JPH03221853A - X-ray photoelectron analyzing apparatus - Google Patents

X-ray photoelectron analyzing apparatus

Info

Publication number
JPH03221853A
JPH03221853A JP2017466A JP1746690A JPH03221853A JP H03221853 A JPH03221853 A JP H03221853A JP 2017466 A JP2017466 A JP 2017466A JP 1746690 A JP1746690 A JP 1746690A JP H03221853 A JPH03221853 A JP H03221853A
Authority
JP
Japan
Prior art keywords
sample
ray
potential
photoelectrons
sample base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017466A
Other languages
Japanese (ja)
Other versions
JPH07104301B2 (en
Inventor
Yoshihide Inoue
井上 能英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2017466A priority Critical patent/JPH07104301B2/en
Publication of JPH03221853A publication Critical patent/JPH03221853A/en
Publication of JPH07104301B2 publication Critical patent/JPH07104301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the disturbance effect in measurement of the X-ray photoelectrons radiated from a sample base by grounding the sample base via a voltage source and installing a sample on the sample base via an insulating layer. CONSTITUTION:There is substantially no replenishment of charges from the side of the sample base 1 or there is the replenishment, if any, of just the extremely slight charges even if electrons are released from the sample S by X-ray irradiation and, therefore, the sample S has the potential different from the potential of the sample base 1 when the sample S is held insulated from the sample base 1. A difference by as much as the potential difference between the sample S and the sample base 1 is generated between the acceleration energies of the respective X-ray photoelectrons before the incidence to an electron energy analyzer 5 and the peaks of both electrons are distinctly separated and appear on the energy spectra even if the energies of the respective photoelectrons of the time when the X-ray photoelectrons are released from each of the sample S and the sample base 1 are assumed to be equal. Since a variable voltage is held impressed to the sample base 1, the sample position is so adjusted that the sample has the optimum potential for the energy analyzer 5 by regulating this voltage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はX線光電子分光測定装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an X-ray photoelectron spectrometer.

−スト等で接着固定してX&’ff照射を行っていた。- X&'ff irradiation was performed after fixing with adhesive using a stick or the like.

X線は試料面上の一個所に集中させることができないの
で、試料が小さいときは、照射X線の一部は試料台をも
照射し、試料台からもX線光電子が放出される。従来は
上述したように試料と試料台とを導通させて同電位に保
つようにしていたので、試料から放射させるX線光電子
と試料台から放射されるXn光電子のエネルギーが近接
しているときは、電子のエネルギースペクトル上で、試
料から放射されるX線光電子ビークSと試料台から放射
されるX &’!光電子のビークTが第3図のように重
なり、両者を識別して検出することが困難であり、試料
中の元素の定量が困難であった。
Since X-rays cannot be concentrated on one spot on the sample surface, when the sample is small, a portion of the irradiated X-rays also irradiates the sample stage, and X-ray photoelectrons are also emitted from the sample stage. Conventionally, as mentioned above, the sample and the sample stage were electrically connected to maintain the same potential, so when the energies of the X-ray photoelectrons emitted from the sample and the Xn photoelectrons emitted from the sample stage are close to each other, , on the electron energy spectrum, the X-ray photoelectron beam S emitted from the sample and the X &'! emitted from the sample stage. The photoelectron beams T overlapped as shown in FIG. 3, making it difficult to distinguish and detect the two, making it difficult to quantify the elements in the sample.

(発明が解決しようとする課題〉 X線光電子分光測定で試料台がX線照射を受けることに
より試料台から放射されるX線光電子の測定上の妨害作
用を解消しようとするものである。
(Problems to be Solved by the Invention) The present invention attempts to eliminate the interference effect on measurement of X-ray photoelectrons emitted from the sample stand when the sample stand receives X-ray irradiation during X-ray photoelectron spectroscopy.

〈課題を解決するための手段) 試料と試料台との間を絶縁し、試料台に任意適当な可変
電圧を印加するようにした。
(Means for solving the problem) The sample and the sample stage were insulated, and an arbitrary and appropriate variable voltage was applied to the sample stage.

