JPS6114583A - Signal tracking device of loran receiver - Google Patents

Signal tracking device of loran receiver

Info

Publication number
JPS6114583A
JPS6114583A JP13601984A JP13601984A JPS6114583A JP S6114583 A JPS6114583 A JP S6114583A JP 13601984 A JP13601984 A JP 13601984A JP 13601984 A JP13601984 A JP 13601984A JP S6114583 A JPS6114583 A JP S6114583A
Authority
JP
Japan
Prior art keywords
loran
circuit
signal
slave
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13601984A
Other languages
Japanese (ja)
Inventor
Minoru Handa
実 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP13601984A priority Critical patent/JPS6114583A/en
Publication of JPS6114583A publication Critical patent/JPS6114583A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/20Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems
    • G01S1/24Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems the synchronised signals being pulses or equivalent modulations on carrier waves and the transit times being compared by measuring the difference in arrival time of a significant part of the modulations, e.g. LORAN systems
    • G01S1/245Details of receivers cooperating therewith, e.g. determining positive zero crossing of third cycle in LORAN-C

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PURPOSE:To stabilize the synchronism with a loran chart signal by calculating the degree of divergence of time difference lines in a loran chart near a ship position from position data on the ship and position data on a loran transmitting station, and controlling the integral constant of an integration circuit according to the arithmetic result. CONSTITUTION:A high-frequency pulse train from a reference oscillator 1 is led to main and slave frequency dividing circuits 2 and 8 directly and through a moving circuit 7 respectively, and main and slave station synchronizing pulses 3, 9 having the same period with the loran signal are phase-compared by main and slave station phase comparing circuits 4 and 10 with main and slave station loran signal from a receiver 5, thereby controlling the frequency of the oscillator 1 through an AFC circuit 6 according to the output of the circuit 4. An integrating meter 11 controls the circuit 7 with the output of the circuit 10 to synchronize its synchronizing signal with the slave station loran signal, and also reads ship data out of a latitude and longitude converter 12 and position data on the main and slave loran transmitting station out of a data memory 13 to increase an integration constant when the degree of divergence of time difference lines in the loran chart is small or decreases the constant when not.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はロラン受信機において、受信機内部で生成し
た同期信号を受信したロラン信号に同期させることに関
し、特に、自船の移動に対してロラン信号と同期信号と
の同期を安定に行わせる装置に関する。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to synchronizing a synchronization signal generated inside the receiver with a received Loran signal in a Loran receiver, and particularly relates to the movement of own ship. The present invention relates to a device for stably synchronizing a Loran signal and a synchronization signal.

(従来の技術) ロラン受信機は、到来する主局ロラン信号と従局ロラン
信号との時間差測定を行なう。この時間差測定は、周知
のように、主局同期信号、従局同期信号をそれぞれのロ
ラン信号に同期させた後、主局同期信号と従局同期信号
との間の時間差を測定する。同期信号とロラン信号との
位相同期は、同期信号に基づいて位相比較パルスを生成
し、この位相比較パルスを用いてロラン信号との位相比
較を行ない、その比較結果を用いて同期信号の位相制御
を行なう。
(Prior Art) A Loran receiver measures the time difference between an incoming master station Loran signal and a slave station Loran signal. As is well known, this time difference measurement involves synchronizing the master station synchronization signal and the slave station synchronization signal with their respective Loran signals, and then measuring the time difference between the master station synchronization signal and the slave station synchronization signal. To achieve phase synchronization between the synchronization signal and the Loran signal, a phase comparison pulse is generated based on the synchronization signal, the phase comparison pulse is used to compare the phase with the Loran signal, and the comparison result is used to control the phase of the synchronization signal. Do the following.

ロラン信号と同期信号との位相ずれは、自船が移動しな
からロラン信号を受信する場合、自船の移動に応じて定
量的に生じるが、雑音の混入等によっても一時的に生じ
る。このようなロラン信号に対して位相制御を行なう場
合、雑音のように一時的な位相ずれに対しては位相制御
を行わず、自船の移動に起因して生じる位相ずれに対し
てのみ位相制御を行なう必要がある。
When the own ship receives the Loran signal without moving, a phase shift between the Loran signal and the synchronization signal occurs quantitatively as the own ship moves, but it also occurs temporarily due to the introduction of noise. When performing phase control on such Loran signals, phase control is not performed on temporary phase shifts such as noise, but only on phase shifts caused by own ship's movement. It is necessary to do this.

