JPS61146302A - Composite ultrafiltration membrane - Google Patents

Composite ultrafiltration membrane

Info

Publication number
JPS61146302A
JPS61146302A JP26851184A JP26851184A JPS61146302A JP S61146302 A JPS61146302 A JP S61146302A JP 26851184 A JP26851184 A JP 26851184A JP 26851184 A JP26851184 A JP 26851184A JP S61146302 A JPS61146302 A JP S61146302A
Authority
JP
Japan
Prior art keywords
water
membrane
molecular weight
ultrafiltration membrane
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26851184A
Other languages
Japanese (ja)
Inventor
Tatsuro Sasaki
達朗 佐々木
Tetsuo Watanabe
哲男 渡辺
Masaru Kurihara
優 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP26851184A priority Critical patent/JPS61146302A/en
Publication of JPS61146302A publication Critical patent/JPS61146302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a composite ultrafiltration membrane which is small in the demarcation mol.wt. and high in the water permeability by making the crosslinking epoxy resin an activated layer. CONSTITUTION:After coating a water-ethanol soln. of a monomer contg. epoxy group on a supporting layer such as a porous membrane of non-symmetrical polysulfone, the crosslinking reaction is made to cause by heat-treating it. Then the membrane is immersed in an aq. sodium lauryl sulfate soln. and washed with water to produce the composite ultrafiltration membrane making the crosslinking epoxy resin an activated layer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、限外−過膜として有用な、透水性が高く、分
画分子量が小ざい、新規な複合限外r過膜に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a novel composite ultrafiltration membrane useful as an ultrafiltration membrane, which has high water permeability and a small molecular weight cutoff. be.

[従来の技術] 従来、限外−過膜として、ポリアミド、ポリイミド、ポ
リスルホン、ポリオレフィン等、単一素材の膜が知られ
ており(例えば、特開昭57−159508、特開昭5
9−87007、特公昭59−14494> 、最近、
限外−過膜に期待されている、低分画分子量で、高透水
性という特性を実現すべく、盛んに研究されている。と
ころが、この相反する特性の両立は、非常に困難である
のが現状である。具体的に説明すると、分画分子量は、
1〜2万が一般的であり、これに対し、数千またはそれ
以下が、紙分画分子、量となる膜として作製されている
。しかしながら、これらの膜は透水性が著しく低く、実
用性に乏しいものである。
[Prior Art] Conventionally, membranes made of a single material such as polyamide, polyimide, polysulfone, polyolefin, etc. have been known as ultra-transparent membranes (for example, JP-A-57-159508, JP-A-5
9-87007, Special Publication No. 59-14494>, recently,
In order to realize the characteristics of low molecular weight cut-off and high water permeability that are expected of ultra-transparent membranes, active research is being conducted. However, it is currently extremely difficult to achieve both of these contradictory characteristics. To explain specifically, the molecular weight cutoff is
10,000 to 20,000 is common, whereas several thousand or less are produced as paper-fractionated molecules and membranes. However, these membranes have extremely low water permeability and are of poor practical use.

