JPH07225136A - Method and apparatus for measuring electric signal - Google Patents

Method and apparatus for measuring electric signal

Info

Publication number
JPH07225136A
JPH07225136A JP6036544A JP3654494A JPH07225136A JP H07225136 A JPH07225136 A JP H07225136A JP 6036544 A JP6036544 A JP 6036544A JP 3654494 A JP3654494 A JP 3654494A JP H07225136 A JPH07225136 A JP H07225136A
Authority
JP
Japan
Prior art keywords
signal
sum
frequency
frequencies
modulation signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6036544A
Other languages
Japanese (ja)
Inventor
Masanori Mitome
正則 三留
Takao Kusaka
貴生 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6036544A priority Critical patent/JPH07225136A/en
Publication of JPH07225136A publication Critical patent/JPH07225136A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily measure a second order partial differential coefficient regarding a plurality of variables by adding modulation signals having different frequencies to dependent variables of a signal to be measured and by multiplying obtained signals by an alternate signal of frequencies equivalent to a difference or sum of two modulation signals. CONSTITUTION:A signal to be measured entering from an input terminal 1 enters an adder 6 after extra oscillating components are filtered off. A rectangular wave having a frequency equivalent to a difference or sum of frequencies of two modulation signals created by a rectangular wave generating circuit 5 enters the adder 6 and multiplied by a signal to be measured that is the output of the filter 4. As a result of multiplication, a signal outputted from the adder 6 can be regarded as the sum of a dc signal and an ac signal. The do signal is proportional to a second order partial differential coefficient and is therefore passed through a low-frequency pass filter 7 and amplified by time average, thereby selectively amplifying the second order partial differential coefficient.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気信号の微分スペクト
ルを測定する電気信号測定方法および電気信号測定器に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric signal measuring method and an electric signal measuring instrument for measuring a differential spectrum of an electric signal.

【0002】[0002]

【従来の技術】従来のこの種の電気信号測定方法として
は、以下のようなロックイン検波法が知られている。
2. Description of the Related Art The following lock-in detection method is known as a conventional electric signal measuring method of this type.

【0003】すなわち、ある信号Sが、ある変数xの関
数としてS(x)と表わされるとき、この信号Sの1次
の微分スペクトルdS/dxを得るためには、変数xに
周期的に変化する微小な変調信号Δx(たとえば、正弦
波、三角波、矩形波など)を加えて信号Sの測定を行
う。測定の結果、得られる信号は、S(x+Δx)と表
わすことができるが、変調信号Δxの振幅が小さいと
き、上記信号は下式のように表わすことができる。
That is, when a certain signal S is expressed as S (x) as a function of a certain variable x, in order to obtain the first derivative spectrum dS / dx of this signal S, the variable x is periodically changed. The signal S is measured by adding a minute modulation signal Δx (for example, a sine wave, a triangular wave, a rectangular wave, etc.). The signal obtained as a result of the measurement can be expressed as S (x + Δx), but when the amplitude of the modulation signal Δx is small, the signal can be expressed as the following equation.

【0004】[0004]

【数1】 この得られた信号に、微小変調信号Δxと同じ周期で変
化する矩形の参照信号を掛け算することにより、上記変
調信号と同じ振動数を持った信号成分は直流信号に、ま
た、それ以外の振動数成分および特定な周期性を持たな
い成分(特に、ノイズ)は交流信号にそれぞれ変換され
る。その後、適当な時定数を持った低周波通過フィルタ
ーを通すことによって、直流成分すなわち変調信号Δx
と同じ振動数を持った1次微分係数dS/dxのみが選
択的に増幅される。
[Equation 1] By multiplying the obtained signal by a rectangular reference signal that changes in the same cycle as the minute modulation signal Δx, a signal component having the same frequency as the above-mentioned modulation signal becomes a DC signal, and other signals The number component and the component having no specific periodicity (in particular, noise) are converted into AC signals. After that, a direct current component, that is, the modulation signal Δx is passed through a low frequency pass filter having an appropriate time constant.
Only the first derivative dS / dx having the same frequency as is selectively amplified.

【0005】また、同様に、変調信号の振幅数の2倍に
相当する振動数を持った矩形波を掛け算することによっ
て、2次微分係数d2 S/dx2 のみが選択的に増幅さ
れる。
Similarly, by multiplying a rectangular wave having a frequency corresponding to twice the amplitude number of the modulation signal, only the second derivative d 2 S / dx 2 is selectively amplified. .

