JPS6115003A - Recovery device for waste-heat energy - Google Patents

Recovery device for waste-heat energy

Info

Publication number
JPS6115003A
JPS6115003A JP13679484A JP13679484A JPS6115003A JP S6115003 A JPS6115003 A JP S6115003A JP 13679484 A JP13679484 A JP 13679484A JP 13679484 A JP13679484 A JP 13679484A JP S6115003 A JPS6115003 A JP S6115003A
Authority
JP
Japan
Prior art keywords
heat
waste
seawater
waste heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13679484A
Other languages
Japanese (ja)
Inventor
打浪 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP13679484A priority Critical patent/JPS6115003A/en
Publication of JPS6115003A publication Critical patent/JPS6115003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、複数のプラントより排出される濃度の異なる
廃熱ガスの熱エネルギを回収し得る様にした廃熱エネル
ギの回収装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a waste heat energy recovery device capable of recovering thermal energy from waste heat gases of different concentrations discharged from a plurality of plants. be.

[従来の技術] 現在省エネルギを促進する為、各種プラントの廃熱エネ
ルギを回収することが試みられている。然し、蒸溜式海
水淡水化プラントの様に定量の熱量及び所定濃度の熱源
を要求されるものについては廃熱エネルギが利用されて
いない。
[Prior Art] Currently, in order to promote energy conservation, attempts are being made to recover waste heat energy from various plants. However, waste heat energy is not utilized in plants that require a heat source with a fixed amount of heat and a predetermined concentration, such as a distillation type seawater desalination plant.

これはプラントの負荷状態によって廃熱量が異なり、最
低の廃熱量であっても海水淡水化プラントで要求する熱
量を満足する必要があり、プラントの規模、種類が限ら
れる為であり、又通常淡水化プラントと並設される化学
プラントには海水淡水化プラントで要求するだけの廃熱
量を有していない場合が多いからである。
This is because the amount of waste heat varies depending on the load condition of the plant, and even the lowest amount of waste heat must satisfy the amount of heat required by a seawater desalination plant, which limits the scale and type of plants. This is because chemical plants installed in parallel with desalination plants often do not have the amount of waste heat required by seawater desalination plants.

従って、現在では海水淡水化プラントを稼動させるに十
分な熱量(蒸気量)を廃熱する発電プラント等を並設し
ている。この為、海水淡水化プラントを設備する場合そ
の熱源迄考慮すると極めて大規模な設備とならざるを得
ない。又、発電プラントの負荷が低い場合も所要の熱量
を得る為、発電プラントの稼働率を所要のレベル以下に
は下げられないという不経済性もある。
Therefore, at present, power generation plants and the like are installed in parallel to produce waste heat (steam) sufficient to operate seawater desalination plants. For this reason, when installing a seawater desalination plant, it is inevitable that the equipment will be extremely large-scale, considering its heat source. Furthermore, in order to obtain the required amount of heat even when the load on the power plant is low, there is also the uneconomical aspect that the operating rate of the power plant cannot be lowered below the required level.

[発明が解決しようとする問題点] 本発明は上記した実情に鑑み、複数のプラントから排出
される廃熱を有効に利用できる様にし、従来単体では廃
熱回収の難しかったプラント迄廃熱回収を行い得る様に
したものである。
[Problems to be Solved by the Invention] In view of the above-mentioned circumstances, the present invention makes it possible to effectively utilize the waste heat discharged from multiple plants, and enables waste heat recovery to be carried out even in plants where waste heat recovery was conventionally difficult for a single plant. It was designed so that it could be done.

