JPS60113137A - Method and device for x-ray photoelectron spectrochemical analysis - Google Patents

Method and device for x-ray photoelectron spectrochemical analysis

Info

Publication number
JPS60113137A
JPS60113137A JP58221689A JP22168983A JPS60113137A JP S60113137 A JPS60113137 A JP S60113137A JP 58221689 A JP58221689 A JP 58221689A JP 22168983 A JP22168983 A JP 22168983A JP S60113137 A JPS60113137 A JP S60113137A
Authority
JP
Japan
Prior art keywords
electrode
sample
energy
spectrum
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58221689A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamauchi
洋 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP58221689A priority Critical patent/JPS60113137A/en
Publication of JPS60113137A publication Critical patent/JPS60113137A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To enable analysis of the local part on the extreme surface of a thin- walled nonconductive sample by impressing a voltage to the contact electrode on the rear, shifting the photoelectron spectrum by X-ray irradiation with respect to the spectrum in the other surface part, discriminating both and dividing the position. CONSTITUTION:A voltage is impressed on an electrode 14 in proximity to the local part of a sample 4 having about several tens mu thickness to change to potential in the local part and at the same time X-rays are irradiated from an X-ray gun 6 to release photoelectron which is conducted to an analyzer 8. The photoelectron is subjected to an energy sepn. by an energy scanning circuit 28 and is detected by a detector 10 according to the energy. An energy spectrum A1 is obtd. on an X-Y recorder 30 via an amplifier 26 and a selector switch 34 from the detection signal and the scanning signal. The spectrum A1 is proportional to the size of the local part and is similar to the spectrum A2 obtd. from the other surface. Only the energy corresponding to the impressed voltage appears with a shift.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は軟X線を励起源とし、試料から放出される光電
子により試料の元素分析、状態分析等を行なうX線光電
子分光分析方法ならびにその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to an X-ray photoelectron spectroscopy method that uses soft X-rays as an excitation source and performs elemental analysis, state analysis, etc. of a sample using photoelectrons emitted from the sample; Regarding the device.

(ロ)従来技術 一般に、試料の極表面の分析手段として、オージェ電子
分析装置やX線光電子分光分析装置が広く用いられてい
る。オージェ電子分析装置は電子ト セラミック、金属介在物、生イ4試料などの非導電性試
料に対しては試料帯電が起るので分析が極めて鈷かしい
。一方、X線光電子分光分析装置はX線を励起源とする
ので非導電性試料の極表面分析が可能であるが、逆に線
源を紋ることができないので局所部分桁は困難であると
いう不具合かある。
(B) Prior Art In general, Auger electron analyzers and X-ray photoelectron spectrometers are widely used as means for analyzing the extreme surface of a sample. The Auger electron analyzer is extremely difficult to analyze non-conductive samples such as electron ceramics, metal inclusions, and raw materials because the sample becomes charged. On the other hand, X-ray photoelectron spectrometers use X-rays as the excitation source, making it possible to analyze the very surface of non-conductive samples, but conversely, it is difficult to analyze localized areas because the radiation source cannot be detected. There is a problem.

このため従来、X線光電子分光分析装置による非導電性
試料の局所部分桁として、試料表面をマスクで覆い、こ
のマスクの一部に小孔を形成し、X絽を上記小孔を通し
て試料に選択的に照射する。
For this reason, conventionally, as a local part of a non-conductive sample using an X-ray photoelectron spectrometer, the surface of the sample is covered with a mask, a small hole is formed in a part of this mask, and the X-ray is selected into the sample through the small hole. irradiate the target.

