JPS59107105A - Self-feeding method for service water in heat power plant - Google Patents

Self-feeding method for service water in heat power plant

Info

Publication number
JPS59107105A
JPS59107105A JP57214897A JP21489782A JPS59107105A JP S59107105 A JPS59107105 A JP S59107105A JP 57214897 A JP57214897 A JP 57214897A JP 21489782 A JP21489782 A JP 21489782A JP S59107105 A JPS59107105 A JP S59107105A
Authority
JP
Japan
Prior art keywords
heat
exhaust gas
water
power plant
seawater desalination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57214897A
Other languages
Japanese (ja)
Inventor
田中 裕実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP57214897A priority Critical patent/JPS59107105A/en
Publication of JPS59107105A publication Critical patent/JPS59107105A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Chimneys And Flues (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 エネルギ総需要に占める電力の比率は、近年ますます高
まっているが、水力発電はその適合地が現在では不足し
ているため、発電所の新設が殆ど期待できず、また原子
力発電はその安全性が一般国民に必ずしも充分に信頼さ
れていないことなどの理由から、建設が遅れている現状
にある。この意味で火力発電所が果す役割は極めて太き
い。
[Detailed Description of the Invention] The ratio of electricity to total energy demand has been increasing in recent years, but there is currently a lack of suitable land for hydroelectric power generation, so there is little hope for the construction of new power plants. Furthermore, the construction of nuclear power generation has been delayed due to reasons such as the fact that the general public does not necessarily fully trust the safety of nuclear power generation. In this sense, thermal power plants play an extremely important role.

ところで、火力発電を推進する上での問題の一つは、用
水の確保であって、100万KWの電力を得るためには
、約2,000)77日もの工業用水を必要とし、湿式
脱硫装置が併設される場合はさらに3,800)77日
の工業用水を必要とする。このため、最近では火力発電
所内に海水淡水化装置−を付設し、この装置から得られ
る淡水を火力発電の用水に充当する方式が採用されてい
る。しかしながら、これまでの海水淡水化装置は、復水
タービンの中間段から抽気される蒸気、もしくは背圧タ
ービンから排出される蒸気を熱源に利用するものである
ため、発電プラントから見た蒸気の有効利用率が不回避
的に低下してしまう不利がある。一方、火力発vttt
zシラの排ガスについて言えば、一般にその温度は15
0C以下と低いために、これを海水淡水化装置の熱源と
して利用することは従来全く試みられていない。
By the way, one of the problems in promoting thermal power generation is securing water, and to obtain 1 million kW of electricity, approximately 2,000) 77 days of industrial water is required, and wet desulfurization is required. If equipment is installed, an additional 3,800) 77 days of industrial water will be required. For this reason, recently a method has been adopted in which a seawater desalination device is attached to a thermal power plant and the fresh water obtained from this device is used as water for thermal power generation. However, conventional seawater desalination equipment uses steam extracted from the intermediate stage of the condensing turbine or steam discharged from the back pressure turbine as a heat source, so the effectiveness of the steam from the perspective of the power plant is limited. There is a disadvantage that the utilization rate inevitably decreases. On the other hand, firepower vttt
Regarding the exhaust gas from Shira, generally its temperature is 15
Since the temperature is as low as 0C or less, no attempt has been made to utilize it as a heat source for seawater desalination equipment.

本発明者は以上の情況を鑑みて、ボイラ排ガスの有効利
用を検討した結果、ボイラ排ガスを活性炭吸着法式乾式
脱硫装置で処理すれば、その排ガスの顕熱が海水淡水化
装置の熱源として利用できることを見い出した。
In view of the above circumstances, the present inventor investigated the effective use of boiler exhaust gas and found that if boiler exhaust gas is treated with an activated carbon adsorption dry desulfurization device, the sensible heat of the exhaust gas can be used as a heat source for a seawater desalination device. I found out.