[問題点を解決するための手段] 本発明は、複数のプラントからの廃熱ガスのうち少なく
とも最低湯度の廃熱ガスを直接熱交換器に導き被加熱流
体と熱交換させると共に他の廃熱ガスの少なくとも1を
所要の熱交換装置に導き該熱交換装置で得られた加熱流
体を熱交換器に導き前記被加熱流体と熱交換させる様に
したことを特徴とするものである。
[Means for Solving the Problems] The present invention provides that the waste heat gas of at least the lowest hot water temperature among the waste heat gases from a plurality of plants is directly led to a heat exchanger to exchange heat with a fluid to be heated, and also to exchange heat with a fluid to be heated. The present invention is characterized in that at least one of the hot gases is guided to a required heat exchange device, and the heated fluid obtained by the heat exchange device is guided to the heat exchanger to exchange heat with the fluid to be heated.

[実 施 例] 以下図面を参照して本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.

先ず第1図に於いて第1の実施例を説明する。First, a first embodiment will be explained with reference to FIG.

該実施例は本発明を海水淡水化プラントに実施した例を
示し、1は該プラントの蒸発装置であり、該蒸発装置1
より排送された海水2を本発明の回収装置によって加熱
し、再び蒸発装置1へ戻している。
This example shows an example in which the present invention is implemented in a seawater desalination plant, and 1 is an evaporator of the plant;
The seawater 2 discharged from the evaporator 2 is heated by the recovery device of the present invention and returned to the evaporator 1 again.

海水2は分流され、その1は熱交換器3へ、他の1は熱
交換器4へそれぞれ送給される。各熱交換器3.4の出
口にはそれぞれ濃度検出器5゜6及び流量調整弁7,8
を設けてあり、海水の出口濃度を検出し、この濃度が所
定の値となる様流量1g1u−弁7,8で2!農を制御
している。
The seawater 2 is divided into two streams, one of which is sent to a heat exchanger 3 and the other one of which is sent to a heat exchanger 4. At the outlet of each heat exchanger 3.4, there is a concentration detector 5゜6 and a flow rate adjustment valve 7, 8, respectively.
is installed, the outlet concentration of seawater is detected, and the flow rate is 1g1u - 2! with valves 7 and 8 so that this concentration becomes a predetermined value. It controls agriculture.

前記熱交換器3には比較的濃度の低い排ガス9が導かれ
、排ガス9と海水2間で熱交換を行わせ、海水2を所要
の濃度迄加熱する。濃度の下がった排ガスは更に煙突1
0へ導かれて大気へ排出される。
The exhaust gas 9 having a relatively low concentration is introduced into the heat exchanger 3, and heat exchange is performed between the exhaust gas 9 and the seawater 2 to heat the seawater 2 to a required concentration. The reduced concentration of exhaust gas continues into the chimney 1.
0 and is emitted into the atmosphere.

又、比較的濃度の高い排ガス11は廃熱ボイラ12に導
き、ここで一旦蒸気を発生させ、該蒸気によって海水2
を加熱する様にする。即ち、高温排ガス11は廃熱ボイ
ラ12で蒸気を発生させた後所要の濃度迄低下して、煙
突10より排出される。廃熱ボイラ12からの蒸気13
は熱交換器4へ導かれ海水2を加熱した後復水する。又
、14はダンプコンデンサであり余剰の蒸気を復水させ
るものである′。熱交換器4、ダンプコンデンサ14に
於いて復水した水は、復水ポンプ15によって循環され
る。前記熱交換器4への蒸気ライン16、ダンプコンデ
ンサ14への蒸気ライン17にはそれぞれ流mil整弁
18.19が設けられ、熱交換器4に設けられた圧力検
出器20の検出結果に基づき流量調整弁18.19によ
り各ラインの流all整を行い、高温排ガス側の負荷変
動があり、発生する蒸気量に変動があっても常に熱交換
器4への蒸気供給量が所定の値となる様にする。
In addition, the exhaust gas 11 with a relatively high concentration is led to the waste heat boiler 12, where steam is once generated, and the steam converts seawater 2.
Let it heat up. That is, the high-temperature exhaust gas 11 is discharged from the chimney 10 after generating steam in the waste heat boiler 12 and reducing the concentration to a required level. Steam 13 from waste heat boiler 12
is guided to the heat exchanger 4, heats the seawater 2, and then condenses. Further, 14 is a dump condenser which condenses excess steam. Water condensed in the heat exchanger 4 and dump condenser 14 is circulated by a condensate pump 15. The steam line 16 to the heat exchanger 4 and the steam line 17 to the dump condenser 14 are each provided with flow control valves 18 and 19, and based on the detection results of the pressure detector 20 provided in the heat exchanger 4, The flow rate adjustment valves 18 and 19 adjust the flow in each line, and even if there are load fluctuations on the high-temperature exhaust gas side and fluctuations in the amount of steam generated, the amount of steam supplied to the heat exchanger 4 is always maintained at a predetermined value. make it happen.