または、試料から放出される光電子をレンズ系で拡大表
示し、試料の特定位置を部分選択するなどの手法が採ら
れている。しかしながら前者の場合にはマスク材料から
の信号が分析試料からのそれに重畳され、さらに、マス
クと試料との隙間による影響を受けるなどにより測定が
難かしい。また、後者の場合には光学系の設計の難かし
さや試料から得られる信号強瓜か低いなどの原因により
未だ実用化されるに到9ていない。
Alternatively, a method has been adopted in which photoelectrons emitted from the sample are enlarged and displayed using a lens system to partially select a specific position on the sample. However, in the former case, the signal from the mask material is superimposed on the signal from the analysis sample and is further affected by the gap between the mask and the sample, making measurement difficult. Furthermore, in the latter case, it has not yet been put into practical use due to the difficulty in designing the optical system and the low signal strength obtained from the sample.

(ハ) 目 的 本発明は上述の間匙点を解消し、薄肉の非導電性試料の
X線励起による極表面の局所部分桁が可能で、さらに、
この局所部の集合としての試料面」二の元素の二次元分
布が測定できるようにすることを目的とする。
(c) Purpose The present invention eliminates the above-mentioned spacing point, makes it possible to perform local partial irradiation on the extreme surface of a thin non-conductive sample by X-ray excitation, and further,
The purpose of this study is to make it possible to measure the two-dimensional distribution of elements on the sample surface as a collection of local areas.

(ニ)構 成 本発明はこのような目的を達成するため、薄肉の非導電
性の試料の裏面に電極を接触し、この電極に電圧を印加
して電極位置に対応した前記試料の表面側の電位を変化
させるとともに、この試料の表面にX線を照射して試料
表Itから放出される光電子のエネルギーを測定するこ
とにより、前記試料の電極位置に対応する表面部分で得
られるエネルギースペクトルを、試料のその他の表面部
分で得られるエネルギースペクトル させ、両者を区別して位置分解するようにしたものであ
る。そしてこのために使JT4されるX線光電子分光分
析装置は、薄肉の非導電性の試料の裏面に接触されるプ
ローブを有し、このプローブは多数の電極か絶縁物を介
して二次元的に並列配置されて構成される一方、前記各
電極に電圧を印加する電極印加電源ならびにこの電極印
加電源を前記電極に選択的に切換えて接続する電極選択
回路を偏えて構成されている。
(d) Structure In order to achieve such an object, the present invention brings an electrode into contact with the back surface of a thin non-conductive sample, applies a voltage to this electrode, and applies a voltage to the surface side of the sample corresponding to the electrode position. By changing the potential and measuring the energy of photoelectrons emitted from the sample surface It by irradiating the surface of the sample with X-rays, the energy spectrum obtained at the surface portion of the sample corresponding to the electrode position can be calculated by The energy spectrum obtained from other surface areas of the sample is analyzed to distinguish between the two and to perform positional resolution. The JT4 X-ray photoelectron spectrometer used for this purpose has a probe that is brought into contact with the back surface of a thin, non-conductive sample. While they are arranged in parallel, the electrode application power supply that applies a voltage to each of the electrodes and the electrode selection circuit that selectively switches and connects the electrode application power supply to the electrodes are arranged in a biased manner.

(ホ)実施例 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
(e) Examples Hereinafter, the present invention will be explained in detail based on examples shown in the drawings.

第1図はこの実施例のX線光電子分光分析装置内に分析
対象となる薄肉の非導電性の試料4、この試料4表面に
X線を照射するX線銃6、試料4からX線により励起さ
れて放出される光電子の工不ルキ゛−を分前11するア
ナライザ8およびアナライザ8てエネルギー分離された
電子を検出する検出器10がそれぞれ配置されている。
Figure 1 shows a thin non-conductive sample 4 to be analyzed in the X-ray photoelectron spectrometer of this embodiment, an X-ray gun 6 that irradiates the surface of this sample 4 with X-rays, and An analyzer 8 that separates the energy of photoelectrons that are excited and emitted, and a detector 10 that detects the electrons energy-separated by the analyzer 8 are arranged, respectively.

さらに、この真空室2内にはプローブ12の一端が突出
している。
Furthermore, one end of the probe 12 protrudes into the vacuum chamber 2 .