(作用) 試料と試料台との間が絶縁されていると、X線照射によ
り試料から電子が放出されても、試料台の方からの電荷
の補給が殆んどないかあってもきわめてわづかの電荷補
給しかないから、試料は試料台とは異る電位lこなる。
(Function) If there is insulation between the sample and the sample stage, even if electrons are emitted from the sample due to X-ray irradiation, there will be little or no charge replenishment from the sample stage. Since there is only a small amount of charge replenishment, the sample is at a different potential than the sample stage.

そこで試料および試料台の夫々からX線光電子が放出さ
れるときの各X線光電子のエネルギーが仮に等しいとし
ても、電子エネルギー分析器に入射する迄の各X線光電
子の加速エネルギーの間には試料と試料台との間の電位
差だけの差が生じ、エネルギースペクトル上で両電子の
ピーク1ま明確に分離されて現われる。
Therefore, even if the energy of each X-ray photoelectron is equal when it is emitted from the sample and the sample stage, there is a difference between the acceleration energy of each X-ray photoelectron until it enters the electron energy analyzer. A difference is caused by the potential difference between the electron beam and the sample stage, and peak 1 of both electrons appears clearly separated on the energy spectrum.

試料台には可変電圧が印加されているので、その電圧を
調節することにより、試料がエネルギー分析器に対して
最適の電位となるように試料電位を調節することが可能
である。
Since a variable voltage is applied to the sample stage, by adjusting the voltage, it is possible to adjust the sample potential so that the sample has an optimal potential with respect to the energy analyzer.

(実施例) 第1図に本発明の一実施例を示す。1は試料台で可変電
圧源2を介して接地されている。Sは試料で、試料より
も小さな寸法の両面接着テープ3で試料台1に固定され
ている。4はX線源で試料にX線を照射する。5はエネ
ルギー分析器であり、その中心電位は接地電位に設定し
てあり、6はエネルギー分析器5に印加する電圧の電圧
源で、その出力電圧を換えることによりエネルギー走査
が行われる。7は電子検出器で、8はエネルギースペク
トル表示装置である。
(Example) FIG. 1 shows an example of the present invention. Reference numeral 1 denotes a sample stage, which is grounded via a variable voltage source 2. S is a sample, which is fixed to the sample stage 1 with a double-sided adhesive tape 3 smaller in size than the sample. 4 is an X-ray source that irradiates the sample with X-rays. 5 is an energy analyzer, the center potential of which is set to ground potential, and 6 is a voltage source for applying a voltage to the energy analyzer 5, and energy scanning is performed by changing its output voltage. 7 is an electron detector, and 8 is an energy spectrum display device.