【0006】このロックイン検波法を用いると、信号S
(x)が小さくノイズに埋もれている場合でも、選択的
に微分信号を拾いだすことができるもので、この特徴を
生かし、分光分析、オージェ電子分光、およびラマン分
光などに広く応用されている。
When this lock-in detection method is used, the signal S
Even if (x) is small and buried in noise, the differential signal can be selectively picked up, and by utilizing this feature, it is widely applied to spectroscopic analysis, Auger electron spectroscopy, Raman spectroscopy and the like.

【0007】[0007]

【発明が解決しようとしている課題】以上のような従来
の電気信号測定方法としてのロックイン検波法では、1
変数に関する微分スペクトルは、2次以上であっても増
幅することができるが、異なる変数に関する2階以上の
偏微分係数を選択的に増幅することは出来ない。このた
め、複数の物理量に対して測定精度を向上させることが
できない。
In the lock-in detection method as the conventional electric signal measuring method as described above, 1
The differential spectrum relating to a variable can be amplified even if it is second-order or higher, but it is not possible to selectively amplify the second-order or higher partial differential coefficients relating to different variables. Therefore, the measurement accuracy cannot be improved for a plurality of physical quantities.

【0008】たとえば、オージェ電子分光を用いた元素
の表面分布測定においては、オージェ電子線量およびそ
の位置による変化を精度良く測定する必要がある。しか
し、上記ロックイン検波法は、もっぱら微小なオージェ
電子信号を増幅するためにしか用いられなかったため、
微細な分布変化を高い空間分解能で明瞭に測定すること
は困難であるという問題点があった。
For example, in measuring the surface distribution of an element using Auger electron spectroscopy, it is necessary to accurately measure the Auger electron dose and its change depending on the position. However, the lock-in detection method was used only to amplify a small Auger electronic signal,
There is a problem that it is difficult to measure fine distribution changes clearly with high spatial resolution.

【0009】本発明は上記のような問題点を解消した電
気信号測定方法および電気信号測定器を得る目的とす
る。
An object of the present invention is to obtain an electric signal measuring method and an electric signal measuring device which solve the above problems.

【0010】[0010]

【課題を解決するための手段】請求項1記載に係る電気
信号測定方法は、被測定信号の従属変数に対して、それ
ぞれ異なった振動数を持った変調信号を加えて測定を行
い、かつ、その得られた信号に対して、2つの変調信号
の振動数の差または和に相当する振動数を持った交流信
号を掛け算することにより、被測定信号の複数変数に関
する2階の偏微分係数を容易、かつ感度よく測定するこ
とができる。
According to a first aspect of the present invention, there is provided an electric signal measuring method, wherein modulation signals having different frequencies are added to dependent variables of a signal to be measured, and the electric signal is measured. By multiplying the obtained signal by an AC signal having a frequency corresponding to the difference or sum of the frequencies of the two modulation signals, the second-order partial differential coefficient relating to a plurality of variables of the signal under measurement can be obtained. It can be measured easily and with high sensitivity.

【0011】請求項2記載に係る電気信号測定装置は、
被測定信号から不要な振動数成分を取り除く帯域通過フ
ィルターと、入力した2つの変調信号のそれぞれの振動
数の差または和に相当する振動数を持った交流信号を作
る交流信号作成回路と、前記帯域通過フィルターの出力
と前記交流信号作成回路の出力とを掛け算する乗算器
と、前記乗算器の出力を通し、時間平均を取って2階の
偏微分係数を選択的に増幅する低周波通過フィルターと
を備えたことにより、上記請求項1の電気信号測定方法
を実施する装置を簡単な構成で実現することができる。
An electric signal measuring device according to claim 2 is
A band-pass filter for removing unnecessary frequency components from the signal under measurement, an AC signal generation circuit for generating an AC signal having a frequency corresponding to the difference or sum of the frequencies of the two input modulation signals, and A multiplier for multiplying the output of the band-pass filter and the output of the AC signal generating circuit, and a low-frequency pass filter for selectively amplifying the second-order partial differential coefficient by taking the time average through the output of the multiplier. By including the above, it is possible to realize an apparatus that implements the electrical signal measuring method according to claim 1 with a simple configuration.