そのため、上記位相制御を行なう場合、一般には、積算
回路を用いて位相制御が行われる。すなわち、位相比較
出力を積算して、位相ずれが一定量以上積算されたとき
にのみ位相制御を行なう。
Therefore, when performing the above phase control, the phase control is generally performed using an integrating circuit. That is, the phase comparison outputs are integrated, and phase control is performed only when the phase shift is integrated by a certain amount or more.

このようにすると、雑音に起因する位相ずれは一時的で
あり、かつ、その位相ずれの方向が進相方向、遅相方向
に平均して生じるから、位相ずれが積算回路内で相殺さ
れる。従って、一時的に生じる位相ずれに対しては位相
制御が行なわれない。
In this way, the phase shift caused by noise is temporary, and the direction of the phase shift is averaged in the leading phase direction and the phase slowing direction, so that the phase shift is canceled out in the integration circuit. Therefore, phase control is not performed on temporarily occurring phase shifts.

上記において、積算回路は、積算定数を大きくするに従
って雑音に対する誤動作を防止して安定な位相制御を行
なうことができる。しかし、積算定数を大きくすると検
出された位相ずれに対する位相制御作用の遅延時間が大
きくなる。従って、自船の移動速度がある一定速度以上
速くなるとロラン信号と同期信号との位相同期を保つこ
とができなくなる。そのため、積算回路の積算定数は自
船の最大移動速度を考慮して決定される。
In the above, as the integration constant is increased, the integration circuit can prevent malfunction due to noise and perform stable phase control. However, when the integration constant is increased, the delay time of the phase control action on the detected phase shift increases. Therefore, when the moving speed of the own ship increases beyond a certain speed, it becomes impossible to maintain phase synchronization between the Loran signal and the synchronization signal. Therefore, the integration constant of the integration circuit is determined in consideration of the maximum movement speed of the own ship.

(発明が解決しようとする問題点) 積算回路の積算定数は、上記のように、自船の最大移動
速度を考慮して決定されるが、さらに、ロランチャート
上の自船位置をも考慮して決定される。
(Problem to be Solved by the Invention) The integration constant of the integration circuit is determined by considering the maximum moving speed of the own ship as described above, but also takes into consideration the own ship position on the Loran chart. Determined by

第3図のロランチャート上において、主局送信局Mと従
局送信局Sとを結ぶ基線BL上において、時間差線Tn
乃至T…の線密度が最も高くなる。すなわち、基線BL
上を自船が移動するとき、自船の移動に対する時間差変
化が最も大きくなる。従って、自船の一定量の移動に対
するロラン信号と同期信号との位相ずれが最大になる。
On the Loran chart in FIG. 3, on the base line BL connecting the master transmitting station M and the slave transmitting station S, the time difference line Tn
The linear density of T... is the highest. That is, the baseline BL
When the own ship moves above, the time difference change with respect to the movement of the own ship is the largest. Therefore, the phase shift between the Loran signal and the synchronization signal for a certain amount of movement of the own ship is maximized.

従来は、この基線BL上において生じる位相ずれに対し
て、位相同期が行われるように積算定数が決定されて固
定される。
Conventionally, an integration constant is determined and fixed so that phase synchronization is performed with respect to a phase shift occurring on the base line BL.

ところが、自船が基線BLから比較的離れた位置、例え
ば、第3図P点に位置する場合、時間差線Tq乃至TQ
、の発散が大きくなり、自船の移動に対する時間差変化
が小さくなる。すなわち、基線BL上を移動する場合に
比して、ロラン信号と同期信号との位相ずれも小さくな
る。従って、P点イ」近を移動する場合は、基線BL上
を移動する場合に比して精算定数を大きくしても位相ず
れを十分制御することができる。又、時間差線Tl14
乃至74.の発散度が比較的大きいP点付近においては
、ロラン信号のS/N比も不安定であるから、積算定数
を大きくするのが望ましい。
However, if the own ship is located relatively far from the base line BL, for example, at point P in Figure 3, the time difference lines Tq to TQ
The divergence of , becomes larger, and the time difference change with respect to own ship's movement becomes smaller. That is, the phase shift between the Loran signal and the synchronization signal is also smaller than when moving on the base line BL. Therefore, when moving near point P, the phase shift can be sufficiently controlled even if the settlement constant is made larger than when moving on the base line BL. Also, time difference line Tl14
to 74. Since the S/N ratio of the Loran signal is also unstable near point P where the degree of divergence of is relatively large, it is desirable to increase the integration constant.