試料にX線を照射すると試料からX、I光電子が放出さ
れる。試料Sと試料台1との間は両面接着テープ3で絶
縁されており、ごくわづかなリーク電流が流れるだけで
あるから、試料Sは試料台1より正電位側にV′だけ高
電位に充電された状態でX線光電子放射電流とリーク電
流とがバランスする。そこで可変電圧源2を調節して試
料台1を一■°ボルトに設定すれば、試料Sは接地電位
となる。しかし実際上、試料Sと試料台1との間の電位
差は不明であるから、エネルギ・−分析器5でエネルギ
ー走査を繰返しながら、電圧源2を調節して、分析上最
も良さそうな電圧を探して、その電圧に設定する。第2
図は本発明によって得られるエネルギースペクトルの一
例を示す。Tは試料台1から放射されるXvp、光電子
のピーク、Sが試料から放射される分析対象のX線光電
子のピーク、Kは試料に含まれる既知元素から放射され
るX線光電子のピークである。点線ピーク1゛′は試料
Sと試料台1とを導通させた従来の分析法による場合の
試料台1からのX線光電子のピークで試料について分析
しようとするピークSと裾の方が重なっていて、ピーク
T′とSとの合成ビークは鎖!+11Qのようになり、
試料台によるピークと試料のピークとを分別検出するこ
とができない。本発明の場合、′r′とTとの間には試
料台1と試料Sとの間の電位差V°に相当するだけのエ
ネルギー差があり、ピーク1゛とSとは充分に分離され
ている。しかしこれだけでは試料Sとエネルギー分析器
間の電位差が不明であり、各ビーク間の相対的エネルギ
ー差は分ってもエネルギーの絶対値は不明である。こ\
で試料中の既知元素のピークにのエネルギーが既知であ
るから、それを基準にして試料中の未知元素のピークS
のエネルギーが判明し、元素同定が可能となる。
When a sample is irradiated with X-rays, X and I photoelectrons are emitted from the sample. Since the sample S and the sample stage 1 are insulated with double-sided adhesive tape 3, and only a very small leakage current flows, the sample S has a higher potential than the sample stage 1 by V' on the positive potential side. In a charged state, the X-ray photoelectron emission current and leakage current are balanced. Therefore, by adjusting the variable voltage source 2 and setting the sample stage 1 to 1° volt, the sample S becomes the ground potential. However, in practice, since the potential difference between the sample S and the sample stage 1 is unknown, the voltage source 2 is adjusted while repeating energy scanning with the energy analyzer 5 to find the voltage that seems most suitable for analysis. Find it and set it to that voltage. Second
The figure shows an example of an energy spectrum obtained by the present invention. T is the peak of Xvp and photoelectrons emitted from the sample stage 1, S is the peak of X-ray photoelectrons to be analyzed emitted from the sample, and K is the peak of X-ray photoelectrons emitted from known elements contained in the sample. . The dotted peak 1' is the peak of X-ray photoelectrons from the sample stage 1 in the case of the conventional analysis method in which the sample S and the sample stage 1 are electrically connected, and its tail overlaps with the peak S to be analyzed for the sample. So, the composite peak of peak T' and S is a chain! It will be like +11Q,
It is not possible to separately detect the peak caused by the sample stage and the peak of the sample. In the case of the present invention, there is an energy difference between 'r' and T that is equivalent to the potential difference V° between sample stage 1 and sample S, and peaks 1' and S are sufficiently separated. There is. However, with this alone, the potential difference between the sample S and the energy analyzer is unknown, and even if the relative energy difference between each peak is known, the absolute value of the energy is unknown. child\
Since the energy of the peak of the known element in the sample is known, the peak S of the unknown element in the sample is calculated based on it.
The energy of the element is determined, making it possible to identify the element.

本発明の場合、試料はX線照射により帯電することにな
るが、試料に電子線を照射する電子線源を設け、試料の
帯電を中和する方法を併用してもよい。
In the case of the present invention, the sample is charged by X-ray irradiation, but a method may also be used in which an electron beam source for irradiating the sample with an electron beam is provided to neutralize the charge on the sample.

(発明の効果〉 本発明によれば寸法の小さな試料で、試料台が試料から
はみ出してXvA照射を受けるような場合であっても、
エネルギースペクトル上で試料台からのX線光電子のピ
ークを試料成分のピークより分離することが可能となる
ため、照射X線を試料だけを照射するよ・うに小さな試
料よりも更に細く絞るような必要がなく、試料全体をX
線照射して、試料全体から放射されるX線光電子をエネ
ルギー分析器に導入できるので信号強度を上げることが
でき、分析感度が向上できる。
(Effects of the Invention) According to the present invention, even when the sample is small in size and the sample stage protrudes from the sample and is exposed to XvA irradiation,
Since it is possible to separate the peak of X-ray photoelectrons from the sample stage from the peak of sample components on the energy spectrum, it is necessary to focus the irradiated X-rays even more narrowly than for small samples so that only the sample is irradiated. There is no
Since the X-ray photoelectrons emitted from the entire sample can be introduced into the energy analyzer by irradiation with radiation, the signal strength can be increased and the analysis sensitivity can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例装置の構成国、第2図は同実
施例によるX線光電子のエネルギースペクトル図、第3
図は従来例の問題点を説明するグラフである。 1・・・試料台、2・・・電圧源、3・・・両面接着テ
ープ、4・・・X線源、5・・・電子エネルギー分析器
、6・・・電子検出器、7・・・表示装置。
Fig. 1 shows the constituent countries of an apparatus according to an embodiment of the present invention, Fig. 2 shows an energy spectrum diagram of X-ray photoelectrons according to the same embodiment, and Fig. 3
The figure is a graph explaining the problems of the conventional example. DESCRIPTION OF SYMBOLS 1... Sample stage, 2... Voltage source, 3... Double-sided adhesive tape, 4... X-ray source, 5... Electron energy analyzer, 6... Electron detector, 7...・Display device.