【0012】[0012]

【実施例】【Example】

実施例1.図1は本発明電気信号測定装置の実施例1を
示すブロック図であり、1は被測定信号の入力端子、2
および3は変調信号の入力端子、4は不要な振動数成分
を取り除くための帯域通過フィルターで、入力信号であ
る被測定信号に不要な振動数成分がない場合には、必ず
しも必要ではない。5は入力端子2および3から入った
2つの変調信号から、それぞれの振動数の差または和に
相当する振動数を持った矩形波を作る矩形波作成回路、
6は帯域通過フィルター4と矩形波作成回路5との出力
を掛け算する乗算器、7は低周波数通過フィルター、8
は最終出力端子である。
Example 1. First Embodiment FIG. 1 is a block diagram showing a first embodiment of an electric signal measuring device of the present invention.
Reference numerals 3 and 3 are input terminals for the modulation signal, and 4 is a band-pass filter for removing unnecessary frequency components, which are not necessarily required when the measured signal as an input signal does not have unnecessary frequency components. Reference numeral 5 is a rectangular wave generation circuit for generating a rectangular wave having a frequency corresponding to the difference or sum of the respective frequencies from the two modulation signals input from the input terminals 2 and 3,
6 is a multiplier for multiplying the outputs of the band pass filter 4 and the rectangular wave generating circuit 5, 7 is a low frequency pass filter, 8
Is the final output terminal.

【0013】次に動作について説明する。入力端子1か
ら入った被測定信号Sは、帯域通過フィルター4によっ
て余分な振動数成分が取り除かれた後、乗算器6に入
る。乗算器に入る前の電気信号の例を、図2(a)に示
す。さらに、この乗算器6には矩形波発生回路5によっ
て作られた2つの変調信号の振動数の差または和に相当
する振動数を持った矩形波が入り、上記帯域通過フィル
ター4の出力である被測定信号Sと掛け算が行われる。
この矩形波の例を、図2(b)に示した。
Next, the operation will be described. The signal under test S input from the input terminal 1 enters the multiplier 6 after the excess frequency component is removed by the bandpass filter 4. An example of the electric signal before entering the multiplier is shown in FIG. Further, a square wave having a frequency corresponding to the difference or the sum of the frequencies of the two modulation signals generated by the square wave generating circuit 5 enters the multiplier 6 and is the output of the band pass filter 4. The signal under measurement S is multiplied.
An example of this rectangular wave is shown in FIG.

【0014】掛け算の結果、乗算器6から出力される信
号は、たとえば、図2(c)のようになる。この出力信
号は、図2(d)のように直流信号と交流信号の和と見
做すことができる。このうち、直流信号は2階の偏微分
係数に比例することから、低周波通過フィルター7を通
し、時間平均を取ってから増幅することによって、2階
の偏微分係数を選択的に増幅することができる。
As a result of the multiplication, the signal output from the multiplier 6 becomes, for example, as shown in FIG. This output signal can be regarded as the sum of the DC signal and the AC signal as shown in FIG. Among them, since the DC signal is proportional to the second-order partial differential coefficient, it is possible to selectively amplify the second-order partial differential coefficient by passing it through the low-frequency pass filter 7, taking the time average, and then amplifying it. You can

【0015】以下、論理的に説明する。被測定信号Sが
2つの変数xおよびyの関数として、S(x,y)と表
わされるとき、この変数xおよびyに、それぞれ異なっ
た振動数を持った変調ΔxとΔyを加えて測定を行う
と、得られる信号はS(x+Δx,y+Δy)と表わさ
れる。変調の振幅が小さいとき、この信号は下式のよう
に表わされる。
A logical explanation will be given below. When the signal S to be measured is expressed as S (x, y) as a function of two variables x and y, modulations Δx and Δy having different frequencies are added to the variables x and y to perform measurement. When done, the resulting signal is represented as S (x + Δx, y + Δy). When the modulation amplitude is small, this signal is expressed as

【0016】[0016]

【数2】 ここでは簡単のため、変調信号ΔxおよびΔyが、それ
ぞれ振動数ωx およびωy の正弦波であるものとする。
この場合、上式は次のようにかける。
[Equation 2] Here, for simplicity, it is assumed that the modulation signals Δx and Δy are sine waves having frequencies ω x and ω y , respectively.
In this case, the above equation is applied as follows.