すなわち、1.OOOMWの石炭焚火力発電用ボイラは
、約330万Nm’/hrの燃焼ガスを排出するが、こ
の排ガスの温度は煙道の腐蝕を防止する目的で一般に1
35〜145Cに保持されている。この排ガスを上記の
脱硫装置へ導入した場合、該装置の通風損失を補償する
ためのファン昇圧により、排ガスの湿度は約3へ5C上
昇する。そして脱硫装置内ではSO7の吸着による発熱
、詳しくは次式による吸着熱、H,So、の生成熱及び
希釈熱があり、 S OJ) + n HtO(g) +340x(1)
 →H,So4# (n s )HtoCrt)これに
よる温度上昇は一般に5〜10Cとなる0従って、脱硫
装置出口の排ガス温度は放熱を考慮しても人口温度より
少なくとも10C上昇し、145〜155Cとなる。そ
して排ガスを大気に放出させるに当っては、排煙の拡散
と白煙防止の観点から、煙突入口温度を90〜100C
とするのが通例である。その故、熱回収に利用できる温
度差は50〜65Cとなり、利用可能な熱量は約5.4
〜7.OXi 07Kcal/hrとなる。
That is, 1. OOOMW coal-fired power generation boilers emit approximately 3.3 million Nm'/hr of combustion gas, but the temperature of this exhaust gas is generally kept at 1/2 to prevent corrosion of the flue.
It is maintained at 35-145C. When this exhaust gas is introduced into the desulfurization equipment described above, the humidity of the exhaust gas increases by 5C to about 3C due to fan pressure increase to compensate for the ventilation loss of the equipment. In the desulfurization equipment, there is heat generated by the adsorption of SO7, specifically the heat of adsorption, heat of formation of H, So, and heat of dilution according to the following equation: S OJ) + n HtO (g) + 340x (1)
→H, So4# (ns)HtoCrt) The temperature rise due to this is generally 5 to 10C. Therefore, even considering heat radiation, the exhaust gas temperature at the desulfurization equipment outlet will rise by at least 10C from the population temperature, and will be 145 to 155C. Become. When exhaust gas is released into the atmosphere, the smoke inlet temperature is set at 90 to 100C from the perspective of dispersing the exhaust gas and preventing white smoke.
It is customary to do so. Therefore, the temperature difference that can be used for heat recovery is 50-65C, and the amount of heat that can be used is approximately 5.4
~7. OXi 07Kcal/hr.

本発明は上記の如き排ガスの熱量を多段フラッシュ法式
海水淡水化装置の熱源として利用する。尚、海水を淡水
化する場合、多段フラッシュ法以外に、蒸気圧縮法、多
重効用法が知られているが、前者は圧縮の動力源として
電力を必要とするので好ましくなく、また後者は熱源を
スチームの形で供給するのが適しており、そのためには
廃熱ボイラな設置する要があるか、その廃熱ボイラでは
温度の低い排ガスが保有する熱量(顕熱)を有効に利用
できない。
The present invention utilizes the calorific value of the exhaust gas as described above as a heat source for a multi-stage flash seawater desalination apparatus. In addition to the multi-stage flash method, the vapor compression method and the multiple effect method are known for desalinating seawater, but the former is not preferable because it requires electricity as a power source for compression, and the latter requires a heat source. It is suitable to supply it in the form of steam, which requires the installation of a waste heat boiler, or the waste heat boiler cannot effectively utilize the amount of heat (sensible heat) held by the low-temperature exhaust gas.

第1図は本発明方法の70−を示すものであって、火力
発電用ぎシラ10からの排ガスは、集塵器11、エアヒ
ータ12、ファン13を経て乾式脱硫装置14に供給さ
れ、ここで脱硫処理を受けた排ガスは集塵器15を通過
後、ブライン加熱器16に送られる。ブライ/加熱器で
は、排ガスとブラインとの熱交換が行なわれ、排ガスが
保不する熱量は海水淡水化装置17の熱源として利用さ
れた後、煙突18から大気中に放出される。本発明で使
用される乾式脱硫装置14は装置材料の腐蝕原因となる
排ガス中のSO8を殆ど除去することができ、また脱硫
装置14の下流側に図示の通り集塵器15を設置すれば
、煤塵量を10 m&/Nm以下とすることができるの
で、シライン加熱器16の腐蝕乃至は閉塞を殆ど心配す
る必要がない。
FIG. 1 shows the method 70- of the present invention, in which exhaust gas from a thermal power generating cylinder 10 is supplied to a dry desulfurization device 14 through a dust collector 11, an air heater 12, and a fan 13, where it is supplied to a dry desulfurization device 14. The exhaust gas that has undergone the desulfurization treatment is sent to the brine heater 16 after passing through the dust collector 15 . In the braai/heater, heat exchange is performed between the exhaust gas and brine, and the amount of heat retained in the exhaust gas is used as a heat source for the seawater desalination device 17 and then released into the atmosphere from the chimney 18. The dry desulfurization equipment 14 used in the present invention can remove most of the SO8 in the exhaust gas that causes corrosion of equipment materials, and if a dust collector 15 is installed downstream of the desulfurization equipment 14 as shown in the figure, Since the amount of soot and dust can be kept below 10 m&/Nm, there is almost no need to worry about corrosion or clogging of the siline heater 16.

