1に設
けるには、第7図に示すように、主管1の中央上
端には高圧ホース接続具25を装着し、下端にノ
ズル24が嵌着された、所要長のランス26(高
圧パイプ)を貫設する。その場合、保持の方法
は、下端はノズル24を尖頭金具6の嵌合孔11
に嵌着させ、上端は打込キヤツプ21によつて固
持される。 しかしこの打込キヤツプ21は、一側はバイブ
ロにチヤツクされる、ブラケツト27を装着し
た、吊上キヤツプ22と、他側はブラケツト27
を有さない普通キヤツプ23とから成り、この2
2,23の両キヤツプの蓋板が、ランス26頭部
に嵌着してある。上下2個のソケツトに差込まれ
て、主管1の頭部に捻込ボルトによつて緊締され
る。 以上の装着作業は主管1を地上に横臥させて行
うが、打込作業直前に、別途に準備されている、
ジエツトポンプに接続された所要長の高圧ホース
を、ランス26上端の接続具25に嵌着して、地
上での打込準備を完了させる。 上記のように準備された主管1を、別途に用意
されたクレーンの単巻ワイヤーで、その頭部を吊
上げながら、同じく滑車付主ワイヤーに懸吊され
たバイブロに、吊上キヤツプ22のブラケツト2
7をチヤツクさせたのち、所定の位置に垂直に建
込み、ジエツトポンプを徐々に発動させる。 すると主管1下端のノズル24から発射される
圧力水は、猛裂な勢いで直下の地盤を削孔し、そ
れと共に孔壁を泥状化する。つまり主管1の先端
支持と周辺摩擦の両抵抗力を排除するわけであ
る。 したがつて打込みは基本的には、削孔中の主管
1の自重と、バイブロの重量のみで沈下させる。 また若し、固結度の高い地層に遭遇した場合で
も、バイブロの振動作用を補助的に僅かに加える
ことによつて、十分打設できる。また上述の装置
の取外しは、先づ高圧ホースを外し、接続具25
に溶着されたランス26の吊上げブラケツト28
に、単巻ワイヤーをかけておき、主ワイヤーに懸
吊されているバイブロを開放し、打込キヤツプ2
1を脱した後に、ランス26を吊上げ、別の地上
にある主管1に装着しやすい場所におろす。打込
装置は別に数組用意しておけば、打込作業を間断
なく行うことができる。しかしこの工法は噴射水
を絶えず補給することや、地上に噴出した泥水を
処理することも併せて考慮すると同時に、必要と
する動力設備の完備と、当該現場に使用する主管
1の寸度と、環境に適合した機能をもつ、クレー
ン、ジエツトポンプ、バイブロ、水タンクを選ぶ
必要もある。 次に本案主管1を引抜く場合は、第8図に示す
ように、主管1の頭部に引抜キヤツプ31を装着
する。それには先づ、主管1の内壁に装着されて
いる圧気パイプ7の上端全部に、梃子をかけて内
側に少し曲げる。そして主管1との間にできた間
隙に、リングスペーサー5を嵌挿させる。すると
主管1と圧気パイプ7の間に一定間隔のスペース
ができ、そこに上端にフランジをもち、また底板
には圧気パイプ7の頭部を嵌合させるための底孔
を穿つた、底部キヤツプ32を主管1の内壁に添
つて嵌合させる。そしてさらに圧気パイプ7の頭
部にゴムパツキンを嵌め、その上端の接続用ネジ
にパイプソケツトを捻込み、主管1の外側より捻
込ボルトによつて緊締する。次に、その上から、
頂部にエヤーホース接続具34を、下端に前記同
様のフランジを溶着した、頂部キヤツプ33をパ
ツキンを挿んで載置し、その32,33両キヤツ
プのフランジをボルトで緊締すると、密閉された
圧気室36を内包する、引抜キヤツプ31が形成
される。そしてその頂部に装着された接続具34
に、別途準備のコンプレツサーに通じているエヤ
ーホースを接続すれば、引抜作業を行う主管1頭
部の装着は完了する。尚さらに同作業に関連した
準備の若干の説明を加えると、 上記のように、接続されたエヤーホースに、直
接コンプレツサーからエヤーを送気するとき、該
主管1が小口径で長さも短い場合は、コンプレツ
サーに付属されているエヤータンクの貯量でも十
分引抜くことができるが、長大な主管1の場合
は、送気されたエヤーの一部が、主管1の周辺か
ら離れて、透気性の良い個所から逸気(ブロー)
したり、他の空間に吸収されて、その圧力を低下
させ、主管1のフリクシヨン(円辺摩擦力)を有
効にカツトできない場合がある。 そこで一定圧のエヤーの貯量を増すために、別
に送気管(ツル巻鋼管)を数本用意し、一側に吸
込コツクと他側に吐出コツクを取付けて、夫々に
エヤーホースを、コンプレツサーと、引抜キヤツ
プ31の接続具34に接合すれば、長大な主管1
でも引抜くことができる。 尚、引抜作業の細部について説明を加えると、
前記のエヤー関係の装置とは別に、当該主管1の
寸度に適した機能を有するクレーンを準備し、主
管1に密着されているガイドアングル3の上端ボ
ルト孔に、吊上ワイヤーをかけ、それにクレーン
のもつ吊上荷重をかけておき、全エヤー装置の接
続個所を点検した後、吐出しコツクを徐々に開
き、半開状態の侭暫く間合をおく。すると送気さ
れた直後のエヤーは瞬時に、エヤーホース、圧気
室36各圧気パイプ7を通過し、一部は噴気孔9
から地中に噴出し、一部は尖頭金具6の先端ノズ
ル嵌合孔11から底盤中に噴出し、残部は主管1
の内部に拡散する。そして主管1内部の圧力が増
すにつれて、噴出したエヤーは主管1の外周面に
沿つて、地下水を押上げ周辺土砂を排除しつつ緩
やかに上昇し、やがて地表に小粒の気泡を立たせ
