JPS6114552A - Scanning type auger electron analyzing instrument - Google Patents

Scanning type auger electron analyzing instrument

Info

Publication number
JPS6114552A
JPS6114552A JP59136176A JP13617684A JPS6114552A JP S6114552 A JPS6114552 A JP S6114552A JP 59136176 A JP59136176 A JP 59136176A JP 13617684 A JP13617684 A JP 13617684A JP S6114552 A JPS6114552 A JP S6114552A
Authority
JP
Japan
Prior art keywords
electron
electrons
energy
voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59136176A
Other languages
Japanese (ja)
Inventor
Taketsugu Kodama
小玉 雄嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP59136176A priority Critical patent/JPS6114552A/en
Publication of JPS6114552A publication Critical patent/JPS6114552A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
    • G01N23/2276Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM] using the Auger effect, e.g. Auger electron spectroscopy [AES]

Abstract

PURPOSE:To eliminate the influence of secondary electrons by making a scan within a small range based upon specific energy as a center and detecting transmitted electrons, differentiating its detected signal and detecting an Auger electron, and subtracting the differential value of the detection signal corresponding to a discharge electron from a sample surface. CONSTITUTION:An electron beam B scans on the surface of a sample 3 and an energy analyzer 4 selects electron energy emitted from the sample 3; and only specific energy E0 determined by the voltage obtained by superposing a voltage with voltage width delta and a frequency omega upon the potential difference between electrodes U1 and U2, i.e. constant voltage U applied from an electric power circuit 10 is passed and detected by a detector D1 and a lock-in amplifier 5 extracts a component of frequency omega. Further, the output N of a detector D1 is as shown by an equation, where N(U) is a function of the voltage U, and thus the component of frequency omega is extracted to obtain a signal proportional to dN/dU. Further, the output of a secondary electron detector D2 is passed through a variable gain amplifier 6 and differentiated by a differentiating circuit 7, and then subtracted from the output of an amplifier 5 by a subtracting circuit 8, thereby displaying the result on a CRT9.

Description

【発明の詳細な説明】 イ・産業上の利用分野 本発明は試料面を電子ビームで走査し、試料面から放射
されるオージェ電子を検出し、その検出信号によりCR
TCRT表示面変調を行って、試料面の元素分布或は試
料構成元素の原子の結合状態等を映像表示する型のオー
ジェ電子分析装置に関する。
Detailed Description of the Invention A. Industrial Application Field The present invention scans a sample surface with an electron beam, detects Auger electrons emitted from the sample surface, and uses the detection signal to detect CR.
The present invention relates to an Auger electron analyzer that performs TCRT display screen modulation to display an image of the element distribution on the sample surface, the bonding state of atoms of sample constituent elements, etc.

口、従来の技術 試料面を電子ビームで照射したとき試料面から放出され
る電子をエネルギー分析すると、放出電子の検出量とエ
ネルギーとの間の関係は第2図のようになっている。こ
のような放出電子の大部分は試料から放射された2次電
子であり、この2次電子のバックグラウンドの上に乗っ
た小さなビークpを与えているのがオージェ電子である
。このようにオージェ電子は2次電子に比し量的に非常
に少いので、単に試料から放射される電子をエネルギー
分析して第2図でエネルギーEoの電子のみを検出する
ようにしてもそれによってオージェ電子の量を知ること
はできない。そこで通常はエネルギー分析器でエネルギ
ーEを中心に微小範囲Δでエネルギー走査を行い、その
ときの電子検出信号を微分して、その微分信号でCRT
表示面を輝度変調するようにしている。即ちエネルギー
Δの範囲で2次電子のバックグラウンドはゆるやかな傾
斜になっているので、その微分信号の値はOに近く、そ
れに対してオージェ電子のピークは鋭い立上シ、立下シ
を示すので、その微分信号は大きな値を採る。このよう
にして2次電子によるバックグラウンドを除去し、オー
ジェ電子だけを検出することができる。しかしこのよう
な方法で2次電子とオージェ電子とを弁別していると次
のような問題が生じる。試料面の2次電子放出効率は一
般に一様ではないので、試料面を電子ビームで走査する
とき、2次電子検出信号は時間的に変動する。この変動
は第2図でエネルギーEoを中心とするエネルギー幅Δ
の範囲の2次電子においても現れるので、エネルギー分
析器を通過した電子の検出信号の微分信号の中には2次
電子の時間的な変化つまシ試料面の2次電子放射効率の
場所的な変化の情報も含まれているのであジ、CRTの
がオージェ電子の分布像に対する雑音となって、オージ
ェ電子像の観察の邪魔になっていた。
2. Prior Art When the energy of electrons emitted from a sample surface is analyzed when the sample surface is irradiated with an electron beam, the relationship between the detected amount of emitted electrons and the energy is as shown in FIG. Most of these emitted electrons are secondary electrons emitted from the sample, and Auger electrons give a small peak p on top of the background of the secondary electrons. In this way, Auger electrons are very small in quantity compared to secondary electrons, so even if we simply analyze the energy of the electrons emitted from the sample and detect only the electrons with energy Eo in Figure 2, it will not work. It is not possible to know the amount of Auger electrons by Therefore, normally an energy analyzer performs an energy scan in a minute range Δ around energy E, differentiates the electron detection signal at that time, and uses the differentiated signal to scan the CRT.
The brightness of the display surface is modulated. In other words, the background of secondary electrons has a gentle slope in the range of energy Δ, so the value of its differential signal is close to O, whereas the peak of Auger electrons shows sharp rises and falls. Therefore, the differential signal takes a large value. In this way, the background due to secondary electrons can be removed and only Auger electrons can be detected. However, if secondary electrons and Auger electrons are discriminated by such a method, the following problem arises. Since the secondary electron emission efficiency of the sample surface is generally not uniform, when the sample surface is scanned with an electron beam, the secondary electron detection signal fluctuates over time. This fluctuation can be seen in the energy width Δ around the energy Eo in Figure 2.
It also appears in secondary electrons in the range of Since information on changes is also included, CRT noise becomes a noise in the Auger electron distribution image, interfering with the observation of the Auger electron image.