この発明は、従来の積算定数が固定であるのに対して、
自船位置に応じて積算定数を最適値に設定しようとする
ものである。すなわち、第3図のロランチャート上にお
いて、基線BL付近に自船が位置するときは積算定数を
小さくし、時間差線肌乃至Tel、の発散が比較的大き
い位置に位置する場合は積算定数を比較的大きくして、
ロランチャート信号との同期を常に安定して行なわせる
While the conventional integration constant is fixed, this invention
This method attempts to set the integration constant to an optimal value depending on the own ship's position. In other words, on the Loran chart in Figure 3, when the own ship is located near the base line BL, the integration constant is reduced, and when the ship is located at a position where the divergence of the time difference line or Tel is relatively large, the integration constant is compared. Make the target bigger,
To always perform stable synchronization with a Loran chart signal.

(問題点を解決するための手段) 上記問題点を解決するだめの手段は、自船の測定位置に
基づいて、その付近における時間差線の発散度を演算す
る手段と、その演算手段に基づいて演算器の積算定数を
制御する手段を設けることである。積算器は種々のもの
を用いることができるが、例えば、可逆aJ数器、数値
設定器、可逆計数器の計数値と数値設定器の設定値とを
比較する比較器とで構成することができる。
(Means for solving the problem) A means for solving the above problem is to calculate the degree of divergence of the time difference line in the vicinity based on the measured position of own ship, and to calculate the degree of divergence of the time difference line in the vicinity of the measured position The purpose is to provide means for controlling the integration constant of the arithmetic unit. Various types of integrator can be used, but for example, it can be composed of a reversible aJ counter, a numerical value setter, and a comparator that compares the counted value of the reversible counter and the set value of the numerical value setter. .

(作  用  ) 上記手段によれば、演算手段は自船位置付近の発散度を
演算して、その演算結果に基づいて数値設定器の数値を
設定する。他方可逆計数器にはロラン信号と同期信号と
の位相比較が行われる毎に、位相ずれ方向に対応する計
数動作が行われ、その計数値と数値設定器の設定値とが
比較器において比較され、可逆計数器の計数値が設定数
値を越えたとき比較器から出力が送出される。そして、
この出力によって位相制御が行なわれる。
(Function) According to the above means, the calculation means calculates the degree of divergence near the own ship's position, and sets the numerical value of the numerical value setting device based on the calculation result. On the other hand, the reversible counter performs a counting operation corresponding to the phase shift direction every time a phase comparison is made between the Loran signal and the synchronization signal, and the counted value and the setting value of the numerical setting device are compared in the comparator. , when the count value of the reversible counter exceeds a set value, an output is sent from the comparator. and,
Phase control is performed by this output.

(実施例) 第1図において、基準発振器1から送出される高周波パ
ルス列は主局分周回路2においてロラン信号の送信くり
返し周期と同周期になるように分周される。主局分周器
2の分周出力に基づいて主局分周パルス生成器3が主局
同期パルスを主局位相比較回路4へ送出する。主局位相
比較回路4は、主局同期パルスと受信器5から送出され
る主局ロラン信号との位相比較を行なう。この位相比較
はロラン信号の特定位相に対して行われる。例えば、ロ
ランC信号の場合、第2図に示すように、ロランC信号
aの3サイクル位相に対して同期信号すの位相比較を行
なう。この位相比較結果はAFC回路6へ送出されて、
位相比較結果に基づいて基準発振器1の周波数制御が行
われる。すなわち、同期信号すがロランC信号aの3サ
イクル位相に対して進んでいるとき、基準発振器1の発
信周波数を下げて同期パルスbの位相を遅らせる。逆に
、同期信号すがロランC信号aの3サイクル位相に対し
て遅れているとき、基準発振器1の発信周波数を上げて
同期パルスbの位相を進ませる。このようなAFC回路
6は公知のものを用いることができる。例えば、周波数
制御をディジタル的に行なう場合、発振回路で生成され
たパルス列の一部を抜き取り、あるいは、新たなパルス
列を混入させることによる、単位時間当りのパルス列数
を増減することができる。これによって、基準発振器1
の高周波パルス列のくり返す周波数をロラン送信局から
到来するロラン信号を基準にして制御することができる
(Embodiment) In FIG. 1, a high-frequency pulse train sent out from a reference oscillator 1 is frequency-divided in a main station frequency dividing circuit 2 so that it has the same period as the transmission repetition period of the Loran signal. Based on the frequency division output of the main station frequency divider 2, the main station frequency division pulse generator 3 sends a main station synchronization pulse to the main station phase comparison circuit 4. The main station phase comparison circuit 4 performs a phase comparison between the main station synchronization pulse and the main station Loran signal sent from the receiver 5. This phase comparison is performed for a specific phase of the Loran signal. For example, in the case of the Loran C signal, as shown in FIG. 2, the phase of the synchronizing signal S is compared with the three-cycle phase of the Loran C signal a. This phase comparison result is sent to the AFC circuit 6,
Frequency control of the reference oscillator 1 is performed based on the phase comparison result. That is, when the synchronization signal S is ahead of the three-cycle phase of the Loran C signal a, the oscillation frequency of the reference oscillator 1 is lowered to delay the phase of the synchronization pulse b. Conversely, when the synchronization signal lags behind the three-cycle phase of the Loran C signal a, the oscillation frequency of the reference oscillator 1 is increased to advance the phase of the synchronization pulse b. A known AFC circuit 6 can be used as the AFC circuit 6. For example, when frequency control is performed digitally, the number of pulse trains per unit time can be increased or decreased by extracting a part of the pulse train generated by the oscillation circuit or by adding a new pulse train. This allows the reference oscillator 1
The repetition frequency of the high-frequency pulse train can be controlled based on the Loran signal arriving from the Loran transmitting station.