限外−過膜は、操作圧5 kq/ciF以下が経済的で
あり、大きな圧力はかけられないことから、低分画分子
量であっても、透水性が極端に低い膜では意味を成さな
い。耐熱性、耐薬品性、機械強度にすぐれているため、
最もよく研究されているポリスルホン樹脂においても、
様々な改善が試みられているが、(例えば、特開昭59
−42003、特開昭59−80305>再現性よく、
安定して良好な限外−過膜を得るのは必ずしも容易では
なかった。また、複合膜としては、トリアジンとアミン
単量体を架橋したものが知られているが(特開昭58−
49404> 、分画分子量が1万以下であるものの、
平均分子量2000のポリエチレングリコールの溶液で
評価した時の透水速度は0゜2〜0.3m’/m2・日
−(kq/atf) 、平均分子伍6000のポリエチ
レングリコールの時は0.2m”/Tn”日・(ki/
cJ)であり、透水性の点で不満足である。
Ultra-filter membranes are economical at operating pressures of 5 kq/ciF or less, and large pressures cannot be applied, so even if they have a low molecular weight cutoff, membranes with extremely low water permeability do not make sense. do not have. Because it has excellent heat resistance, chemical resistance, and mechanical strength,
Even among the most well-studied polysulfone resins,
Although various improvements have been attempted (for example, Japanese Unexamined Patent Publication No. 1983
-42003, JP-A-59-80305 > Good reproducibility,
It has not always been easy to obtain a stable and good ultra-filter. Also, as a composite membrane, one in which triazine and amine monomer are cross-linked is known (Japanese Patent Application Laid-Open No. 58-1989-1).
49404>, although the molecular weight cut-off is 10,000 or less,
The water permeation rate when evaluated with a solution of polyethylene glycol with an average molecular weight of 2,000 is 0°2 to 0.3 m'/m2・day-(kq/atf), and 0.2 m''/atf with a polyethylene glycol with an average molecular weight of 6,000. Tn”日・(ki/
cJ) and is unsatisfactory in terms of water permeability.

[発明が解決しようとする問題点] 本発明は上記の困難さを克服し、分画分子量が小さく、
膜透過液速度が少なくとも、0.4m’/m2・日・(
ki/cJ )以上である透水性の高い限外−過膜を提
供せんとするものである。
[Problems to be solved by the invention] The present invention overcomes the above-mentioned difficulties and has a low molecular weight cut-off.
The membrane permeate velocity is at least 0.4 m'/m2・day・(
It is an object of the present invention to provide an ultra-permeability membrane having a high water permeability of more than ki/cJ.

[問題点を解決するための手段] 本発明は次の特徴を有するものである。[Means for solving problems] The present invention has the following features.

(1)架橋性エポキシ樹脂を活性層としてなる複合限外
−過膜。
(1) A composite ultra-diaphragm membrane comprising a crosslinkable epoxy resin as an active layer.

架橋性エポキシ樹脂を活性層とする複合膜は気体分離膜
、液体分離膜として検討されている(特開昭59−13
0505、特開昭58−92419)。しかしながら、
架橋性エポキシ樹脂を用いた限外;濾過膜はほとんど研
究されていなかった。
Composite membranes with a crosslinkable epoxy resin as an active layer are being studied as gas separation membranes and liquid separation membranes (Japanese Patent Laid-Open No. 59-13
0505, Japanese Unexamined Patent Publication No. 58-92419). however,
Ultrafiltration membranes using cross-linked epoxy resins have hardly been studied.

本発明は複合限外−過膜において架橋性エポキシ樹脂が
分画分子量を小さくし、かつ、透水性を著しく損なわな
いことを見い出したものである。
The present invention is based on the discovery that a crosslinkable epoxy resin in a composite ultra-diaphragm membrane reduces the molecular weight cutoff and does not significantly impair water permeability.

本発明の複合膜の支持層は、いわゆる非対称多孔質膜で
あり、素材は特に限定されないが、耐圧性、耐熱性、耐
酸性、耐アルカリ性からポリスルホン樹脂が好ましい。
The support layer of the composite membrane of the present invention is a so-called asymmetric porous membrane, and the material is not particularly limited, but polysulfone resin is preferred from the viewpoint of pressure resistance, heat resistance, acid resistance, and alkali resistance.

ポリスルホンには、既に知られているように、次式で表
わされる繰り返し単位を有するものがあるが、 これらのうち、いずれを用いても差し支えない。
As is already known, some polysulfones have a repeating unit represented by the following formula, and any of these may be used.

非対称ポリスルホン多孔質膜の製造法は、よく知られて
いるように、次の手順で製膜される(例えば、“オフィ
ス・オブ・セイリーン・ウォーター・リサーチ・アンド
・ディベロップメント・プログレス・レポート”N、3
59 (1968)に記載)。ポリエステル製不織布ま
たはタフタ等の補強材に、ポリスルホンのジメチルホル
ムアミド等の水溶性の溶媒に溶解させた溶液を塗布した
のち、実質的に水からなる媒体中で凝固(ゲル化)する
As is well known, the method for manufacturing an asymmetric polysulfone porous membrane is performed by the following procedure (for example, as described in "Office of Saline Water Research and Development Progress Report" N. ,3
59 (1968)). A solution of polysulfone dissolved in a water-soluble solvent such as dimethylformamide is applied to a reinforcing material such as a polyester nonwoven fabric or taffeta, and then coagulated (gelled) in a medium consisting essentially of water.