始める、そのとき吐出コツクを全開させると、主
管1は僅かながら上方に動きだし、吊上荷重を更
に加えると同時に、吐出コツクを全半開2〜3回
繰返えすと、主管1は既にフリクシヨンがカツト
された上、新たに吊上荷重と浮力が加えられて、
スムーズに吊上げられる。そして半ば引抜かれた
ら一旦止め、吐出コツクを閉じて、残余のエヤー
が大気中に拡散された後、全長を引抜き所定位置
におろす。 だがこの引抜作業を能率よく行うには、主管1
の寸度に適した諸機械、例えばクレーン、コンプ
レツサー(全備重量1t前後、防音、可搬式)と、
主管1の長さの3〜4倍のエヤーホース、必要数
のツル巻鋼管、複数の引抜キヤツプ31の準備が
必要となるが、他に確保し難くい特殊の機械や特
殊作業員を必要としない。 次に本案主管1に係わる各種排水工法について
述べる。主管1を上述のように打込むと、使用さ
れた噴射水はもとより周辺の地下水は、主管1の
下方に設けたストレーナー5から流入し、主管1
の内部下方に貯溜される。これを第9図に示すよ
うに、掘削作業に先立ち適個所の主管1に、水中
ポンプ42を挿入し、排水ホース43、キヤプタ
イヤー44を排水キヤツプ41に通し、主管1の
外周に嵌合させた後、主管1の外側から捻込ボル
トで緊締すれば、小範囲で短期工事の排水設備が
できる。このようにして地下水位を掘削底面下に
おけば、土と水の分離は完全にでき、所謂ドライ
ワークの掘削作業が可能となり、しかも排除され
る水も汚濁されない、つまり普通の釜場排水とは
異なり、主管1は小井戸の役割を果すことにな
る。従つて各々の工事場の地下水位、地層、環境
等によつて、図示しないが、圧気パイプ7の下端
に、フートバルブを打込む以前に嵌着しておき、
タービンポンプを取付けたり、自吸式ポンプや他
の適合した各種のポンプを取付けて排水すれば同
様の効果を生む。 また掘削底面附近が透水度が高く、しかも水の
賦存量も大きい地層の場合は、第10図に示すよ
うに、打設された主管1各個の内部中央に、その
各個下端に吸上具52を嵌着した、3吋程度のサ
クシンパイプを配設する。そしてその頭部に嵌着
されている上下2個のソケツトの間に、左右に分
割された排水キヤツプ51の蓋板を差込み、主管
1頭部外側より捻込ボルトで緊締させ、更に別途
に用意された集中管54に全部連結して、図示し
ないが別個所にセルフプライミングポンプを据付
けて作動させれば、公知のジーメンスウエル工法
が行える。 上記のような集中排水方式の場合は、不測の事
態に備えて予備の、ポンプと電源が必要となる
が、集中管の適個所に吐出しバルブを設けること
によつて、工事用水が得られ利点もある。 更に、掘削深度と地下水位が共に深く、しかも
透水度の高い地層が挾まれている個所に於ては、
第11図に示す、公知の普通デイープウエル工法
を採用することができる。この場合先づ、主管1
のストレーナー5は、その帯水層に対応した位置
を選び、主管1内に挿入される潜水ポンプ62
は、揚水管63を継足して順次予定水位低下線迄
降下させ、主管1に装着された排水キヤツプ61
によつて固定される。しかしその排水キヤツプ6
1は蓋板下側に揚水管63の接合ソケツトが、上
側に吐出曲管の嵌合孔が装着してあり、下側は排
水キヤツプ61を揚水管63に捻込み、さらに主
管1の内壁に沿つて側板を挿込み、主管1頭部を
捻込ボルトによつて緊締させる。さらに上側は吐
出曲管を捻込んで夫々固着させる。 尚この工法による排水作用は、吐出口に(図示
しないが)スリースバルブを取付けておき、地下
水の流入量と排水量のバランス調整をして、潜水
ポンプ62を連続運転する方式か、又はキヤプタ
イヤー64と水位電極65を、自動制御装置を具
備した電源に接続して、断続運転するという2つ
の方式があるが、共に予備のポンプと電源は確保
しておく必要がある。 亦更に、掘削深度と地下水位が共に深く、しか
も透水度の低い地層では、掘削位置からやや離れ
た個所に、土留用とは別に(従がつてガイドアン
グル3は不用)主管1を設置し、第12図に示す
ように、主管1の内部に真空度をかけ、大気圧に
よつて強制的に地下水を流入させ、深井戸用ポン
プによつて揚水排除する。所謂公知のヴキユーム
デイープウエル工法を得ることも出来る。 ただし、この工法を行う場合の主管1の設置に
は、上述のように、該主管1より大きな外径をも
つ、削孔機によつて穿かれた孔に、主管1を建込
んで外周空間に砂利を投入して、フイルター78
を形成するが、地表の近くは気密性を保つため粘
質土で閉塞79する。 尚、この工法は地下水を強制的に主管1内に流
入させるため、細砂が混入する場合もある。それ
を防ぐため、ストレーナー5の外周に、周辺土粒
子に適合したメツシユかサランネツトを巻着して
おく。さらにこの工法の主管1は予定水位低下線
より可成り深く、ストレーナー5の位置を下げ、
それと共に、潜水ポンプ73もそれに合致する位
置まで揚水管72を継足しながら降下させる。そ
して揚水管72の上端は、排水キヤツプ71によ
つて固定されるが、この排水キヤツプ71は、下
部本体と上部頂板の上下に分かれている。下部本
体は該主管1と同寸度の鋼管を使用し、その上端
はフランジをもつ蓋板である。そしてその蓋板の
下側には、揚水管72を固着できる、捻込フラン
ジをもつパイプ嵌合孔が装着されており、側板は