基準発振器1から送出される高周波パルス列は移動回路
7を経て従局分周器8へ導びかれる。従局分周器8は、
主局分周器2と同様にして、高周波パルス列をロラン信
号の送信くり返し周期と同周期になるまで分周する。こ
の分周出力に基づいて従局同期パルス生成回路9が従局
同期パルスを生成して、従局位相比較回路10において
従局同期パルスと従局ロラン信号との位相比較が行われ
る。
The high frequency pulse train sent out from the reference oscillator 1 is guided to the slave frequency divider 8 via the moving circuit 7. The slave frequency divider 8 is
In the same way as the main station frequency divider 2, the frequency of the high-frequency pulse train is divided until it becomes the same period as the transmission repetition period of the Loran signal. Based on this frequency-divided output, the slave synchronization pulse generation circuit 9 generates a slave synchronization pulse, and the slave phase comparison circuit 10 compares the phase of the slave synchronization pulse with the slave Loran signal.

従局位相比較回路10は、主局位相比較回路4と同様に
して従局同期パルスと従局ロラン信号との位相比較を行
なって、その比較出力を積算器11へ送出する。積算器
11は、従局同期パルスと従局ロラン信号との位相比較
出力に基づいて、移動回路7を制御して従局同期信号を
従局ロラン信号に同期させる。すなわち、従局同期パル
スが従局ロラン信号の同期位置に対して進み位相にある
場合、積算回路11は移動回路7を通過する高周波パル
ス列の一部を抜き取って同期パルスの位相を遅らせる。
Similarly to the master station phase comparison circuit 4, the slave station phase comparison circuit 10 compares the phases of the slave station synchronization pulse and the slave station Loran signal, and sends the comparison output to the integrator 11. The integrator 11 controls the moving circuit 7 to synchronize the slave synchronization signal with the slave Loran signal based on the phase comparison output between the slave synchronization pulse and the slave Loran signal. That is, when the slave station synchronization pulse is in a leading phase with respect to the synchronization position of the slave station Loran signal, the integrating circuit 11 extracts a part of the high frequency pulse train passing through the moving circuit 7 to delay the phase of the synchronization pulse.

逆に、従局同期パルスが従局ロラン信号に対して遅れ位
相にある場合、移動回路7を通過するパルス列にさらに
新たなパルス列を追加することにより従局同期パルスの
位相を進ませる。
Conversely, when the slave synchronization pulse is in a delayed phase with respect to the slave Loran signal, a new pulse train is added to the pulse train passing through the moving circuit 7 to advance the phase of the slave synchronization pulse.

従局同期パルス生成回路9で生成される従局同期パルス
は移動回路7によって位相制御が行われるが、さらにA
FC回路6によって基準発振器1の周波数制御が行われ
るときにも位相が変化する。
The phase of the slave synchronization pulse generated by the slave synchronization pulse generation circuit 9 is controlled by the moving circuit 7.
The phase also changes when the frequency of the reference oscillator 1 is controlled by the FC circuit 6.