次に純水で洗浄する。このようにして得られた非対称ポ
リスルホン多孔質膜は表面には数十〜数百人程度の大き
さで表面から裏面にいくほど大きくなる微細孔を有する
。また孔の占有面積は表面で10〜20%程度であり、
内部から裏面にいくほど広くなっている。非対称ポリス
ルホン多孔質膜の製膜に際して凝固媒体中に界面活性剤
を用いることが多孔質膜の性能改善に効果的な場合があ
る。
Next, wash with pure water. The asymmetric polysulfone porous membrane thus obtained has micropores on the surface having a size of several tens to several hundreds of pores, which become larger from the front surface to the back surface. In addition, the area occupied by pores is about 10 to 20% on the surface.
It gets wider as you go from the inside to the back. When forming an asymmetric porous polysulfone membrane, using a surfactant in the coagulation medium may be effective in improving the performance of the porous membrane.

本発明中の活性層となる架橋性エポキシ樹脂は分子内に
2つ以上のエポキシ基をもつモノマが、多孔質膜上で触
媒によって架橋されて成るものであり、このモノマは支
持層である非対称多孔質膜を溶解させない溶媒に溶かさ
なければならない。
The crosslinkable epoxy resin that serves as the active layer in the present invention is made by crosslinking a monomer having two or more epoxy groups in the molecule on a porous membrane with a catalyst, and this monomer is used as the asymmetric support layer. It must be dissolved in a solvent that does not dissolve the porous membrane.

例えば、水溶性エポキシ基含有化合物か、アルコール可
溶性エポキシ基含有化合物が好ましい例である。また、
エポキシ基含有モノマの平均分子量は支持層の非対称多
孔質膜の分画分子量より小さい方が好ましい。すなわち
、分子量が大きい時は、架橋される箇所が少なくなり、
架橋しても活性層がはがれてしまう事があり、また、反
応基が多くあっても、非対称多孔質膜の孔が埋められて
しまい、その結果、分画分子量が小さくなっても、透水
性の低い実用性のない限外濾過膜になる。このため、エ
ポキシ基含有モノマの平均分子量は1000以下である
ことが好ましい。
For example, preferred examples include water-soluble epoxy group-containing compounds and alcohol-soluble epoxy group-containing compounds. Also,
The average molecular weight of the epoxy group-containing monomer is preferably smaller than the molecular weight cutoff of the asymmetric porous membrane of the support layer. In other words, when the molecular weight is large, there are fewer crosslinked sites,
Even if cross-linked, the active layer may peel off, and even if there are many reactive groups, the pores of the asymmetric porous membrane will be filled, resulting in a decrease in water permeability even if the molecular weight cut-off becomes small. This results in an ultrafiltration membrane with low practicality. Therefore, the average molecular weight of the epoxy group-containing monomer is preferably 1000 or less.

上記のような架橋製エポキシ樹脂の具体例を次に挙げる
が、本発明はこれらに限定されるものではない。
Specific examples of the above-mentioned crosslinked epoxy resin are listed below, but the present invention is not limited thereto.