Claims (1)

【特許請求の範囲】[Claims] 試料台を電圧源を介して接地し、試料を絶縁層を介して
試料台上に設置するようにしたことを特徴とするX線光
電子分析装置。
An X-ray photoelectron analysis apparatus characterized in that a sample stage is grounded via a voltage source, and a sample is placed on the sample stage through an insulating layer.
JP2017466A 1990-01-26 1990-01-26 X-ray photoelectron analyzer Expired - Lifetime JPH07104301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017466A JPH07104301B2 (en) 1990-01-26 1990-01-26 X-ray photoelectron analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017466A JPH07104301B2 (en) 1990-01-26 1990-01-26 X-ray photoelectron analyzer

Publications (2)

Publication Number Publication Date
JPH03221853A true JPH03221853A (en) 1991-09-30
JPH07104301B2 JPH07104301B2 (en) 1995-11-13

Family

ID=11944796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017466A Expired - Lifetime JPH07104301B2 (en) 1990-01-26 1990-01-26 X-ray photoelectron analyzer

Country Status (1)

Country Link
JP (1) JPH07104301B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159367A (en) * 1993-12-08 1995-06-23 Nikkiso Co Ltd Reference electrode
JP2010112873A (en) * 2008-11-07 2010-05-20 Jeol Ltd Spectroscopic analyzer
US8254737B2 (en) 2004-08-23 2012-08-28 Molex Incorporated System and tapered waveguide for improving light coupling efficiency between optical fibers and integrated planar waveguides and method of manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113137A (en) * 1983-11-24 1985-06-19 Shimadzu Corp Method and device for x-ray photoelectron spectrochemical analysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113137A (en) * 1983-11-24 1985-06-19 Shimadzu Corp Method and device for x-ray photoelectron spectrochemical analysis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159367A (en) * 1993-12-08 1995-06-23 Nikkiso Co Ltd Reference electrode
US8254737B2 (en) 2004-08-23 2012-08-28 Molex Incorporated System and tapered waveguide for improving light coupling efficiency between optical fibers and integrated planar waveguides and method of manufacturing same
JP2010112873A (en) * 2008-11-07 2010-05-20 Jeol Ltd Spectroscopic analyzer

Also Published As

Publication number Publication date
JPH07104301B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
US20230288355A1 (en) Electron spectroscopy based techniques for determining various chemical and electrical characteristics of samples
JPH03221853A (en) X-ray photoelectron analyzing apparatus
JPS62223659A (en) Mass spectroscope
Shiraki et al. Measurements of X-ray photoelectron diffraction using high angular resolution and high transmission electron energy analyzer
JPH07183343A (en) X-ray photoelectric spectral analyzer
JP2881340B2 (en) Photoelectron spectroscopy analysis method and apparatus
JPH0230644B2 (en)
JPH05296947A (en) Electron beam diffraction measuring device
KR101769709B1 (en) Method for aligning for spectrum module of wavelength dispersive x-ray fluorescence analyzer
JPS62113052A (en) Element analysis
JPH0342622Y2 (en)
JPS62229748A (en) Auger electron spectrograph
JPS62226550A (en) Ion exciting auger electron spectroscope
SU1091251A1 (en) Process for microanalyzing heterophase objects
SU1117505A1 (en) Method of x-ray spectrometric analysis
JPS63292555A (en) Electron beam apparatus
JP2001133423A (en) Electron spectrometer and analysis method
JPH0381943A (en) Secondary ion mass spectrometer
JPH09265938A (en) Charged particle detecting device
JPH01194256A (en) Charged particle analyzing device for elimination of electrostatic charging
JPH09190798A (en) Charged particle measuring method
JPH0223974B2 (en)
JPH0434349A (en) X-ray fluorescence analyzer
JP2001221778A (en) Dioxin measuring method and device
JP2009063456A (en) Method and device for spectroscopical analysis