プローブ12は第2図および第3図に示すように、線状
をした多数の電極14がセラミックなどの絶糾物16を
介して二次元的に並列配置されて構成される。なお、各
電極14のflJ+面積は試料4の位置分解の必要程度
、検出感度、試料厚さ、電極形式の非易等の要因を考慮
して設定されるが、通常0、1〜05−程度である。そ
して、このプローブ12の一端面が前記試料4の裏面4
bに接触されている。また20はグローブ12の各電極
工4に電圧を印加するための電極印加電源、22はこの
電極印加電源2oを電極14に選択的に切換えて接続す
る電極選択回路である。24は電極14の印力1,電圧
を二次元走査する場合に、電極選択回f&22に対して
電極走査信号を出力する電極走査回路である。26は検
出器10から出力される光電子検出信号を増幅する増幅
器、28はアナライザ8に対してエネルギ定食を行なう
エネルギー走査回路、30はXYレコーダ、32はCR
T、34は増幅器26からの出力をXYレコーダ30と
CRT32とに選択して切換える切換スイッチである。
As shown in FIGS. 2 and 3, the probe 12 is composed of a large number of linear electrodes 14 arranged two-dimensionally in parallel via a solid material 16 such as ceramic. The flJ+ area of each electrode 14 is set in consideration of factors such as the necessary degree of positional resolution of the sample 4, detection sensitivity, sample thickness, and difficulty of the electrode type, but is usually about 0, 1 to 05-. It is. One end surface of this probe 12 is connected to the back surface 4 of the sample 4.
b. Reference numeral 20 designates an electrode application power source for applying a voltage to each electrode work 4 of the globe 12, and 22 represents an electrode selection circuit that selectively switches and connects the electrode application power source 2o to the electrode 14. Reference numeral 24 denotes an electrode scanning circuit that outputs an electrode scanning signal to the electrode selection circuit f&22 when the applied force 1 and voltage of the electrode 14 are two-dimensionally scanned. 26 is an amplifier that amplifies the photoelectronic detection signal outputted from the detector 10, 28 is an energy scanning circuit that performs energy setting for the analyzer 8, 30 is an XY recorder, and 32 is a CR
T, 34 is a changeover switch that selects and switches the output from the amplifier 26 between the XY recorder 30 and the CRT 32.

次に上記X線光電子分光分析装置1を適用して試料4の
局所部分桁を行なう方法について、次いで試料4表面上
の元素の二次元り〕布を測定する方法について説明する
。まず、プローブ12の」二に試料4を怜着して載置す
る。この試料4は厚さが数+μ程度の薄膜に形成されて
いる。そして、試料4表面4aの分析対象とする局所部
Sに近接した電極14を電極選択回路22て選択し、選
択した当該電極14に電極印加電源20から電極選択回
路22を介して所定の電圧を印加する。すると、第3図
に示すように試料4には等電位面が形成されこの電極1
4位置に近接した試料4の表面4a側の局所部Sも帯電
して電位か変化する。この状態でX 41銃6から試(
:」4表面4aにX線を照射する。試料4はこのX線に
より励起され、その表面4aから光電子が放出される。
Next, a method of applying the X-ray photoelectron spectrometer 1 to perform local partial analysis of the sample 4, and then a method of measuring the two-dimensional distribution of elements on the surface of the sample 4 will be described. First, the sample 4 is placed on the top of the probe 12. This sample 4 is formed into a thin film with a thickness of approximately several microns. Then, the electrode selection circuit 22 selects an electrode 14 close to the local area S to be analyzed on the surface 4a of the sample 4, and applies a predetermined voltage to the selected electrode 14 from the electrode application power source 20 via the electrode selection circuit 22. Apply. Then, as shown in FIG. 3, an equipotential surface is formed on the sample 4, and this electrode 1
A local portion S on the surface 4a side of the sample 4 adjacent to the position 4 is also charged and the potential changes. In this state, try X41 gun 6 (
:''4 Irradiate the surface 4a with X-rays. The sample 4 is excited by the X-rays, and photoelectrons are emitted from its surface 4a.