すなわち、主局同期パルスに位相ずれが生じると、その
位相ずれが主局位相比較回路4によって検出され、AF
C回路6によって基準発振器1の高周波パルス列数が一
時的に変更される。これによって、主局同期パルスが位
相ずれが生じた方向と逆方向に移送されて同期させられ
る。このとき、基準発振器1の高周波パルス列は主局分
周器2へ導かれると同時に、従局分周器8にも共通に導
かれている。従って、基準発振器1の高周波パルス列数
を制御して主局同期パルスを移送させるとき、同時に、
従局同期パルスも連動して移送させられる。この位相は
従局同期パルスに位相ずれを生じさせる。従って、従局
位相比較回路10、積算器11、移動回路7は従局同期
パルスに単独に生じる位相ずれを検出、制御すると同時
に、主局同期パルスの位相ずれに起因して生じる位相ず
れをも検出、制御する。例えば、自船が移動するとき、
通常は主局同期パルス、従局同期パルスの両方に位相ず
れが生じる。そして、主局同期パルスの位相ずれが制御
されるとき、主局同期パルスの位相ずれが従局同期パル
スに加えられるから、従局同期パルスには従局同期パル
ス自体の位相ずれと主局同期パルスの位相ずれが生じる
。その結果、主局同期パルスの位相ずれは自船の移動量
に比例するのに対して、従局同期パルスの位相ずれは、
第3図で説明したように、ロランチャート上の自船位置
によって異なる。
That is, when a phase shift occurs in the main station synchronization pulse, the phase shift is detected by the main station phase comparator circuit 4, and the AF
The number of high-frequency pulse trains of the reference oscillator 1 is temporarily changed by the C circuit 6. As a result, the main station synchronization pulse is transferred in a direction opposite to the direction in which the phase shift occurs, and synchronization is achieved. At this time, the high-frequency pulse train of the reference oscillator 1 is guided to the main station frequency divider 2, and at the same time, is also commonly guided to the slave station frequency divider 8. Therefore, when controlling the number of high-frequency pulse trains of the reference oscillator 1 to transfer the main station synchronization pulse, at the same time,
The slave station synchronization pulse is also transferred in conjunction. This phase causes a phase shift in the slave synchronization pulse. Therefore, the slave station phase comparison circuit 10, the integrator 11, and the moving circuit 7 detect and control the phase shift that occurs independently in the slave station synchronization pulse, and at the same time, they also detect the phase shift that occurs due to the phase shift of the master station synchronization pulse. Control. For example, when own ship moves,
Normally, a phase shift occurs in both the master station synchronization pulse and the slave station synchronization pulse. When the phase shift of the master station synchronization pulse is controlled, the phase shift of the master station synchronization pulse is added to the slave station synchronization pulse. Misalignment occurs. As a result, the phase shift of the master station synchronization pulse is proportional to the amount of movement of own ship, while the phase shift of the slave station synchronization pulse is
As explained in Fig. 3, it differs depending on the own ship's position on the Loran chart.

以上の点に基づいて、積算器11は、第3図で説明した
ように、ロランチャー)・上の基線BL付近に自船が位
置するときは積算定数″が比較的小さく設定され、基線
BLから遠ざかるに従って積算定数が大きくなるように
設定される。
Based on the above points, as explained in FIG. 3, when the own ship is located near the base line BL on The integration constant is set to increase as the distance from the point increases.

以下これについて説明すると、積算器11は可逆計数器
111、比較回路112、数値設定器113、演算器1
14とで構成される。
To explain this below, the integrator 11 includes a reversible counter 111, a comparison circuit 112, a numerical value setter 113, and an arithmetic unit
14.

可逆計数器111は、従局位相比較回路10の位相比較
出力に基づいて加算計数あるいは減算計数を行なう。例
えば、第2図において、同期パルスbがロラン信号aの
同期位置に対して位相が進んでいるときは加算計数を行
ない、逆に、位相が遅れているときは減算計数を行なう
。この加算計数、減算計数は従局位相比較回路10から
可逆計数器111の加算端子あるいは減算端子にパルス
波が送出されることにより行われる。
The reversible counter 111 performs addition counting or subtraction counting based on the phase comparison output of the slave phase comparison circuit 10. For example, in FIG. 2, when the synchronization pulse b is ahead in phase with respect to the synchronization position of the Loran signal a, addition counting is performed, and conversely, when the phase is behind, subtraction counting is performed. These addition and subtraction counts are performed by sending a pulse wave from the slave phase comparator circuit 10 to the addition terminal or subtraction terminal of the reversible counter 111.

可逆計数器111の計数値は比較回路112において数
値設定器113の設定数値と比較される。この場合、比
較回路112は可逆計数器111の計数値の絶対値と数
値設定器113の設定値とを比較して、可逆計数器の絶
対値が設定値を越えると出力パルスを移動回路7へ送出
勢る。このとき、可逆計数器111の計数値が加算値で
あるのか、減算値であるのかを示す符号出力が移動回路
7へ送出される。
The count value of the reversible counter 111 is compared with the set value of the value setter 113 in the comparison circuit 112. In this case, the comparator circuit 112 compares the absolute value of the count value of the reversible counter 111 with the set value of the numerical value setter 113, and if the absolute value of the reversible counter exceeds the set value, output pulses are sent to the shift circuit 7. Sending force. At this time, a sign output indicating whether the count value of the reversible counter 111 is an addition value or a subtraction value is sent to the moving circuit 7.