(ただし、nは1〜10までの整数) (エポニット、ブナコールEX−810,EX−811
、EX−851、EX−830,EX−(ブナコールE
X−313)    (ブナコールEX−314)(ブ
ナコールEX−512,EX−521>(ブナコールE
X−301) H (ブナコールEX−611) デナコール:ナガセ化成工業(株)製品エポニット二日
東化成(株)製品 これらの架橋反応触媒としては、一般に知られている、
酸、アルカリでよいが、反応の速さからホウフッ化亜鉛
が好ましい。又、エポキシ含有モノマの種類によっては
、触媒は必要なく、加熱により架橋してもよい。
(However, n is an integer from 1 to 10) (Eponite, Bunacol EX-810, EX-811
, EX-851, EX-830, EX- (Bunacol E
X-313) (Bunacol EX-314) (Bunacol EX-512, EX-521>(Bunacol E
X-301) H (Bunacol EX-611) Denacol: Nagase Kasei Kogyo Co., Ltd. product Eponite Nikitto Kasei Co., Ltd. product These crosslinking reaction catalysts are generally known as:
Although acids and alkalis may be used, zinc fluoroborate is preferable because of the speed of reaction. Further, depending on the type of epoxy-containing monomer, a catalyst may not be necessary and crosslinking may be performed by heating.

次に複合膜の製膜について説明する。Next, the formation of a composite membrane will be explained.

エポキシ含有モノマと触媒を、水または水−アルコール
混合溶媒に溶かし、溶液を調整する。この時、濃度が高
い場合は多孔質膜の孔をふさいでしまうため、好ましく
なく、10重量%以下に調整する。この溶液を非対称多
孔質膜に塗布または含浸し、次に通常、80〜150℃
、好ましくは、100〜120℃で加熱処理し、溶媒の
除去、架橋反応を起させる。加熱時間は1〜60分間、
好ましくは2〜10分間加熱する。製造された複合膜は
ラウリル酸ナトリウム水溶液(5重量%)に浸漬し、水
洗した1多、評価する。
The epoxy-containing monomer and catalyst are dissolved in water or a water-alcohol mixed solvent to prepare a solution. At this time, if the concentration is too high, it will block the pores of the porous membrane, which is not preferable, and the concentration should be adjusted to 10% by weight or less. This solution is applied or impregnated onto the asymmetric porous membrane, and then the temperature is typically 80-150°C.
, Preferably, heat treatment is performed at 100 to 120°C to remove the solvent and cause a crosslinking reaction. Heating time is 1 to 60 minutes.
Preferably heat for 2 to 10 minutes. The manufactured composite membrane was immersed in an aqueous sodium laurate solution (5% by weight), washed with water, and then evaluated.

[実施例] 以下に本発明の実施例を挙げるが本発明の内容は実施例
のみに限定されるものではない。
[Examples] Examples of the present invention are listed below, but the content of the present invention is not limited only to the examples.

定義される。defined.

実施例1 平均分子m300であるエポキシ基含有モノマ[エボニ
ット012J(日東化成(株)製)を0゜02重置%、
ホウフッ化亜鉛を0.02重量%となるよう水−エタノ
ール(重量比1:1)混合溶媒に溶かし、溶液を調整し
た。上記に説明した手順で製膜した非対称ポリスルホン
多孔質膜上にこの溶液を塗布し、120’Cで2分間加
熱処理した。
Example 1 An epoxy group-containing monomer [Ebonit 012J (manufactured by Nitto Kasei Co., Ltd.)] with an average molecular weight of m300 was mixed at 0°02%,
Zinc borofluoride was dissolved in a mixed solvent of water and ethanol (weight ratio 1:1) to a concentration of 0.02% by weight to prepare a solution. This solution was applied onto the asymmetric polysulfone porous membrane formed by the procedure described above, and heat treated at 120'C for 2 minutes.

次にこの膜をラウリル硫酸ナトリウム水溶液(5重量%
)に浸し、水洗した後評価した。評価条件は、平均分子
19000のポリエチレングリコール(片山化学工業(
株)製)を2500pDmの濃度で含有する水溶液を供
給原液とし、温度256C1圧力3 ki / +、+
fで行なった。その結果、除去率は60.0%、透水速
度は0.60Trl!/Tr12・日・(ki / c
f >であった。
Next, this membrane was coated with a sodium lauryl sulfate aqueous solution (5% by weight).
) and evaluated after washing with water. The evaluation conditions were polyethylene glycol (Katayama Chemical Industry Co., Ltd.) with an average molecular weight of 19,000.
Co., Ltd.) at a concentration of 2500 pDm was used as the stock solution, and the temperature was 256 C1 and the pressure was 3 ki/+, +
I did it with f. As a result, the removal rate was 60.0% and the water permeation rate was 0.60Trl! /Tr12・Sun・(ki/c
f>.