真空ポンプ(図示しないが)に接続できる、真空
パイプ76が溶着されている。さらに上部頂板は
下部本体と同様のフランジをもち、揚水管72の
頭部曲管を嵌入させる厚いフランジ板が頂板に装
着されており、この下部本体と上部頂板がフラン
ジボルトによつて緊締される。 尚、この下部蓋板と頂板には、夫々排水用、水
位電極74用コード、キヤプタイヤー75の通孔
が穿かれている。 この工法は、前述のように、主管1の内部は十
分な気密を要求されるため、内部の設備を全部装
着した後に、主管1の上端と排水キヤツプ71の
下端が現場溶接80とされる。そのとき主管1頭
部のボルト貫入孔2は、短かいボルトやパツキン
によつて密閉しておく。 さらに揚水作用を行うに当つては、主管1内に
真空度を絶えずかけると、その負圧力で潜水ポン
プ73の効率が低下する恐れがある。そのため主
管1内部に装置された水位電極74、キヤプタイ
ヤー75、真空ポンプ(図示しない)を自動制御
器77を具備した電源に接続して、真空ポンプを
継続運転とする。 尚、この排水設備を撤去する際は、前記装置を
全部取外し、主管1の頭部溶接個所を切断し、引
抜キヤツプ31を装着して引抜けば良い。 次に本案主管1における鋼材の取付けについて
は、第1図、第13図及び第14図に示すよう
に、土留主杭として設置される主管1のガイドア
ングル3には、その上端から下端に亘つて、一定
間隔のボルト孔が、表裏共に連穿されている。こ
れは何れも掘削側から見て後方が矢板の嵌挿部と
なり、前方が鋼材の取付部となつている。したが
つて土留鋼材を取付ける場合、先づブラケツト8
1を取付けた上で、腹起し83を載せ、ピース8
2を挾み、夫々ボルトで緊締し、さらに切梁84
を渡せば、土留支保工が形成される。 亦さらに、覆工板の桁受や埋設管の仮受用鋼材
を取付ける場合は、先づブラケツト85を取付
け、その上に桁受溝形鋼87を載せ、ピース86
を挾んで、一側はガイドアングル3のボルト孔
に、他側は溝形溝87のボルト孔に、適合したボ
ルトで緊締することによつて堅牢な桁受ができ
る。 以上のように、本案主管1に装着されたガイド
アングル3に、各種鋼材に対応した間結材(ピー
ス)を取付けることによつて、水平、垂直、塗材
など縦横に、各断面の鋼材をボルトで緊締でき
る。 上述のように、本案の仮設鋼管杭は、従来その
打込みと引抜き時に発生してした、騒音と振動か
ら開放され、市街地はもとより、あらゆる工事場
所でも、無難な施工ができると共に、環境、地層
地下水位に即応した、排水工法を選択できる。 しかも主管1に圧気パイプ7とガイドアングル
3を装着したことによつて、その剛度が高められ
打抜作業の簡易さから、根入を思い切つて深くで
きる結果となる。そのため掘削を伴う多くの土留
工には、自立工法か又は最少限の支保工で済み、
しかもドライワークがとれるので、掘削、運搬作
業を始め、後続の諸作業の機械化と省力化が促進
され、全工事の作業効率は飛躍的に向上される。 尚さらに主管1に装着される、ガイドアングル
3の取付角度が自由に選べるため、例えば円形、
方形、小判形等あらゆる形式の土留工と、掘削方
向の変更が可能である。 しかも鋼材の取付が簡単であるため、土留主杭
に限らず、仮桟橋、作業構台、海上ドルヒン、各
種アンダーピニング工の主杭としても活用でき
る。 尚、本案の仮設鋼管杭は、大小広範な諸工事に
適用でき、かつ静的工法を基本としている結果、
機材の破損や変形が殆どなく、転用率も高く、し
たがつて従来機材と比較しても所謂補償費、修理
費が廉くなり、経済的にも非常に高い効果を有す
るものである。
[Table] Two methods are used: a jet pump and a vibro. In the former method, the hole wall that has been drilled and a certain space created on the outer wall of the main pipe 1 must be filled with some kind of material. For example, it is an extremely suitable construction method to fill this space with the well-known deep well drainage construction method, in which gravel and crushed stone are introduced to allow groundwater to flow in. However, in order to use main pipe 1 as the main pile of earth retaining, there is a risk that the soft earth filling the space will collapse during earth retaining work, and there is also a possibility that it will be washed away by rainwater. The explanation will focus on the use of the latter construction method, which does not damage the area. First, in order to install the water jet device in the main pipe 1, as shown in FIG. A lance 26 (high pressure pipe) of the required length is installed through it. In that case, the method of holding the nozzle 24 at the lower end is the fitting hole 11 of the pointed fitting 6.