この光電子はアナライザ8に勇かれる。アナライザ8に
導かれた光電子はエネルギー走査回路28によるエネル
ギ走査によりアナライザ8内でエネルギ分離され、エネ
ルギーに応じて検出器lOで検出される。この検出器1
0から出力される光電子検出信号は増幅器26で輻幅さ
れた後、切換スイッチ34の切換によりXYレコーダ3
0に送出される。
These photoelectrons are detected by the analyzer 8. The photoelectrons guided to the analyzer 8 are energy-separated within the analyzer 8 by energy scanning by the energy scanning circuit 28, and are detected by the detector 1O according to the energy. This detector 1
After the photoelectronic detection signal output from 0 is amplified by the amplifier 26, it is sent to the XY recorder 3 by switching the changeover switch 34.
Sent to 0.

同時に、エネルギー定歪回路28から出力されるエネル
ギ走査信号もXYレコーダ30に送出される。
At the same time, the energy scanning signal output from the energy constant distortion circuit 28 is also sent to the XY recorder 30.

従って、XYレコーダ30にはたとえば第4図に示すよ
うなエネルギースペクトルが記録される。すなわち、試
料4の表面4aに同一[’L分のものが含まれている場
合、特に前記局所部Sから得られるエネルギースペクト
ルAIは、そこから放出する光電子が帯電の影響を受け
てエネルギーが変化しているので、局所部Sの大きさに
比例し、かつ、その他の表面部分から1灯られるエネル
ギースペクトルA2に対して相□似で、電極14の印加
電圧に相当するエネルギーだけシフトシたスペクトルと
して現われる。このため、試料4表面4aの局所部Sを
その他の表面部分Σ区別して位置分解できることになる
Therefore, the XY recorder 30 records an energy spectrum as shown in FIG. 4, for example. In other words, when the surface 4a of the sample 4 contains the same amount of ['L, the energy spectrum AI obtained from the local area S in particular shows that the energy of the photoelectrons emitted from the area changes due to the influence of charging. Therefore, it is proportional to the size of the local part S, and is similar to the energy spectrum A2 from other surface parts, and is shifted by the energy corresponding to the voltage applied to the electrode 14. appear. Therefore, the local portion S of the surface 4a of the sample 4 can be positionally resolved by distinguishing it from other surface portions Σ.

次に、試料4表面4a−ヒの特定の元素についての二次
元分布を測定するには、まず、アナライザ8のエネルギ
ーをたとえば、上述のようにしてめた局所部Sの一元素
のエネルギースペクトルA2の1つのピーク位置Eに固
定しておく。続いて、電極走査回路24から電極走査信
号を発生し、これを電極選択量ん22に与える。電極選
択回路22はこの電極走査信号に基づき、各電極14と
電極印加電源2Cとの接続を順次選択的に切換えるので
、試料4に対して電極14が二次元的に走査される。ま
た、電極走査回路24の電極走査信号は、CRT32に
対して水平・垂面同期信号として出力される。そして上
記に併行してX線銃6からX線が試料4表面4aに照射
されるので検出器10から出力される光電子検出信号を
増幅器26、切換スイッチ34を介してCRT 32に
輝度変調信号として与えれはCRT32には分析対象と
する特定元素の二次元分布画像が表示されることになる
Next, in order to measure the two-dimensional distribution of a specific element on the surface 4a-H of the sample 4, first, the energy of the analyzer 8 is set to, for example, the energy spectrum A2 of one element in the local part S as described above. is fixed at one peak position E. Subsequently, an electrode scanning signal is generated from the electrode scanning circuit 24 and applied to the electrode selection quantity 22. The electrode selection circuit 22 sequentially selectively switches the connection between each electrode 14 and the electrode application power source 2C based on this electrode scanning signal, so that the electrode 14 is two-dimensionally scanned with respect to the sample 4. Further, the electrode scanning signal of the electrode scanning circuit 24 is outputted to the CRT 32 as a horizontal/vertical synchronizing signal. In parallel with the above, since X-rays are irradiated from the X-ray gun 6 onto the surface 4a of the sample 4, the photoelectron detection signal outputted from the detector 10 is sent to the CRT 32 as a brightness modulation signal via the amplifier 26 and the changeover switch 34. In other words, the CRT 32 displays a two-dimensional distribution image of the specific element to be analyzed.