符号出力は、例えば、可逆計数器l11の計数値が加算
値のときは高レベル出力が送出され、減算値のときは低
レベル出力を送出する。移動回路7は比較回路112か
ら出力パルスが送出される毎に、可逆計数器111の符
号出力に応じて通過する高周波パルス列の増減を制御し
て従局同期パルスの位相制御を行なう。又、比較回路1
12は出力パルスを送出すると同時に可逆計数値111
の計数値をリセットする。
As for the code output, for example, when the count value of the reversible counter l11 is an addition value, a high level output is sent out, and when it is a subtraction value, a low level output is sent out. Each time an output pulse is sent from the comparison circuit 112, the moving circuit 7 controls the increase/decrease of the passing high frequency pulse train according to the sign output of the reversible counter 111, thereby controlling the phase of the slave synchronization pulse. Also, comparison circuit 1
12 is the reversible count value 111 at the same time as sending out the output pulse.
Reset the count value.

上記から明らかなように、従局位相比較回路10から定
期的に比較パルスが送出されるとき、比較回路112の
出力パルスは数値設定器113の設定数値に応じてパル
ス間隔が変化する。すなわち、設定数値が小さいときは
パルス間隔は小さい。従って、これは積算定数を小さく
したことに相当する。
As is clear from the above, when comparison pulses are periodically sent out from the slave phase comparison circuit 10, the pulse interval of the output pulses of the comparison circuit 112 changes according to the numerical value set by the numerical value setting device 113. That is, when the set numerical value is small, the pulse interval is small. Therefore, this corresponds to reducing the integration constant.

そして、設定数値を大きくするに従ってパルス間隔が大
きくなる。これは積算定数を大きくしたことに相当する
Then, as the set value increases, the pulse interval increases. This corresponds to increasing the integration constant.

数値設定器113の設定数値は演算器114によって設
定される。
The set numerical value of the numerical value setter 113 is set by the arithmetic unit 114.

演算器114は、例えば第3図において、自船が位置す
るP点付近における時間差線の発散度を演算する。この
発散度は、自船位置Pに対して主局送信局Mと従局送信
局Sとで成す角φを用いて、で表される。従って、基線
BL上に位置するときの設定数値をあらかじめ定めて、
その設定数値を基じて設定数値を変化させればよい。
The computing unit 114 computes the degree of divergence of the time difference line in the vicinity of point P where the own ship is located, for example in FIG. This degree of divergence is expressed by using the angle φ formed by the master transmitting station M and the slave transmitting station S with respect to the own ship position P. Therefore, by predetermining the set numerical value when positioned on the base line BL,
The set numerical value may be changed based on the set numerical value.

演算器114は、上記のようにして数値設定を行を算出
することにより、設定数値を変化させる。
The arithmetic unit 114 changes the set numerical value by calculating the numerical value setting row as described above.

この場合、角度φは、自船位置Pの位置データ、ロラン
送信局M並びにSの位置データを与えることにより、三
角函数の公式から算出することができる。そして、自船
の位置データは緯度、経度変換器12によって与えられ
、ロラン送信局M、Sの各位置データは、データメモリ
13にあらかじめ記憶されている位置データが読出され
て与えられる。
In this case, the angle φ can be calculated from a trigonometric formula by giving the position data of the ship's position P and the position data of the Loran transmitting stations M and S. The position data of the own ship is given by the latitude/longitude converter 12, and the position data of the Loran transmitting stations M and S is given by reading the position data stored in advance in the data memory 13.

緯度、経度変換器12は時間差測定回路14と図示しな
い他の一対のロラン信号間の時間差を測定する時間差測
定回路から送出されるロランチャート上における自船位
置データを地図上の緯度、経度データに変換する。この
緯度、経度データの変換は、ロランチャート上における
時間差データとロラン送信局M、Sの位置データとを用
いてロラン送信局までの距離を演算するごとくして公知
のようにして行われる。なお1時間差測定回路14は、
主局同期パルス生成回路3並びに従局同期パルス生成回
路9で生成された主局同期パルス、従局同期パルスがそ
れぞれのロラン信号に同期しているとき、主局同期パル
スと従局同期パルスの間の時間差測定を行なう。
The latitude/longitude converter 12 converts own ship position data on the Loran chart sent from the time difference measuring circuit 14 and a time difference measuring circuit that measures the time difference between another pair of Loran signals (not shown) into latitude/longitude data on the map. Convert. This conversion of latitude and longitude data is performed in a known manner by calculating the distance to the Loran transmitting station using the time difference data on the Loran chart and the position data of the Loran transmitting stations M and S. Note that the 1-time difference measuring circuit 14 is
When the master station synchronization pulse and slave station synchronization pulse generated by the master station synchronization pulse generation circuit 3 and the slave station synchronization pulse generation circuit 9 are synchronized with their respective Loran signals, the time difference between the master station synchronization pulse and the slave station synchronization pulse Take measurements.