【0017】[0017]

【数3】 ここで、δx およびδy は、それぞれ、変調信号Δxと
Δyの振幅である。さらに、この式は下式のように書換
えることができる。
[Equation 3] Here, δ x and δ y are the amplitudes of the modulated signals Δx and Δy, respectively. Further, this equation can be rewritten as the following equation.

【0018】[0018]

【数4】 これにより、ωx またはωy もしくはこれらの整数倍の
振動数を持った矩形波を掛け算することで、通常のロッ
クイン検波法と同様に、ある1つの変数に関する多次微
分係数を求めることができる。
[Equation 4] As a result, by multiplying ω x or ω y or a rectangular wave having a frequency that is an integral multiple of these, a multi-order differential coefficient for a certain variable can be obtained as in the usual lock-in detection method. it can.

【0019】これに対して、変調信号の振動数の差ωx
−ωy または和ωx +ωy がωx やωy と一致していな
ければ、これら差または和の振動数を持った矩形波を掛
け算することによって、異なる変数に関する2階の偏微
分係数∂2S/∂x ∂y を選択的に増幅することができ
る。
On the other hand, the frequency difference ω x of the modulated signals
If −ω y or the sum ω x + ω y does not match with ω x or ω y , multiply the square wave with the difference or sum frequency to obtain the second-order partial differential coefficient ∂ 2 S / ∂x ∂y can be selectively amplified.

【0020】ここで、振動数の差または和に相当する矩
形波を作成する方法としては、如何なる方法でもよい
が、変調信号が正弦波であった場合、例えば次のような
方法が用いることができる。即ち、各変調信号がsin(ω
xt)ならびにsin(ωyt)と表されるとき、まず、これらの
変調信号を乗算器に通し変調信号の積を取る。
Here, any method may be used to create the rectangular wave corresponding to the difference or sum of the frequencies, but when the modulation signal is a sine wave, for example, the following method is used. it can. That is, each modulated signal is sin (ω
When expressed as x t) and sin (ω y t), first, these modulation signals are passed through a multiplier to take the product of the modulation signals.

【0021】その結果得られる信号は、The resulting signal is

【0022】[0022]

【数5】 と表される。[Equation 5] Is expressed as

【0023】この信号から変調信号の振動数の差、即ち
ω−ωの振動数を持った成分だけを取り出すため
に、ω+ω程度の振動数を除去できる低周波数通過
フィルターに通す。逆にω+ωの振動数をまった成
分を取り出すためには、ω−ω程度の振動数を除去
できる高周波通過フィルターに通せばよい。その結果、
得られる信号はω−ωまたはω+ωの振動数を持っ
た正弦波となる。この正弦波を0ボルトをしきい値とす
るコンパレーターに通すことによって、振動数ω−ω
もしくはω+ωの矩形波を作ることができる。
In order to extract only the frequency difference of the modulation signal, that is, the component having the frequency of ω xy from this signal, it is passed through a low frequency pass filter capable of removing the frequency of about ω x + ω y. . On the contrary, in order to take out the component in which the frequency of ω x + ω y is fixed, it is sufficient to pass it through a high-frequency pass filter capable of removing the frequency of about ω x −ω y . as a result,
The obtained signal becomes a sine wave having a frequency of ω-ω or ω x + ω y . By passing this sine wave through a comparator with a threshold value of 0 V, the frequency ω x −ω
A square wave of y or ω x + ω y can be created.

【0024】以下、この方法を、通常のロックイン検波
法と区別して、複参照信号型ロックイン検波法と称す
る。
Hereinafter, this method will be referred to as a double reference signal type lock-in detection method, in distinction from the normal lock-in detection method.