ハ・発明が解決しようとする問題点 本発明は従来のオージェ電子分析装置における上述した
ような2次電子の影響を除去することを目的とする。
C. Problems to be Solved by the Invention The present invention aims to eliminate the above-mentioned influence of secondary electrons in conventional Auger electron analyzers.

二・ 問題点を解決するだめの手段 エネルギー分析器で所定エネルギーを中心に小範囲のエ
ネルギー走査を行って透過電子を検出し、その検出信号
を微分することによってオージェ電子を検出すると共に
、別に試料面から放出きれる電子を検出し、その検出信
号を微分し、その微分信号に適当係数を掛けて上記オー
ジェ電子検出信号から引算することによって、オージェ
電子の検出信号中に含まれる2次電子の影響を除去する
ものである。
2. Means to solve the problem An energy analyzer scans a small range of energy around a predetermined energy to detect transmitted electrons, differentiates the detection signal to detect Auger electrons, and separately By detecting the electrons that can be emitted from the surface, differentiating the detection signal, multiplying the differential signal by an appropriate coefficient, and subtracting it from the Auger electron detection signal, the secondary electrons contained in the Auger electron detection signal are calculated. It removes the influence.

ホ・作 用 第3図において、Aはオージェ電子検出出力を示す。即
ちAは所定エネルギー範囲でエネルギー走査を行ってい
るエネルギー分析器を通過した電子の検出信号の微分信
号を整流平滑化したものである。同図Bは試料面から放
出される電子を別途検出した検出信号である。この検出
信号はオージェ電子も含まれるが、殆んど2次電子その
ものの検出信号である。同図Cl−1′Bの信号を微分
したもので、Aの信号におけるSの部分に対応している
E. Effect In Fig. 3, A indicates the Auger electron detection output. That is, A is a rectified and smoothed differential signal of an electron detection signal that has passed through an energy analyzer that performs energy scanning in a predetermined energy range. B in the figure is a detection signal obtained by separately detecting electrons emitted from the sample surface. Although this detection signal includes Auger electrons, it is mostly a detection signal of secondary electrons themselves. This is a result of differentiating the signal Cl-1'B in the figure, and corresponds to the S part in the signal A.

つまりAの信号でSの部分はオージェ電子ではなく試料
面で2次電子の放射効率が異っている領域の境目の信号
であったわけである。第3図りばBの信号に適当な係数
を掛けて、つまpBの信号の増幅度を適当に調節してA
の信号から引算した結果であって、Aの信号のSの部分
が除去され、オージェ電子のみの信号が得られている。
In other words, the S part of the A signal was not an Auger electron, but a signal at the boundary between regions where the radiation efficiency of secondary electrons differed on the sample surface. The third step is to multiply the signal of B by an appropriate coefficient and adjust the amplification degree of the signal of pB appropriately.
This is the result of subtraction from the signal of A, in which the S part of the signal of A is removed, and a signal of only Auger electrons is obtained.