(発明の効果) 以上の説明から明らかなように、同期パルスとロラン信
号との位相ずれの検出出力を演算するときの積算足数が
ロランチャート上の自船位置に対応した最適値に設定さ
れる。従って、同期パルスとロラン信号との同期が、自
船の移動によって遅れることなく、又、ロラン信号のS
/N  比が比較的悪い場合でも極めて安定に行われる
(Effect of the invention) As is clear from the above explanation, the cumulative number when calculating the detection output of the phase shift between the synchronization pulse and the Loran signal is set to the optimal value corresponding to the own ship's position on the Loran chart. Ru. Therefore, synchronization between the synchronization pulse and the Loran signal will not be delayed due to the movement of the own ship, and the synchronization of the Loran signal will not be delayed.
Even when the /N ratio is relatively poor, it is extremely stable.

(発明の他の実施例) 第1図においては主局同期パルスと主局ロラン信号との
位相比較出力を用いてAFC回路6が基準発振器1を制
御するごとく説明したが、従局同期パルスと従局ロラン
信号との位相比較出力をAFC回路へ送出しても上記と
同様な作用を行わせることができる。従って、この場合
は、主局同期パルスと主局ロラン信号との位相比較出力
を積算器11へ送出すればよい。
(Other Embodiments of the Invention) In FIG. 1, it has been explained that the AFC circuit 6 controls the reference oscillator 1 using the phase comparison output of the master station synchronization pulse and the master station Loran signal, but the slave station synchronization pulse and the slave station Even if the phase comparison output with the Loran signal is sent to the AFC circuit, the same effect as described above can be performed. Therefore, in this case, it is sufficient to send the phase comparison output between the main station synchronization pulse and the main station Loran signal to the integrator 11.

又、第1図において、積算器11は可逆計数器111、
比較回路112、数値設定器113等で構成したが、こ
の構成に限らず種々の変形が可能である。
In addition, in FIG. 1, the integrator 11 is a reversible counter 111,
Although the configuration includes the comparison circuit 112, the numerical value setter 113, etc., the configuration is not limited to this and various modifications are possible.

又、ハード的な構成を用いる必要はなく、それぞれのデ
ーターをソフト的に処理するように構成することも可能
である。
Further, there is no need to use a hardware configuration, and each data can be configured to be processed using software.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示し、第2図はその動作を
説明するための波形図、第3図はその動作を説明するた
めのロランチャートの一例を示す。 1・・・・基準発振器、2・・・・主局分周器、3・・
・・主局同期パルス生成回路、4・・・・主局位相比較
回路、5・・・・受信器、6・・・・AFC回路、7・
・・・移動回路、8・・・・従局分周器、9・・・・従
局−同期パルス生成回路、10・・・・従局位相比較回
路、11・・・・積算器、12・・・・緯度、経度変換
器、13・・データメモリ、14・・・・時間差測定回
路、Ill・・・・可逆計数器、112・・・・比較回
路、113・・・・数値設定器、114・・・・演算器
FIG. 1 shows an embodiment of the present invention, FIG. 2 shows a waveform diagram for explaining its operation, and FIG. 3 shows an example of a Loran chart for explaining its operation. 1...Reference oscillator, 2...Main station frequency divider, 3...
...Main station synchronous pulse generation circuit, 4...Main station phase comparison circuit, 5...Receiver, 6...AFC circuit, 7.
...Movement circuit, 8...Slave station frequency divider, 9...Slave station-synchronous pulse generation circuit, 10...Slave station phase comparison circuit, 11...Integrator, 12... - Latitude and longitude converter, 13... Data memory, 14... Time difference measurement circuit, Ill... Reversible counter, 112... Comparison circuit, 113... Numeric value setter, 114. ...Arithmetic unit

Claims (1)