The upper end is fixed by a driving cap 21. However, this drive-in cap 21 has a lifting cap 22 equipped with a bracket 27 which is chucked by a vibro on one side, and a lifting cap 22 with a bracket 27 on the other side.
It consists of an ordinary cap 23 which does not have
The lid plates of both caps 2 and 23 are fitted onto the head of the lance 26. It is inserted into two upper and lower sockets and tightened to the head of the main pipe 1 with a screw bolt. The installation work described above is carried out with the main pipe 1 lying on the ground, but immediately before the driving work, a separately prepared
A high-pressure hose of a required length connected to the jet pump is fitted into the connector 25 at the upper end of the lance 26, and preparations for driving on the ground are completed. While lifting the head of the main pipe 1 prepared as described above using a single-wound wire of a crane prepared separately, the bracket 2 of the lifting cap 22 is attached to the vibro which is also suspended from the main wire with a pulley.
After checking 7, erect it vertically in the specified position and gradually start the jet pump. Then, the pressurized water ejected from the nozzle 24 at the lower end of the main pipe 1 drills the ground directly below with tremendous force, turning the hole wall into mud. In other words, both the resistance forces of support at the tip of the main pipe 1 and friction around the periphery are eliminated. Therefore, when driving, basically, the main pipe 1 sinks only by its own weight and the weight of the vibro during drilling. Furthermore, even if a highly consolidated stratum is encountered, sufficient driving can be achieved by adding a slight vibration effect from the vibro. In addition, when removing the above-mentioned device, first remove the high pressure hose, and
Lifting bracket 28 of lance 26 welded to
Put a single winding wire on the main wire, release the vibro suspended from the main wire, and connect the driving cap 2.