なお、この実施例ではプローブ12の電極14として線
状のものを用いているが第5図に示すように、プローブ
50をセラミックなどの絶縁基板52上に平板状の電極
54を形成し、この各電極54を端子56に接続して構
成するようにしてもよい。また、多数の電極14.54
を使用する代りに、一つの電極を試料4に対して平行走
査することても同じ目的を達することが可能である。
In this embodiment, a linear electrode 14 is used as the electrode 14 of the probe 12, but as shown in FIG. Each electrode 54 may be connected to a terminal 56. Also, a large number of electrodes 14.54
The same purpose can also be achieved by scanning one electrode parallel to the sample 4 instead of using .

(へ)効 果 以上のように本発明によれば、薄肉の非導電性資料のX
線励起による極表面の局所部分析が可能で、しかも、こ
の局所部の集合としての試料表面の元素の二次元分布測
定ができるようになるという優れた効果が得られる。
(F) Effect As described above, according to the present invention, the X
It is possible to analyze a localized portion of the extreme surface by linear excitation, and the excellent effect of being able to measure the two-dimensional distribution of elements on the sample surface as a collection of these localized portions can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図はX線光電
子分光分析装置の構成図、第2図はプローブの平面図、
第3図は試料とプローブの一部を示す断面図、第4図は
第1図の装置で得られるエネルギースペクトルの線図、
第5図はプローブの他の変形例を示す斜視図である。 1・・・・・X線光電子分光分析装置、4・・・・・・
試料、12、50・・・・プ白−プ、14.54・・・
・・電極、16.52・・・・・・絶縁物、20・・・
・・電極印加電源、22・・・・電極選択回路。 出願人 株式会社島津製作所 代4理人 弁理土間 1)和 秀 第2図 V 第4図 強
The drawings show embodiments of the present invention; FIG. 1 is a configuration diagram of an X-ray photoelectron spectrometer, FIG. 2 is a plan view of a probe,
Figure 3 is a cross-sectional view showing part of the sample and probe, Figure 4 is a diagram of the energy spectrum obtained with the apparatus shown in Figure 1,
FIG. 5 is a perspective view showing another modification of the probe. 1...X-ray photoelectron spectrometer, 4...
Sample, 12, 50...Print, 14.54...
... Electrode, 16.52 ... Insulator, 20 ...
. . . Electrode application power supply, 22 . . . Electrode selection circuit. Applicant: Shimadzu Corporation Representative 4th Attorney Doma Patent Attorney 1) Hide Kazu Figure 2 V Figure 4 Strong

Claims (1)