第2図は本発明のブライン加熱器16と多段フラッシュ
法式海水淡水化装置の説明図であって、ブライン(海水
)の循環フp−を示す。ブラインを加熱する場合の要点
はブラインに含まれる硫酸カルシウムのスケーリングを
防止することにあり、硫酸カルシウムの析出温度である
1210以下でシライン加熱器16を運転することが肝
要である0排ガスと海水の熱交換は気−液間の熱交換で
あって、源側の伝熱係数は一般にガス側の5〜lO倍と
なるので、チューブ温度は源側の温度に片寄ったものに
なる。しかし、本発明では排ガス温度が155C以下で
あるので、ブラインが過熱される心配は少ない0ブライ
ン加熱器には各種の熱交換器が使用できるけれども、液
量に比べ大量のガスを扱うことを考慮すると、ガス側の
伝熱が良好で圧力損失の少ない形式を採用することを可
とする0加えて本発明の方法はブライン加熱器のコスト
がその経済性を左右することとなるので、コストの安い
熱交換器の選択が重要である。
FIG. 2 is an explanatory diagram of the brine heater 16 and the multi-stage flash method seawater desalination apparatus of the present invention, and shows the circulation flow of brine (seawater). The key point when heating brine is to prevent scaling of calcium sulfate contained in the brine, and it is important to operate the siline heater 16 at a temperature below 1210°C, which is the precipitation temperature of calcium sulfate. Heat exchange is between gas and liquid, and the heat transfer coefficient on the source side is generally 5 to 10 times that on the gas side, so the tube temperature is biased toward the temperature on the source side. However, in the present invention, since the exhaust gas temperature is 155C or less, there is little concern that the brine will be overheated.Although various heat exchangers can be used in the brine heater, consideration must be given to handling a large amount of gas compared to the amount of liquid. This makes it possible to adopt a system with good heat transfer on the gas side and low pressure loss.In addition, in the method of the present invention, the cost of the brine heater determines its economic efficiency. Choosing an inexpensive heat exchanger is important.

ヒートノミイブ成熱交換器はこの意味で本発明のブライ
/加熱器に適している。この熱交換器は排ガスと接触す
る受熱部と、ブラインと接触する与熱部を分離できるの
で、それぞれの領域を目的に適した拐料及び形状で製作
することにより、低コストの熱交換器を得ることができ
る。
In this sense, the heat-generating heat exchanger is suitable for the braai/heater of the present invention. This heat exchanger can separate the heat-receiving part that contacts the exhaust gas and the heat-giving part that contacts the brine, so by manufacturing each region with the appropriate filler and shape for the purpose, a low-cost heat exchanger can be achieved. Obtainable.

例えば、排ガス側を炭素鋼とし、ブライン側を#系又は
チタン系耐蝕材料とすることにより1熱交換器の低コス
ト化を図ることができる。またヒートパイプ式熱交換器
を設計するにあたっては、ヒートノクイゾの与熱面積と
受熱面積をそれぞれの伝熱係数の比にすることが要点で
あって、これKより高価な材料の使用量を最小とし、熱
交換器の低コスト化が可能となる。
For example, by using carbon steel on the exhaust gas side and using #-based or titanium-based corrosion-resistant material on the brine side, it is possible to reduce the cost of one heat exchanger. In addition, when designing a heat pipe type heat exchanger, it is important to set the heat giving area and heat receiving area of the Heat No Quizo in the ratio of their respective heat transfer coefficients, and to minimize the amount of materials that are more expensive than K. , it becomes possible to reduce the cost of the heat exchanger.