1, the lance 26 is lifted up and lowered to another location on the ground where it can be easily attached to the main pipe 1. If several sets of driving devices are prepared separately, driving work can be performed without interruption. However, this construction method also takes into account the constant replenishment of jet water and the treatment of muddy water that has spewed out on the ground, and at the same time, it also takes into account the completeness of the necessary power equipment, the size of the main pipe 1 used at the site, It is also necessary to choose cranes, jet pumps, vibros, and water tanks that have functions that are compatible with the environment. Next, when the main pipe 1 is to be pulled out, a pull-out cap 31 is attached to the head of the main pipe 1, as shown in FIG. To do this, first, apply a lever to the entire upper end of the pneumatic pipe 7 attached to the inner wall of the main pipe 1 and bend it slightly inward. Then, the ring spacer 5 is inserted into the gap formed between the ring spacer 5 and the main pipe 1. This creates a space at a constant interval between the main pipe 1 and the pneumatic pipe 7, and a bottom cap 32 having a flange at the upper end and a bottom hole in the bottom plate into which the head of the pneumatic pipe 7 fits is formed. are fitted along the inner wall of the main pipe 1. Further, a rubber gasket is fitted onto the head of the compressed air pipe 7, a pipe socket is screwed into the connecting screw at the upper end of the rubber gasket, and the pipe socket is tightened from the outside of the main pipe 1 with a screw bolt. Next, from above,
When a top cap 33 with an air hose connector 34 welded to the top and a flange similar to the one described above is welded to the bottom end with a gasket inserted, and the flanges of both caps 32 and 33 are tightened with bolts, a sealed pressure air chamber 36 is formed. A pull-out cap 31 is formed which encloses the. And a connecting tool 34 attached to the top of the
By connecting the air hose that leads to the separately prepared compressor, installation of the head of the main pipe 1, which will be used for extraction work, is completed. In addition, to add some explanation of the preparations related to the same work, as mentioned above, when supplying air directly from the compressor to the connected air hose, if the main pipe 1 has a small diameter and short length, It is possible to draw out the air with the amount stored in the air tank attached to the compressor, but in the case of a long main pipe 1, some of the delivered air may be moved away from the vicinity of the main pipe 1 and placed in a place with good air permeability. Kara Ichiki (blow)
Otherwise, it may be absorbed into other spaces, lowering its pressure, and making it impossible to effectively cut the friction (circular friction force) of the main pipe 1. Therefore, in order to increase the amount of air stored at a constant pressure, we prepared several separate air supply pipes (stripe-wound steel pipes), attached a suction port on one side and a discharge port on the other side, and attached an air hose to each, and a compressor and a compressor. If connected to the connector 34 of the pull-out cap 31, the long main pipe 1
But it can be pulled out. In addition, I would like to explain the details of the extraction work.
Separately from the air-related equipment mentioned above, prepare a crane with functions suitable for the dimensions of the main pipe 1, hang a lifting wire through the upper end bolt hole of the guide angle 3 that is in close contact with the main pipe 1, and After applying the lifting load of the crane and checking the connections of all air equipment, gradually open the discharge pot and leave it half-open for a while. Then, the air immediately after being supplied instantly passes through the air hose, the pressure chamber 36, and the pressure pipes 7, and some of the air passes through the blowhole 9.
Some of it is ejected into the ground from the tip nozzle fitting hole 11 of the pointed metal fitting 6 into the bottom board, and the rest is ejected from the main pipe 1.
diffuses inside. Then, as the pressure inside the main pipe 1 increases, the ejected air gradually rises along the outer circumferential surface of the main pipe 1, pushing up groundwater and removing surrounding earth and sand, and eventually begins to form small bubbles on the ground surface. When the discharge socket is fully opened, the main pipe 1 begins to move upwards slightly, and at the same time as the lifting load is further applied, when the discharge socket is fully opened two or three times, the friction of the main pipe 1 has already been cut, and New lifting loads and buoyancy are added,
Can be lifted smoothly. When it is halfway pulled out, it is stopped, the discharge pot is closed, and the remaining air is diffused into the atmosphere, and then the entire length is pulled out and lowered to a predetermined position. However, in order to perform this extraction work efficiently, the main
Various machines suitable for the dimensions of
Although it is necessary to prepare an air hose 3 to 4 times the length of the main pipe 1, the required number of spirally wound steel pipes, and multiple pull-out caps 31, it does not require special machines or special workers that are otherwise difficult to secure. . Next, we will discuss various drainage construction methods related to Main Pipeline 1. When the main pipe 1 is inserted as described above, not only the used injection water but also the surrounding ground water flows into the main pipe 1 through the strainer 5 installed below the main pipe 1.