【特許請求の範囲】 け)薄肉の非導電性の試料の裏面に電極を接触し、この
電極に電圧を印加して電極位置に近接した前記試料の表
面側の電位を変化させるとともに、この試料の表面にX
線を照射して試料表口]jから放出される光電子のエネ
ルギーを測定することにより、前記試料の電極位置に近
接する表面部分で得られるエネルギースペクトルを、試
料のその他の表面部分で得られるエネルギースペクトル
に対してシフトさせ、両者を区別して位置分解すること
を特徴とするX線光電子分光分析方法。 (2)薄肉の非導電性の試料の裏面に接触されるフロー
ブを有し、このフローブは多数の電極が絶糺物を介して
二次元的に並列配置されて構成される一方、前記各電極
に電圧を印加する電極印加電源ならびにこの電極印加電
源を前記電極に選択的に切換えて接続する電極選択回路
を備えていることを特徴とするX線光電子分光分析装置
[Claims] K) An electrode is brought into contact with the back surface of a thin non-conductive sample, and a voltage is applied to this electrode to change the potential on the surface side of the sample near the electrode position. X on the surface of
By measuring the energy of photoelectrons emitted from the surface of the sample by irradiating it with a beam, the energy spectrum obtained at the surface portion of the sample near the electrode position can be calculated from the energy spectrum obtained at other surface portions of the sample. An X-ray photoelectron spectroscopy method characterized by shifting the spectrum, distinguishing between the two, and performing position resolution. (2) It has a flowb that is brought into contact with the back surface of a thin non-conductive sample, and this flowb is composed of a large number of electrodes arranged two-dimensionally in parallel via an adhesive, and each of the electrodes 1. An X-ray photoelectron spectrometer comprising: an electrode application power source that applies a voltage to the electrode; and an electrode selection circuit that selectively switches and connects the electrode application power source to the electrode.
JP58221689A 1983-11-24 1983-11-24 Method and device for x-ray photoelectron spectrochemical analysis Pending JPS60113137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58221689A JPS60113137A (en) 1983-11-24 1983-11-24 Method and device for x-ray photoelectron spectrochemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58221689A JPS60113137A (en) 1983-11-24 1983-11-24 Method and device for x-ray photoelectron spectrochemical analysis

Publications (1)

Publication Number Publication Date
JPS60113137A true JPS60113137A (en) 1985-06-19

Family

ID=16770734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58221689A Pending JPS60113137A (en) 1983-11-24 1983-11-24 Method and device for x-ray photoelectron spectrochemical analysis

Country Status (1)

Country Link
JP (1) JPS60113137A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119450A (en) * 1983-11-30 1985-06-26 Shimadzu Corp Method and device for x-ray photoelectron spectroscopic analysis
JPH03221853A (en) * 1990-01-26 1991-09-30 Shimadzu Corp X-ray photoelectron analyzing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119450A (en) * 1983-11-30 1985-06-26 Shimadzu Corp Method and device for x-ray photoelectron spectroscopic analysis
JPH0583861B2 (en) * 1983-11-30 1993-11-29 Shimadzu Corp
JPH03221853A (en) * 1990-01-26 1991-09-30 Shimadzu Corp X-ray photoelectron analyzing apparatus

Similar Documents

Publication Publication Date Title
Tamborini et al. Application of secondary ion mass spectrometry to the identification of single particles of uranium and their isotopic measurement
US3678384A (en) Electron beam apparatus
US3103584A (en) Electron microanalyzer system
JPS59163506A (en) Electronic beam measuring device
US4169244A (en) Electron probe testing, analysis and fault diagnosis in electronic circuits
JPH01500548A (en) Photodiode electron beam testing
US4034220A (en) Process and apparatus for the elementary and chemical analysis of a sample by spectrum analysis of the energy of the secondary electrons
Wittmaack Successful operation of a scanning ion microscope with quadrupole mass filter
GB1594597A (en) Electron probe testing analysis and fault diagnosis in electronic circuits
JPS60113137A (en) Method and device for x-ray photoelectron spectrochemical analysis
JPH04334861A (en) Electron spectroscopic image measuring method
Jacka Scanning Auger microscopy: recent progress in data analysis and instrumentation
DE3585533D1 (en) METHOD AND DEVICE FOR CONDITION ANALYSIS.
US5895916A (en) Method and apparatus for adjusting electron beam apparatus
US3479505A (en) Method of operating an ion microprobe using secondary elections
US4740693A (en) Electron beam pattern line width measurement system
JPS62219534A (en) Method and apparatus for measurement of signal related to time during which particle sonde is used
JPS5811569B2 (en) Dense Bunkousouchi
Mogami Beam brightness modulation (BBM) method as applied to Auger electron spectroscopy
JPH0341402Y2 (en)
JP2001004719A (en) Current variation measuring instrument
KR830002115B1 (en) Sample analysis device using particle beam
JPH0828204B2 (en) Local surface analyzer
JPS62167452A (en) X-ray photoelectric spectrometer
Khursheed Scanning electron microscope design for quantitative multicontrast