尚、淡水化装置を減圧するために必要な抽気エジェクタ
用蒸気(約7 kg/adG以上)は、本発明では脱硫
装置又は蒸気タービンの補助蒸気でまかなうことができ
る。
In the present invention, the steam for the extraction ejector (approximately 7 kg/adG or more) required to reduce the pressure of the desalination device can be provided by the desulfurization device or the auxiliary steam of the steam turbine.

本発明を実施する場合、淡水化の原料となる海水には発
電プラントの復水器前の海水を利用すれば、滅菌の必要
がないので好都合である。
When carrying out the present invention, it is convenient to use seawater before the condenser of the power plant as the raw material for desalination, since there is no need for sterilization.

淡水化量は熱源の相当蒸気量に対する比(造水比と呼ぶ
)で表わされ、一般的には4〜15が採用される。造水
比が高くなるほど設備コストが高くなるので、所要用水
量に対して最適な造水比が選ばれる。145Cの排ガス
を95Cまで冷却して熱回収したとすれば、造水比7の
場合およそ15,000トン/日の淡水が得られる計算
となる。
The amount of desalination is expressed as a ratio to the equivalent amount of steam from the heat source (referred to as the desalination ratio), and generally a ratio of 4 to 15 is adopted. Since the higher the water production ratio, the higher the equipment cost, the optimal water production ratio is selected for the required amount of water. If 145C exhaust gas is cooled to 95C and heat is recovered, it is calculated that approximately 15,000 tons/day of fresh water can be obtained at a freshwater production ratio of 7.

例えば、6.000ドア7日のブラインを第2図に示す
多段フラッシュ法式海水淡水化装置に供給した場合の各
ラインを流れる液量とその温度は第1表に示す通りであ
って、この例では造水比は7.7、ブライン加熱器の所
要伝熱面積は望12.000.、’となる。
For example, when 6,000 doors and 7 days' worth of brine is supplied to the multi-stage flash seawater desalination equipment shown in Figure 2, the amount of liquid flowing through each line and its temperature are as shown in Table 1. In this case, the water production ratio is 7.7, and the required heat transfer area of the brine heater is 12,000. ,' becomes.

第  1  表 以上の如く、本発明の方法によれば、従来は全く未利用
のまま放出されていた火力発電用ボイラの排ガスを海水
淡水化装置の熱源として活用できるばかりでなく、火力
発電所全体の用水を安定的に自給することができる。こ
れに加えて、本発明によれば、排ガスの放出に原因する
大気温度の上昇も防止できるので、本発明は上記の利点
とあいまって火力発電所の立地上の制約を緩和するもの
でもある。
As shown in Table 1, according to the method of the present invention, not only can exhaust gas from a thermal power generation boiler, which was released completely unused in the past, be used as a heat source for a seawater desalination device, but also it can be used as a heat source for an entire thermal power plant. can be stably self-sufficient in water. In addition, according to the present invention, it is possible to prevent an increase in atmospheric temperature caused by the release of exhaust gases, so that, in addition to the above-mentioned advantages, the present invention also alleviates constraints on the location of thermal power plants.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法のフローシートであり、第2図は本
発明で使用されるブライン加熱器と海水淡水化装置の説
明図である。/ 10;ボイラ     14:乾式脱硫装置16:ブラ
イン加熱器 17:海水淡水化装置[
FIG. 1 is a flow sheet of the method of the present invention, and FIG. 2 is an explanatory diagram of a brine heater and a seawater desalination apparatus used in the present invention. / 10; Boiler 14: Dry desulfurization device 16: Brine heater 17: Seawater desalination device [

Claims (1)