へ・実施例 第1図は本発明の一実施例を示す。lは電子銃、2は電
子光学系で電子ビームBを試料3の表面に収束させ、ま
た不図示の走査制御回路からの信号によって電子ビーム
で試料面を走査する。4はエネルギー分析器で試料3の
表面から放射された電子をエネルギー選別して、電極U
l、U2間の電位差によって決まる特定エネルギーEO
の電子のみを通過させ、エネルギー分析器3を通過した
電子は検出器D1によって検出される。検出器DIの出
力はロックインアンプ5に入力される。ロックインアン
プ5は入力信号から周波数ωの成分を取出すもので、エ
ネルギー分析器4の両電極間に印加される電圧には電源
回路1oにより一定電圧Uに電圧幅6周波数ωの電圧が
重畳された電圧が印加されている。このとき検出器D1
の出力における周波数ωの成分がdN/dEに比例して
いる。
Embodiment FIG. 1 shows an embodiment of the present invention. 1 is an electron gun, and 2 is an electron optical system that focuses an electron beam B onto the surface of the sample 3, and scans the sample surface with the electron beam in response to a signal from a scan control circuit (not shown). 4 is an energy analyzer that selects the energy of the electrons emitted from the surface of the sample 3 and sends them to the electrode U.
The specific energy EO determined by the potential difference between l and U2
The electrons that have passed through the energy analyzer 3 are detected by the detector D1. The output of the detector DI is input to the lock-in amplifier 5. The lock-in amplifier 5 extracts the frequency ω component from the input signal, and the voltage applied between the two electrodes of the energy analyzer 4 includes a constant voltage U and a voltage width 6 frequency ω superimposed on the voltage applied between the two electrodes of the energy analyzer 4. voltage is applied. At this time, detector D1
The component of frequency ω in the output of is proportional to dN/dE.

即ち検出5器D1の出力Nはエネルギー分析器4の電極
間電圧Uの関数でこれをN(U)とおくと、N(U+δ
)−N(TJ)+、了δ こ\でδ−a sinωtとおくと、上式はN(U十δ
) = N(U) 十−、、−a sln ωを従って
N(U+δ)から周波数ωの成分を取出すと、aN/a
Uに比例した信号が得られる0こ\℃電極間電圧Uと透
過電子のエネルギーEとはリニヤの関係にあるから、ロ
ックインアンプ5の出力は第3図Aの信号に相当してい
る。D2は2次電子検出器で、その出力は可変利得アン
プ6に入力され、同アンプの出方は第3図Bの信号に相
当する。この信号は微分回路7で微分された後引算回路
8に入力され、引算回路8ではロックインアンプ5の出
力から微分回路7の出力を引算する。
That is, the output N of the detector D1 is a function of the interelectrode voltage U of the energy analyzer 4, and if this is set as N(U), then N(U+δ
)-N(TJ)+, δ-a sinωt, the above equation becomes N(U+δ
) = N(U) 10-,,-a sln ω Therefore, if we extract the component of frequency ω from N(U+δ), we get aN/a
Since there is a linear relationship between the interelectrode voltage U and the energy E of the transmitted electrons, the output of the lock-in amplifier 5 corresponds to the signal shown in FIG. 3A. D2 is a secondary electron detector, the output of which is input to a variable gain amplifier 6, whose output corresponds to the signal shown in FIG. 3B. This signal is differentiated by the differentiating circuit 7 and then input to the subtracting circuit 8 , which subtracts the output of the differentiating circuit 7 from the output of the lock-in amplifier 5 .

この引算結果が第3図りに相当し、この信号が適当に増
幅されてCRT9に輝度信号として印加される。
This subtraction result corresponds to the third diagram, and this signal is appropriately amplified and applied to the CRT 9 as a luminance signal.

ト・ 効    果 本発明によれば従来除去されなかった2次電子の影響が
除去されて、ゴーストやノイズのない鮮明なオージェ電
子像が得られる。
Effects According to the present invention, the influence of secondary electrons, which was not removed conventionally, is removed, and a clear Auger electron image without ghosts or noise can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例装置の構成を示すブロック図
、第2図は試料から放射される電子のエネルギー分布を
示すグラフ、第3図は本発明装置の作用を説明するグラ
フである。 1・・・電子銃、2・・・電子光学系、B・・・電子ビ
ーム、DI、D2・・・電子検出器。 代理人 弁理士  係   浩  介 111′
FIG. 1 is a block diagram showing the configuration of an apparatus according to an embodiment of the present invention, FIG. 2 is a graph showing the energy distribution of electrons emitted from a sample, and FIG. 3 is a graph explaining the operation of the apparatus of the present invention. . 1... Electron gun, 2... Electron optical system, B... Electron beam, DI, D2... Electron detector. Agent Patent Attorney Kosuke 111'