ここで、高温側の排ガスと海水とを直接熱交換させない
のは高温熱源で海水を加熱した場合熱交換器の伝熱面に
海水中の溶融成分がスケールとして付着し、伝熱効率の
低下、清掃の必要等積々の不具合があるからであり、同
様の理由で各熱交換器3,4の出口での海水濃度をコン
トロールしている。
Here, the reason for not directly exchanging heat between the exhaust gas on the high temperature side and the seawater is that if the seawater is heated with a high-temperature heat source, the molten components in the seawater will adhere as scale to the heat transfer surface of the heat exchanger, reducing heat transfer efficiency and cleaning. This is because there are many problems such as the need for heat exchangers, and for the same reason, the seawater concentration at the outlet of each heat exchanger 3 and 4 is controlled.

上記構成に於いて、熱回収源が2あり、相互に熱量を補
うと共に1方の熱源に負荷変動があり、単体だけでは負
荷変動に対応する容量がない場合でも他方の熱源によっ
て対応可能となる。
In the above configuration, there are two heat recovery sources, which supplement each other's heat quantity, and even if one heat source experiences load fluctuations and does not have the capacity to handle the load fluctuations alone, it can be handled by the other heat source. .

又、排ガスの濃度が異なっていても支障なく廃熱を回収
し得る。
Further, even if the concentration of exhaust gas is different, waste heat can be recovered without any problem.

第2図は本発明の他の実施例を示すものであり、高温側
の排ガス11を中間熱交換器21を通し所要の濃度迄低
下させる様にしたもので、中間熱交換器21の出側の排
ガス濃度を濃度検出器22で検知し、排ガス濃度が所要
の値となる様流量調整弁23によって冷却水の流量を調
整している。
FIG. 2 shows another embodiment of the present invention, in which the exhaust gas 11 on the high temperature side is passed through an intermediate heat exchanger 21 to be reduced to a required concentration. The exhaust gas concentration is detected by a concentration detector 22, and the flow rate of the cooling water is adjusted by a flow rate adjustment valve 23 so that the exhaust gas concentration becomes a required value.

第2図で示すものでは、熱交換器4が排ガスと海水との
熱交換となるので、前記熱交換器3と1体のものとして
もよい。
In the one shown in FIG. 2, the heat exchanger 4 exchanges heat between the exhaust gas and seawater, so it may be integrated with the heat exchanger 3.

第3図は更に他の実施例を示し、熱交換器3゜4をタン
デムに設け、海水を2段に加熱する様にしたものである
FIG. 3 shows yet another embodiment, in which heat exchangers 3 and 4 are provided in tandem to heat seawater in two stages.

尚、排熱源としては、排ガスに限らずセメントプラント
等で得られる熱ガス即ち廃熱ガスであればよい。更に3
以上のプラントの熱回収を行う様にしてもよい。
Note that the exhaust heat source is not limited to exhaust gas, and may be any hot gas, ie, waste heat gas, obtained from a cement plant or the like. 3 more
The heat recovery of the above plant may be performed.