実施例2 水−エタノール(重量比1:1)混合溶媒に「エポニッ
ト012J(日東化成(株)製)を0゜1重量%、ホウ
フッ化亜鉛を0.1重量%になるように溶解し、溶液を
調整した。この溶液に、実施例1で用いた非対称ポリス
ルホン多孔質膜を2分間浸し、次に120℃で2分間加
熱処理した。
Example 2 Eponite 012J (manufactured by Nitto Kasei Co., Ltd.) was dissolved in a mixed solvent of water and ethanol (weight ratio 1:1) to a concentration of 0.1% by weight and zinc fluoroborate was dissolved in a concentration of 0.1% by weight. A solution was prepared.The asymmetric polysulfone porous membrane used in Example 1 was immersed in this solution for 2 minutes, and then heat-treated at 120°C for 2 minutes.

実施例と同様に評価した結果、除去率70.4%、透水
速度0.60Tr1!/v2・日・(ki/cnf)で
あった。
As a result of evaluation in the same manner as in the example, the removal rate was 70.4% and the water permeation rate was 0.60Tr1! /v2・day・(ki/cnf).

実施例3 トリグリシジルトリス(ヒドロキシエチル)イソシアネ
レイトrDEDNAcOL  EX−301」 (ナガ
セ化成工業(株)製)を実施例2と同様に複合膜化し、
評価した。除去率は68.2%、透水速度は0.63m
’/m2・日・(kq/cnf)であった。
Example 3 Triglycidyl tris(hydroxyethyl) isocyanerate rDEDNAcOL EX-301'' (manufactured by Nagase Chemical Industries, Ltd.) was formed into a composite film in the same manner as in Example 2,
evaluated. Removal rate is 68.2%, water permeation rate is 0.63m
'/m2・day・(kq/cnf).

実施例4 「エポニット012J(日東化成(株)製)を1.0重
量%、ホウフッ化亜鉛を1.0重量%になるよう、水−
エタノール(重量比1:1〉混合溶媒に溶かし、実施例
2と同様に製膜した。供給原液は平均分子16000の
ポリエチレングリコール(和光紬薬工業(株)製)を5
000ppm含有する水溶液を用い、その他は実施例1
と同条件で評価した。その結果、除去率88.2%、透
水速度0.47TIl!/1T12・日−(kg/cn
f)であった。
Example 4 “Eponit 012J (manufactured by Nitto Kasei Co., Ltd.) was added to water so that the amount was 1.0% by weight and zinc fluoroborate was 1.0% by weight.
It was dissolved in a mixed solvent of ethanol (weight ratio 1:1) and a film was formed in the same manner as in Example 2.The supplied stock solution was polyethylene glycol (manufactured by Wako Tsumugi Kogyo Co., Ltd.) with an average molecular weight of 16,000.
Using an aqueous solution containing 000 ppm, the rest was as in Example 1.
It was evaluated under the same conditions. As a result, the removal rate was 88.2% and the water permeation rate was 0.47TIl! /1T12・day-(kg/cn
f).

実施例5 [エボニット012J(日東化成(株)製)を2.0重
量%、ホウフッ化亜鉛を1.0重量%になるように、水
−エタノール(重量比1:1)混合溶媒に溶かし、実施
例2と同様に製膜した。供給原液は平均分子!2000
のポリエチレングリコール(和光紬薬工業(株)製)を
5000ppm含有する水溶液を用い、その他は実施例
1と同条件で評価した。その結果、除去率90.0%、
透水速度0.40m’/m2・日−(kl/atf)で
あった。
Example 5 [Ebonit 012J (manufactured by Nitto Kasei Co., Ltd.) was dissolved in a mixed solvent of water and ethanol (weight ratio 1:1) so that 2.0% by weight and zinc fluoroboride were 1.0% by weight, A film was formed in the same manner as in Example 2. The stock solution supplied is an average molecule! 2000
An aqueous solution containing 5000 ppm of polyethylene glycol (manufactured by Wako Tsumugi Kogyo Co., Ltd.) was used, and the other conditions were the same as in Example 1. As a result, the removal rate was 90.0%,
The water permeation rate was 0.40 m'/m2·day (kl/atf).