【0025】実施例2.次に、上記複参照信号型ロック
イン検波法をオージェ電子分光法に応用した実施例2に
ついて説明する。オージェ電子分光法を用いて表面の元
素分布を測定するとき、一般に、測定したい元素に特有
のエネルギーを持った電子のみが電子エネルギー分析器
を通過できるように調整し、入射電子線を表面上で走査
することによって、表面上の各場所から特有エネルギー
を持って放出される電子量を測定する。通常オージェ電
子線量は大変微弱なため、電子エネルギー分析器を通過
する電子エネルギーに変調信号を掛け、この変調と同周
期の矩形波を電子線強度信号に掛け算することで、特有
エネルギーを持った電子線量を選択的に増幅する方法が
取られる。
Example 2. Next, a second embodiment in which the above-mentioned multiple reference signal type lock-in detection method is applied to Auger electron spectroscopy will be described. When measuring the element distribution on the surface using Auger electron spectroscopy, generally, it is adjusted so that only the electrons having the energy specific to the element to be measured can pass through the electron energy analyzer, and the incident electron beam on the surface is adjusted. By scanning, the amount of electrons emitted from each location on the surface with specific energy is measured. Since the Auger electron dose is usually very weak, the electron energy passing through the electron energy analyzer is multiplied by a modulation signal, and a rectangular wave with the same period as this modulation is multiplied by the electron beam intensity signal to obtain an electron with a specific energy. A method of selectively amplifying the dose is taken.

【0026】ここでは、元素分布の様子をより高精度に
測定する目的から、さらに、入射電子線を走査するため
の偏向コイルにかかる電圧にも変調信号をかけ、先の電
子エネルギー分析器を通過する電子エネルギーにかけた
変調信号の振動数との差に相当する矩形波を用いて、複
参照信号型ロックイン検波測定を行った。その結果、元
素分布の微分像が得られ、表面元素分布の境界が明瞭に
観察することができる。
Here, for the purpose of measuring the state of element distribution with higher accuracy, a modulation signal is also applied to the voltage applied to the deflection coil for scanning the incident electron beam, and the voltage is passed through the electron energy analyzer. The double reference signal type lock-in detection measurement was performed using a rectangular wave corresponding to the difference between the frequency of the modulated signal and the electron energy. As a result, a differential image of the element distribution is obtained, and the boundary of the surface element distribution can be clearly observed.

【0027】実施例3.次に、複参照信号型ロックイン
検波法を走査型トンネル顕微鏡、走査型トンネル分光法
に応用した実施例3について説明する。
Example 3. Next, a third embodiment in which the multiple reference signal type lock-in detection method is applied to a scanning tunneling microscope and a scanning tunneling spectroscopy will be described.

【0028】試料と探針の間に印加する電圧(バイアス
電圧)に、変調信号をかけながら試料表面上を走査する
ことによって、試料表面上の各場所における電圧−電流
特性を得ることができ、各場所における元素分布の情報
を得ることができる。ここでは、さらに、探針の走査を
つかさどる圧電素子にかかる電圧にも変調信号をかけて
測定を行った。得られる信号から、バイアス電圧にかか
る変調信号の振動数と、圧電素子にかかる電圧にかかる
変調信号の振動数との和に相当する振動数を持った矩形
波を用いて、複参照信号型ロックイン検波測定を行った
ところ、走査型トンネル分光画像の微分像を得ることが
でき、試料表面の元素分布が通常の方法より明瞭に観察
することができる。
By scanning the surface of the sample while applying the modulation signal to the voltage (bias voltage) applied between the sample and the probe, the voltage-current characteristic at each place on the surface of the sample can be obtained. Information on element distribution at each location can be obtained. Here, the modulation signal is also applied to the voltage applied to the piezoelectric element that controls the scanning of the probe, and the measurement is performed. From the obtained signal, using a rectangular wave having a frequency corresponding to the sum of the frequency of the modulation signal applied to the bias voltage and the frequency of the modulation signal applied to the voltage applied to the piezoelectric element, a double reference signal type lock is used. When the in-detection measurement is performed, a differential image of the scanning tunneling spectroscopic image can be obtained, and the element distribution on the sample surface can be observed more clearly than in the usual method.

【0029】[0029]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、通常のロックイン検波法では測定できなか
った被測定信号の複数変数に関する2階の偏微分係数
を、容易にかつ感度良く測定することができる電気信号
測定方法を得ることができた。
As described above, according to the first aspect of the present invention, the second-order partial differential coefficient relating to a plurality of variables of the signal under measurement that cannot be measured by the ordinary lock-in detection method can be easily and It was possible to obtain an electric signal measuring method capable of measuring with high sensitivity.