It is stored inside and below. As shown in FIG. 9, prior to excavation work, a submersible pump 42 was inserted into the main pipe 1 at an appropriate location, and a drain hose 43 and cap tire 44 were passed through the drain cap 41 and fitted onto the outer periphery of the main pipe 1. After that, by tightening the main pipe 1 from the outside with screw bolts, you can create a drainage system for short-term construction work in a small area. By placing the groundwater level below the bottom of the excavation in this way, the soil and water can be completely separated, making it possible to carry out so-called dry excavation work, and the water being removed is not polluted; The main pipe 1 will play the role of a small well. Therefore, depending on the groundwater level, strata, environment, etc. of each construction site, although not shown, a foot valve may be fitted to the lower end of the pressure pipe 7 before being driven in.
A similar effect can be achieved by installing a turbine pump, a self-priming pump, or any other suitable pump for drainage. In addition, if the area near the bottom of the excavation is a stratum with high permeability and a large amount of water, as shown in Fig. Install a 3-inch saxin pipe fitted with a pipe. Then, insert the lid plate of the drain cap 51, which is divided into left and right parts, between the two upper and lower sockets fitted to the head, and tighten it with a screw bolt from the outside of the head of the main pipe 1, which is also prepared separately. The well-known Siemens well construction method can be performed by connecting all the pumps to the central pipe 54 and installing and operating a self-priming pump at a separate location (not shown). In the case of the above-mentioned centralized drainage system, a backup pump and power source are required in case of unforeseen circumstances, but water for construction can be obtained by installing discharge valves at appropriate locations in the central pipe. There are also advantages. Furthermore, in areas where both the excavation depth and the groundwater level are deep and there are strata with high permeability,
The known normal deep well construction method shown in FIG. 11 can be adopted. In this case, first, the supervisor 1
The strainer 5 selects a position corresponding to the aquifer, and the submersible pump 62 is inserted into the main pipe 1.
The pumping pipe 63 is added and gradually lowered to the planned water level drop line, and the drain cap 61 attached to the main pipe 1 is
Fixed by However, the drainage cap 6
1 has a joint socket for the water lift pipe 63 on the lower side of the cover plate, a fitting hole for the discharge bent pipe on the upper side, and a drain cap 61 is screwed into the water lift pipe 63 on the lower side, and is further attached to the inner wall of the main pipe 1. Insert the side plate along the sides and tighten the head of the main pipe 1 with a screw bolt. Furthermore, the discharge bent pipes are screwed in and fixed on the upper side. The drainage effect using this construction method can be achieved by installing a slease valve (not shown) at the discharge port, adjusting the balance between the amount of inflow and drainage of groundwater, and continuously operating the submersible pump 62, or by using a captire 64. There are two methods of intermittent operation by connecting the water level electrode 65 to a power source equipped with an automatic control device, but both require a spare pump and power source. Furthermore, in geological strata where both the excavation depth and the groundwater level are deep and the permeability is low, a main pipe 1 is installed at a location slightly distant from the excavation location, separate from the earth retention (therefore, the guide angle 3 is unnecessary), As shown in FIG. 12, a degree of vacuum is applied inside the main pipe 1, and groundwater is forced to flow in due to atmospheric pressure, and is pumped up and removed by a deep well pump. It is also possible to obtain the so-called well-known deep well construction method. However, when installing the main pipe 1 when using this construction method, as mentioned above, the main pipe 1 is built into a hole drilled by a drilling machine that has a larger outer diameter than the main pipe 1, and the outer peripheral space is Add gravel to filter 78.
However, the area near the ground surface is closed with clay soil79 to maintain airtightness. In addition, since this construction method forces groundwater to flow into the main pipe 1, fine sand may be mixed in. To prevent this, a mesh or saran net suitable for surrounding soil particles is wrapped around the outer circumference of the strainer 5. Furthermore, the main pipe 1 of this construction method is considerably deeper than the planned water level drop line, and the position of the strainer 5 is lowered.