[発明の効果] a 透水性を著しく損なうことなく、限外r過膜の分画
分子量を小さくすることができる。
[Effects of the Invention] a. The molecular weight cutoff of the ultra-permeable membrane can be reduced without significantly impairing water permeability.

b 塗布または含浸するエポキシ含有上ツマ溶液の濃度
を変えることにより、容易に分画分子量をコントロール
することができる。
b) The molecular weight fraction can be easily controlled by changing the concentration of the epoxy-containing top solution applied or impregnated.

Claims (1)

【特許請求の範囲】[Claims] (1)架橋性エポキシ樹脂を活性層としてなる複合限外
ろ過膜。
(1) A composite ultrafiltration membrane comprising a crosslinkable epoxy resin as an active layer.
JP26851184A 1984-12-21 1984-12-21 Composite ultrafiltration membrane Pending JPS61146302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26851184A JPS61146302A (en) 1984-12-21 1984-12-21 Composite ultrafiltration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26851184A JPS61146302A (en) 1984-12-21 1984-12-21 Composite ultrafiltration membrane

Publications (1)

Publication Number Publication Date
JPS61146302A true JPS61146302A (en) 1986-07-04

Family

ID=17459520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26851184A Pending JPS61146302A (en) 1984-12-21 1984-12-21 Composite ultrafiltration membrane

Country Status (1)

Country Link
JP (1) JPS61146302A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0245863A2 (en) * 1986-05-16 1987-11-19 Millipore Corporation Composite ultrafiltration membranes
JPH01171604A (en) * 1987-12-25 1989-07-06 Daicel Chem Ind Ltd Semipermeable membrane and its production
JP2013031851A (en) * 2012-11-09 2013-02-14 Nitto Denko Corp Epoxy resin porous membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0245863A2 (en) * 1986-05-16 1987-11-19 Millipore Corporation Composite ultrafiltration membranes
JPH01171604A (en) * 1987-12-25 1989-07-06 Daicel Chem Ind Ltd Semipermeable membrane and its production
JP2013031851A (en) * 2012-11-09 2013-02-14 Nitto Denko Corp Epoxy resin porous membrane

Similar Documents

Publication Publication Date Title
US4207182A (en) Polymeric compositions for membranes
JPH0494726A (en) Semipermeable dual membrane, its production and production of high-purity water
JPH01180208A (en) Production of compound semipermeable membrane
JPS61238834A (en) Porous polysulfone resin membrane
JPS61146302A (en) Composite ultrafiltration membrane
JP3646362B2 (en) Semipermeable membrane and method for producing the same
JPH04176330A (en) Production of charge type separation membrane
JPS6239636A (en) Production of hydrophilic organic polymer substrate
JPS63130105A (en) Production of permselective composite membrane
JPH047026A (en) Composite semi-permeable membrane
JPS63283705A (en) Selective semipermeable membrane of polyamideimide
JPH04200622A (en) Treatment of composite semipermeable membrane
US5376689A (en) Aminated polysulfone membrane and process for its preparation
JPS63283707A (en) Semipermeable membrane of polymer ampholyte
JP2508732B2 (en) Selectively permeable hollow fiber composite membrane and method for producing the same
JPS61146303A (en) Composite ultrafiltration membrane
JPH02126925A (en) Laminated separating membrane
JPH0232009B2 (en)
US5221482A (en) Polyparabanic acid membrane for selective separation
KR950007321B1 (en) Manufacturing method of osmosis membrane for components
JPS63214304A (en) Production of membrane containing polyionic complex
KR0123279B1 (en) Method for semipermeable composite membrane
JPS6151924B2 (en)
JPS6150641B2 (en)
JPS62180709A (en) Production of semipermeable composite membrane