[発明の効果] 以上述べた如く、2以上のプラントの廃−熱エネルギを
同時に回収し得る様にし、省エネルギ化を一層促進し得
るものである。
[Effects of the Invention] As described above, the waste heat energy of two or more plants can be recovered at the same time, and energy saving can be further promoted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の説明図、第2図は同前他の
実施例の説明図、第3図は更に他の実施例の説明図であ
る。 2は海水、3,4は熱交換器、9,11は排ガス、12
は廃熱ボイラ、21は中間熱交換器を示す。 特  許  出  願  人 石川島播磨重工業株式会社
FIG. 1 is an explanatory diagram of one embodiment of the present invention, FIG. 2 is an explanatory diagram of another embodiment of the same, and FIG. 3 is an explanatory diagram of still another embodiment. 2 is seawater, 3 and 4 are heat exchangers, 9 and 11 are exhaust gases, 12
21 indicates a waste heat boiler, and 21 indicates an intermediate heat exchanger. Patent application Hitoshi Kawajima Harima Heavy Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)複数のプラントからの廃熱ガスのうち少なくとも最
低濃度の廃熱ガスを直接熱交換器に導き被加熱流体、と
熱交換させると共に他の廃熱ガスの少なくとも1を所要
の熱交換装置に導き該熱交換装置で得られた加熱流体を
熱交換器に導き前記被加熱流体と熱交換させる様にした
ことを特徴とする廃熱エネルギの回収装置。
1) Directly guide at least the lowest concentration of waste heat gas from a plurality of plants to a heat exchanger to exchange heat with the fluid to be heated, and at least one of the other waste heat gases to a required heat exchange device. A waste heat energy recovery device characterized in that the heated fluid obtained by the heat exchange device is guided to a heat exchanger to exchange heat with the heated fluid.
JP13679484A 1984-06-30 1984-06-30 Recovery device for waste-heat energy Pending JPS6115003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13679484A JPS6115003A (en) 1984-06-30 1984-06-30 Recovery device for waste-heat energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13679484A JPS6115003A (en) 1984-06-30 1984-06-30 Recovery device for waste-heat energy

Publications (1)

Publication Number Publication Date
JPS6115003A true JPS6115003A (en) 1986-01-23

Family

ID=15183666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13679484A Pending JPS6115003A (en) 1984-06-30 1984-06-30 Recovery device for waste-heat energy

Country Status (1)

Country Link
JP (1) JPS6115003A (en)

Similar Documents

Publication Publication Date Title
US9453432B2 (en) Power generation system
RU2004133070A (en) METHOD AND DEVICE FOR PRODUCING ELECTRIC POWER BASED ON HEAT DISTRIBUTED IN AN ACTIVE ZONE, AT LEAST, ONE HIGH-TEMPERATURE NUCLEAR REACTOR
JP5542958B2 (en) Waste heat recovery system
JP2014009877A (en) Flue gas treatment equipment and method
US5878675A (en) Flue gas desulfurizer, boiler equipment and thermal electric power generation equipment
JPH10141606A (en) Boiler plant
CN1005079B (en) Composite system of low pressure energy saver utilizing waste heat inthe exhausted smoke
EP0042605A1 (en) Method of operating a vapour-heated process system
EP0275619B1 (en) Method and apparatus for generating electric energy using hydrogen storage alloy
DK163135B (en) Installation for drying animal or vegetable material
JPH11223417A (en) Recovering method of low-temperature waste heat generated by iron making process
JPS6115003A (en) Recovery device for waste-heat energy
JPH0742844B2 (en) Hot water turbine plant
CN210688281U (en) Flue gas treatment system
JPH0933004A (en) Waste heat recovery boiler
RU2148206C1 (en) Boiler plant
EP0368599B1 (en) Heat recovery systems
JPS61108814A (en) Gas-steam turbine composite facility
CN217808812U (en) Energy-conserving effluent disposal system of atmospheric pressure formula
JPS61141985A (en) Seawater desalting system
JPS5849801A (en) Recovery device for waste heat
KR19980038994U (en) Circulating water device for heat recovery system
JPS61256188A (en) Non-condensed gas removing device in waste heat retrieving device of boiler and condensed water turbine plant
CN110594769A (en) Flue gas treatment system
JPS59107105A (en) Self-feeding method for service water in heat power plant