【特許請求の範囲】 1、 火力発電用ゼインの排ガスを乾式排煙脱硫装置で
処理し、次いでこの排ガスの顕熱な海水淡水化装置の熱
源に利用して海水を淡水化し、得られた淡水を前記ゼイ
ンの用水として供給することからなる火力発電所に於け
る用水自給方法。 2、前記の海水淡水化装置が多段フラッシュ式海水淡水
化装置である特許請求の範囲第1項記載の方法。 3、 前記の乾式排煙脱硫装置が活性炭段°着法式排煙
脱硫装置である特許請求の範囲第1項記載の方法。 4、 前記の多段フラッシュ式海水淡水化装置のブライ
ン予熱器にヒートパイプを使用する特許請求の範囲第2
項記載の方法。
[Scope of Claims] 1. The exhaust gas of Zein for thermal power generation is treated with a dry flue gas desulfurization device, and then this exhaust gas is used as a sensible heat source for a seawater desalination device to desalinate seawater, and the resulting fresh water is produced. A water self-sufficiency method in a thermal power plant, which comprises supplying water as water to the zein. 2. The method according to claim 1, wherein the seawater desalination device is a multi-stage flash seawater desalination device. 3. The method according to claim 1, wherein the dry flue gas desulfurization device is an activated carbon staged flue gas desulfurization device. 4. Claim 2 in which a heat pipe is used in the brine preheater of the multi-stage flash desalination apparatus.
The method described in section.
JP57214897A 1982-12-08 1982-12-08 Self-feeding method for service water in heat power plant Pending JPS59107105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57214897A JPS59107105A (en) 1982-12-08 1982-12-08 Self-feeding method for service water in heat power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57214897A JPS59107105A (en) 1982-12-08 1982-12-08 Self-feeding method for service water in heat power plant

Publications (1)

Publication Number Publication Date
JPS59107105A true JPS59107105A (en) 1984-06-21

Family

ID=16663366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57214897A Pending JPS59107105A (en) 1982-12-08 1982-12-08 Self-feeding method for service water in heat power plant

Country Status (1)

Country Link
JP (1) JPS59107105A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076697A (en) * 1987-10-14 1991-12-31 Hitachi, Ltd. Apparatus and method for inspecting defect of mounted component with slit light
JPH0492127U (en) * 1990-12-11 1992-08-11

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076697A (en) * 1987-10-14 1991-12-31 Hitachi, Ltd. Apparatus and method for inspecting defect of mounted component with slit light
JPH0492127U (en) * 1990-12-11 1992-08-11

Similar Documents

Publication Publication Date Title
CN100529532C (en) Boiler improvements with oxygen-enriched combustion for increased efficiency and reduced emissions
CN101706106A (en) Recovering device for afterheat of garbage incineration furnace
US4542621A (en) Method of and plant for combustion of water-vapor generating fuels
JP4155898B2 (en) High moisture waste incineration facility equipped with gas turbine
US5878675A (en) Flue gas desulfurizer, boiler equipment and thermal electric power generation equipment
JP2005098552A5 (en)
JPH10141606A (en) Boiler plant
CN201706510U (en) Waste incineration boiler afterheat recovering device
CN208703902U (en) The utilization system of fume afterheat and deslagging waste heat based on CFB boiler
JPS58123022A (en) Waste gas heat recovery system for pulp mill wastewater-burning boiler
CN107128993A (en) Power-plant flue gas waste heat direct-evaporation-type desalination system with flue gas reheat function
JPS59107105A (en) Self-feeding method for service water in heat power plant
US5384106A (en) Method for removing pollutants from a gas stream using a fractional condensing heat exchanger
CN207214097U (en) A kind of coal-burning boiler based on smoke evacuation vapor internal-circulation type condensing units
JPH05502932A (en) Method and apparatus in closed heating plants
RU2148206C1 (en) Boiler plant
CN108826269A (en) The utilization system of fume afterheat and deslagging waste heat based on CFB boiler
US10221726B2 (en) Condensing heat recovery steam generator
JP2007292438A (en) Gas water heater
JPS61211607A (en) Method and device for recovering heat energy in steam generating system
CN112097287B (en) Boiler energy-saving and flue gas whitening system, process and application
CN210874732U (en) Flue gas deep cooling, condensation remove white system in coordination
CN212563356U (en) Steam-water heat regeneration and waste heat comprehensive utilization efficiency improvement system of combined cycle power plant
US5226477A (en) System for recovery and utilization of exhaust heat from a reformer
CN219640236U (en) Flue gas extremely deep waste heat heating, haze removal treatment and condensate water zero-emission system