At the same time, the submersible pump 73 is also lowered to a corresponding position while adding the lift pipe 72. The upper end of the water pump 72 is fixed by a drainage cap 71, which is divided into a lower main body and an upper top plate. The lower body is made of a steel pipe of the same size as the main pipe 1, and its upper end is a cover plate with a flange. A pipe fitting hole with a screw flange to which a water pump 72 can be fixed is installed on the lower side of the cover plate, and a vacuum pipe 76 which can be connected to a vacuum pump (not shown) is welded to the side plate. has been done. Further, the upper top plate has a flange similar to the lower main body, and a thick flange plate into which the head bent pipe of the lift pipe 72 is fitted is attached to the top plate, and the lower main body and the upper top plate are tightened with flange bolts. . The lower cover plate and the top plate are provided with holes for drainage, a cord for the water level electrode 74, and a captire 75, respectively. In this construction method, as described above, the inside of the main pipe 1 is required to be sufficiently airtight, so after all the internal equipment is installed, the upper end of the main pipe 1 and the lower end of the drain cap 71 are welded 80 on site. At this time, the bolt penetration hole 2 in the head of the main pipe 1 is sealed with a short bolt or gasket. Furthermore, when performing a pumping action, if a degree of vacuum is constantly applied within the main pipe 1, the efficiency of the submersible pump 73 may decrease due to the negative pressure. For this purpose, the water level electrode 74, captire 75, and vacuum pump (not shown) installed inside the main pipe 1 are connected to a power source equipped with an automatic controller 77 to keep the vacuum pump in continuous operation. Incidentally, when this drainage equipment is to be removed, it is sufficient to remove the entire device, cut the welded part of the head of the main pipe 1, attach the pull-out cap 31, and pull it out. Next, regarding the installation of steel materials in the main pipe 1, as shown in Figs. Bolt holes are continuously drilled at regular intervals on both the front and back sides. In both cases, when viewed from the excavation side, the rear part is the insertion part for the sheet pile, and the front part is the part to which the steel material is attached. Therefore, when installing the earth retaining steel, first install the bracket 8.
After attaching 1, place the belly stand 83, and place piece 8.
2, tighten each with bolts, and then tighten the strut 84.
If you pass it, earth retaining shoring will be formed. Furthermore, when installing girder supports for the lining plate or temporary support steel for buried pipes, first install the bracket 85, place the girder support channel steel 87 on top of it, and then attach the piece 86.
A sturdy girder support can be created by sandwiching the guide angle 3 and tightening it with suitable bolts on one side to the bolt holes in the guide angle 3 and on the other side to the bolt holes in the channel groove 87. As described above, by attaching pieces corresponding to various steel materials to the guide angle 3 attached to the main pipe 1 of the present invention, steel materials of each cross section can be divided horizontally, vertically, coated materials, etc. Can be tightened with bolts. As mentioned above, the proposed temporary steel pipe piles are free from the noise and vibration that conventionally occur during driving and pulling out, and can be safely constructed not only in urban areas but also in any construction site, and are environmentally friendly and free from underground water. You can choose the drainage method that suits your needs. Moreover, by attaching the pressure air pipe 7 and the guide angle 3 to the main pipe 1, its rigidity is increased, and the punching operation is simple, so that the penetration can be as deep as possible. Therefore, many earth retaining works that involve excavation require self-supporting construction methods or minimal shoring.
Moreover, since dry work can be done, mechanization and labor-saving of subsequent work, including excavation and transportation work, are promoted, and the work efficiency of the entire construction work is dramatically improved. Furthermore, since the installation angle of the guide angle 3 attached to the main pipe 1 can be freely selected, for example, circular,
All types of earth retaining structures, such as square and oval shapes, and excavation directions can be changed. Moreover, since the steel material is easy to install, it can be used not only as the main pile for earth retaining, but also as the main pile for temporary piers, work platforms, offshore dolphins, and various underpinning works. Furthermore, the proposed temporary steel pipe pile can be applied to a wide range of construction works, large and small, and as a result of being based on static construction methods,
There is almost no damage or deformation of the equipment, and the reuse rate is high, so the so-called compensation costs and repair costs are lower compared to conventional equipment, and it has a very high economic effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例の一部を省略し、一
部を断面とした主管1の正面図、第2図、第3
図、第4図、第5図は、第1図の夫々A−A,B
−B,C−C,D−D部に於ける断面図、第6図
は第5図の一部詳細図、第7図は主管1の上端に
打込装置を設けた縦断面図、第8図は主管1の上
端に引抜装置を設けた縦断面図、第9図は主管1
内に水中ポンプを設けた縦断面図、第10図は主
管1にジーメンス排水工法の装置を設けた縦断面
図、第11図は主管1に普通デイープウエル排水
工法の装置を設けた縦断面図、第12図は主管1
にヴキユームデイープウエル排水工法の装置を設
けた縦断面図、第13図は主管1に鋼材の取付を
示した二例の平面図、第14図は主管1に鋼材の
取付を示した二列の縦断面図。 1……主管、2……ボルト貫入孔、3……ガイ
ドアングル、4……バンド、5……ストレーナ
ー、6……尖頭金具、7……圧気パイプ、8……
溶接、9……噴気孔、10……中空ボルト、11
……嵌合孔。
Fig. 1 is a front view of the main pipe 1 with some parts omitted and a cross section of one embodiment of the present invention, Fig. 2, and Fig. 3
Figures 4 and 5 are A-A and B of Figure 1, respectively.