【特許請求の範囲】 基準パルス列をロラン信号の到来周期と同周期なるまで
分周して主局同期パルス、従局同期パルスを生成し、該
主局同期パルス、従局同期パルスの各々を主局ロラン信
号、従局ロラン信号に同期させるロラン受信機において
、 主局(従局)同期パルスと主局(従局)ロラン信号との
位相比較を行なう第1の位相比較回路と、従局(主局)
同期パルスと従局(主局)ロラン信号との位相比較を行
なう第2の位相比較回路と、上記第1の位相比較出力に
基づいて上記基準パルス列のパルス数を制御する周波数
制御回路と、上記第2の位相比較出力を積算する積算器
と、該積算器の積算出力に基づいて上記第2の位相比較
回路が上記位相比較を行なう従局(主局)同期パルスの
位相制御を行なう移動回路と、 自船の位置データとロラン送信局の位置データとに基づ
いて自船位置付近のロランチャートの時間差線の発散度
を演算する演算回路とを具備し、該演算回路の演算結果
に基づいて、上記時間差線の発散が最も小さい位置を基
準にして時間差線の発散が大きくなるのにつれて上に積
算回路の積算定数が大きくなるごとく積算定数を制御す
ることを特徴とするロラン受信機における信号追尾装置
[Claims] A reference pulse train is frequency-divided until it has the same period as the arrival period of the Loran signal to generate a master station synchronization pulse and a slave synchronization pulse, and each of the master station synchronization pulse and slave synchronization pulse is applied to the master station Loran signal. In the Loran receiver, which is synchronized with the Loran signal of the slave station, a first phase comparison circuit that performs a phase comparison between the master station (slave station) synchronization pulse and the master station (slave station) Loran signal, and the slave station (master station)
a second phase comparison circuit that performs a phase comparison between the synchronization pulse and the slave station (main station) Loran signal; a frequency control circuit that controls the number of pulses of the reference pulse train based on the first phase comparison output; an integrator that integrates the two phase comparison outputs, and a moving circuit that controls the phase of a slave station (main station) synchronization pulse with which the second phase comparison circuit performs the phase comparison based on the integration output of the integrator; and an arithmetic circuit that calculates the degree of divergence of the time difference line of the Loran chart near the own ship's position based on the position data of the own ship and the position data of the Loran transmitting station, and based on the calculation result of the calculation circuit, the above-mentioned A signal tracking device for a Loran receiver, characterized in that the integration constant of an integration circuit is controlled such that the integration constant of an integration circuit increases as the divergence of the time difference line increases with reference to the position where the divergence of the time difference line is the smallest.
JP13601984A 1984-06-29 1984-06-29 Signal tracking device of loran receiver Pending JPS6114583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13601984A JPS6114583A (en) 1984-06-29 1984-06-29 Signal tracking device of loran receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13601984A JPS6114583A (en) 1984-06-29 1984-06-29 Signal tracking device of loran receiver

Publications (1)

Publication Number Publication Date
JPS6114583A true JPS6114583A (en) 1986-01-22

Family

ID=15165281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13601984A Pending JPS6114583A (en) 1984-06-29 1984-06-29 Signal tracking device of loran receiver

Country Status (1)

Country Link
JP (1) JPS6114583A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110187587A1 (en) * 2010-01-29 2011-08-04 Infineon Technologies Ag Receiver test circuits, systems and methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110187587A1 (en) * 2010-01-29 2011-08-04 Infineon Technologies Ag Receiver test circuits, systems and methods
US8237603B2 (en) * 2010-01-29 2012-08-07 Infineon Technologies Ag Receiver test circuits, systems and methods

Similar Documents

Publication Publication Date Title
US3889264A (en) Vehicle locating system utilizing AM broadcasting station carriers
US4131856A (en) Electrical synchronizing circuits
EP0199448A2 (en) Frequency and phase error determination apparatus
JP4051840B2 (en) Synchronizer for distributed system equipment
US4206414A (en) Electrical synchronizing circuits
JP4535288B2 (en) Distributed control system
JPS6114583A (en) Signal tracking device of loran receiver
JP5035383B2 (en) Distributed control system
US4045797A (en) Radar doppler frequency measuring apparatus
JPS60237380A (en) Phase tracking apparatus for loran c signal
US3478356A (en) Range rate radar
US5420831A (en) Coho device for improving time measurement resolution
JPS5836061Y2 (en) Erroneous measurement detection device in hyperbolic navigation receiver
KR100558115B1 (en) Apparatus and method of satellite range measurement using a equi-phase method
SU1741096A1 (en) Device for comparing time standards
SU960869A2 (en) Device for reading graphic data
JPH0542209B2 (en)
SU832506A1 (en) Receiving indicator
GB1330970A (en) Distance measurement systems
SU769483A1 (en) Device for synchronizing time scales by high-accuracy time signals
SU1160444A1 (en) Device for integrating pulse-frequency signals
JPS60257373A (en) Synchronizing device of loran receiver
RU1811018C (en) Device for synchronizing single-frequency multichannel address systems sharing time
JPH0455274B2 (en)
JPH03117224A (en) Synchronization maintenance equipment in ss-tdma satellite communication system