Claims (1)

【特許請求の範囲】[Claims] エネルギー分析器で所定エネルギーを中心に小範囲でエ
ネルギー走査を行つて透過電子を検出し、その検出信号
を微分することによつてオージエ電子を検出する構成と
、試料面から放出される電子を検出し、その検出信号を
微分して上記オージエ電子検出信号から引算することに
より、上記オージエ電子検出信号に含まれる2次電子の
影響を除去する構成とを有し、上記引算回路の出力をC
RTによつて表示するようにしたことを特徴とする走査
型オージエ電子分析装置。
An energy analyzer scans energy in a small range around a predetermined energy to detect transmitted electrons, and the detection signal is differentiated to detect Auger electrons, and electrons emitted from the sample surface are detected. The detection signal is differentiated and subtracted from the Auger electron detection signal to remove the influence of secondary electrons included in the Auger electron detection signal, and the output of the subtraction circuit is C
A scanning Auger electronic analyzer characterized by displaying information using RT.
JP59136176A 1984-06-29 1984-06-29 Scanning type auger electron analyzing instrument Pending JPS6114552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59136176A JPS6114552A (en) 1984-06-29 1984-06-29 Scanning type auger electron analyzing instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59136176A JPS6114552A (en) 1984-06-29 1984-06-29 Scanning type auger electron analyzing instrument

Publications (1)

Publication Number Publication Date
JPS6114552A true JPS6114552A (en) 1986-01-22

Family

ID=15169102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59136176A Pending JPS6114552A (en) 1984-06-29 1984-06-29 Scanning type auger electron analyzing instrument

Country Status (1)

Country Link
JP (1) JPS6114552A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198079A (en) * 1987-10-09 1989-04-17 Dainippon Printing Co Ltd Pattern input/correction device
WO2003038418A1 (en) * 2001-11-02 2003-05-08 Hitachi, Ltd. Elemental analyser, scanning transmission electron microscope, and element analyzing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198079A (en) * 1987-10-09 1989-04-17 Dainippon Printing Co Ltd Pattern input/correction device
WO2003038418A1 (en) * 2001-11-02 2003-05-08 Hitachi, Ltd. Elemental analyser, scanning transmission electron microscope, and element analyzing method
US6794648B2 (en) 2001-11-02 2004-09-21 Hitachi, Ltd. Ultimate analyzer, scanning transmission electron microscope and ultimate analysis method
US6933501B2 (en) 2001-11-02 2005-08-23 Hitachi, Ltd. Ultimate analyzer, scanning transmission electron microscope and ultimate analysis method

Similar Documents

Publication Publication Date Title
US3678384A (en) Electron beam apparatus
US4766312A (en) Methods and apparatus for detecting negative ions from a mass spectrometer
US6555830B1 (en) Suppression of emission noise for microcolumn applications in electron beam inspection
CA1048163A (en) Process and apparatus for the elementary and chemical analysis of a sample by spectrum analysis of the energy of the secondary electrons
JPS6114552A (en) Scanning type auger electron analyzing instrument
US4480220A (en) Electron energy analyzing apparatus
CA1181540A (en) Scanning-image forming apparatus using photo response signal
US4972142A (en) Automatic frequency follow-up in particle beam metrology upon employment of a modulated primary beam
US4752686A (en) Method and apparatus for emphasizing a specimen surface region scanned by a scanning microscope primary beam
JP3660472B2 (en) Interferogram correction method
US4099054A (en) Sem having d-c bias of video signal controlled by maximum and/or minimum of crt beam current
EP3285279B1 (en) Electron microscope and method of operating same
JPH05275045A (en) Method and device for surface analysis utilizing backscattering electron
JPH11213941A (en) Mass spectrometry system
US5438197A (en) Focused ion beam apparatus
JPH07225136A (en) Method and apparatus for measuring electric signal
Eschard et al. Signal to Noise and Collection Efficiency Measurements in MicroChannel Wafer Image Intensifies
JP2000133193A (en) Charged particle beam irradiating device
JP2001236916A (en) Electron beam instrument
JPS6233546B2 (en)
Mogami Beam brightness modulation (BBM) method as applied to Auger electron spectroscopy
JPS60113137A (en) Method and device for x-ray photoelectron spectrochemical analysis
KR830002115B1 (en) Sample analysis device using particle beam
JPH01221849A (en) Scanning type electron microscope
JPH05325883A (en) Mass spectrometer