- A cross-sectional view of sections B, C-C, and D-D; FIG. 6 is a partially detailed view of FIG. 5; FIG. Figure 8 is a longitudinal cross-sectional view of the main pipe 1 with a pull-out device installed at the upper end, and Figure 9 is a vertical cross-sectional view of the main pipe 1.
Figure 10 is a vertical cross-sectional view of the main pipe 1 equipped with a device of the Siemens drainage method, and Figure 11 is a vertical cross-sectional view of the main pipe 1 equipped with a device of the ordinary deep well drainage method. , Figure 12 shows main pipe 1.
Fig. 13 is a plan view of two examples showing the installation of steel materials to the main pipe 1, and Fig. 14 is a longitudinal cross-sectional view showing the installation of steel materials to the main pipe 1. Longitudinal cross-sectional view of a column. 1... Main pipe, 2... Bolt penetration hole, 3... Guide angle, 4... Band, 5... Strainer, 6... Pointed fitting, 7... Pressure pipe, 8...
Welding, 9... Fumarole, 10... Hollow bolt, 11
...Mating hole.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 所定の径及び長さを有する主管上方部に、バン
ドを溶着したガイドアングルを、主管に自脱自在
に設け、下方部周壁には適数条のストレーナーを
穿設すると共に、主管内壁には外部と通じた噴気
孔を透設した圧気パイプを溶接し、さらに下端に
逆円錐台形の尖頭金具を嵌着して成る仮設鋼管
杭。
A guide angle with a band welded to the upper part of the main pipe with a predetermined diameter and length is provided on the main pipe so that it can be freely removed.A suitable number of strainers are bored in the lower peripheral wall, and an external guide angle is installed on the inner wall of the main pipe. A temporary steel pipe pile made by welding a pressurized air pipe with a transparent fumarole that communicates with the pipe, and fitting an inverted truncated cone-shaped pointed metal fitting to the lower end.
JP18100980U 1980-12-18 1980-12-18 Expired JPS6115079Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18100980U JPS6115079Y2 (en) 1980-12-18 1980-12-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18100980U JPS6115079Y2 (en) 1980-12-18 1980-12-18

Publications (2)

Publication Number Publication Date
JPS57105333U JPS57105333U (en) 1982-06-29
JPS6115079Y2 true JPS6115079Y2 (en) 1986-05-10

Family

ID=29978110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18100980U Expired JPS6115079Y2 (en) 1980-12-18 1980-12-18

Country Status (1)

Country Link
JP (1) JPS6115079Y2 (en)

Also Published As

Publication number Publication date
JPS57105333U (en) 1982-06-29

Similar Documents

Publication Publication Date Title
CN108149699B (en) Recoverable dewatering well device capable of achieving well fast and construction method thereof
CN103883796B (en) Silt particle mud district hand pick formula jacking construction device and method
CN109519150B (en) Dewatering well plugging device and method for large water yield
CN111576423A (en) Pile foundation sediment cleaning device and method
CN206428707U (en) A kind of integrated pile tube dado structure of pattern foundation pit supporting structure precipitation
CN201826302U (en) Boring device for large-diameter cast-in-situ thin-walled concrete composite pile
CN106088123A (en) A kind of sand geology steel tube well fall water level device and construction method thereof
CN102345287A (en) Construction method of large-diameter cast-in-situ thin-wall concrete composite pile and special hole forming device
CN111236234A (en) Hole cleaning system and hole cleaning method for cast-in-place pile
CN108798508B (en) Pile hole excavating method
CN203757177U (en) Mud sand sludge area manual pipe jacking construction device
JPS6115079Y2 (en)
CN112627212B (en) Water-faced cofferdam inner tube well dewatering dry excavation construction method
CN114250801A (en) Pipe well and light well point combined dewatering construction method
CN211816292U (en) Sand-flow prevention device for water-rich sand layer anchor rod construction
JP4311676B2 (en) Construction method using casing
CN202323934U (en) Hole forming device for cast-in-situ triangular composite foundation pile
JP3776987B2 (en) Vertical shaft construction method using a manhole wall combined tubular body
CN206815338U (en) Hydraulic sheeting operation fluidic device
JP4686067B2 (en) In-pipe drilling equipment
CN109577458A (en) The method for embedding of pipeline aerial crossing sandy soils stream section
CN203834529U (en) Pressure-relieving anti-floating device for building foundation construction in high-water-level district
CN218970086U (en) A row of stifled comprehensive treatment system that is used for anti floating of basement structure to stop oozing
CN218952222U (en) Air bag well sealing device
CN110552361A (en) Pipe pile structure used as dewatering well