【0030】請求項2記載の発明によれば、上記電気信
号測定方法を実施する電気信号測定装置を簡単な構成で
得ることができた。
According to the second aspect of the invention, the electric signal measuring apparatus for carrying out the electric signal measuring method can be obtained with a simple structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1による電気信号測定装置を
示すブロック図
FIG. 1 is a block diagram showing an electric signal measuring device according to a first embodiment of the present invention.

【図2】 図1の各部の信号波形図FIG. 2 is a signal waveform diagram of each part in FIG.

【符号の説明】[Explanation of symbols]

4 帯域通過フィルター 5 矩形波作成回路 6 乗算器 7 低周波数通過フィルター 4 Band pass filter 5 Square wave generation circuit 6 Multiplier 7 Low frequency pass filter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定信号の従属変数に対して、それぞ
れ異なった振動数を持った変調信号を加えて測定を行
い、かつ、その得られた信号に対して、2つの変調信号
の振動数の差または和に相当する振動数を持った交流信
号を掛け算することを特徴とする電気信号測定方法。
1. The measurement is performed by adding modulation signals having different frequencies to the dependent variable of the signal under measurement, and the frequencies of two modulation signals are obtained for the obtained signals. A method for measuring an electric signal, characterized in that an AC signal having a frequency corresponding to the difference or the sum of is multiplied.
【請求項2】 被測定信号から不要な振動数成分を取り
除く帯域通過フィルターと、入力した2つの変調信号の
それぞれの振動数の差または和に相当する振動数を持っ
た交流信号を作る交流信号作成回路と、前記帯域通過フ
ィルターの出力と前記交流信号作成回路の出力とを掛け
算する乗算器と、前記乗算器の出力を通し、時間平均を
取って2階の偏微分係数を選択的に増幅する低周波通過
フィルターとを備えたことを特徴とする電気信号測定装
置。
2. A bandpass filter for removing unnecessary frequency components from a signal under measurement, and an AC signal for producing an AC signal having a frequency corresponding to the difference or sum of the frequencies of two input modulation signals. A generation circuit, a multiplier that multiplies the output of the band-pass filter and the output of the AC signal generation circuit, and the output of the multiplier, take the time average, and selectively amplify the second-order partial differential coefficient. An electric signal measuring device, comprising:
JP6036544A 1994-02-09 1994-02-09 Method and apparatus for measuring electric signal Pending JPH07225136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6036544A JPH07225136A (en) 1994-02-09 1994-02-09 Method and apparatus for measuring electric signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6036544A JPH07225136A (en) 1994-02-09 1994-02-09 Method and apparatus for measuring electric signal

Publications (1)

Publication Number Publication Date
JPH07225136A true JPH07225136A (en) 1995-08-22

Family

ID=12472720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6036544A Pending JPH07225136A (en) 1994-02-09 1994-02-09 Method and apparatus for measuring electric signal

Country Status (1)

Country Link
JP (1) JPH07225136A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231147A (en) * 1989-04-10 1993-07-27 Rheox, Inc. Thermosetting polyurethane structural adhesive compositions and processes for producing the same
JP2000028624A (en) * 1998-05-04 2000-01-28 Internatl Business Mach Corp <Ibm> Scanning force microscope and control of movement for probe tip thereof
JP2002365194A (en) * 2001-06-12 2002-12-18 Yuzo Mori High-frequency pulse scanning tunneling microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231147A (en) * 1989-04-10 1993-07-27 Rheox, Inc. Thermosetting polyurethane structural adhesive compositions and processes for producing the same
JP2000028624A (en) * 1998-05-04 2000-01-28 Internatl Business Mach Corp <Ibm> Scanning force microscope and control of movement for probe tip thereof
JP2002365194A (en) * 2001-06-12 2002-12-18 Yuzo Mori High-frequency pulse scanning tunneling microscope

Similar Documents

Publication Publication Date Title
CN101490564B (en) Electric potential sensor
EP0173955B1 (en) A method and device for detecting a specific acoustic spectral feature
US6970738B1 (en) Complex impedance spectrometer using parallel demodulation and digital conversion
ES2044593T3 (en) METHOD AND ARRANGEMENT FOR CONDUCTING A SPECTRAL ANALYSIS OF A SIGNAL AT ONE OR MULTIPLE MEASUREMENT POINTS.
JP2744742B2 (en) Gas concentration measuring method and its measuring device
US20040116080A1 (en) Time resolved RF plasma impedance meter
JP3122144B2 (en) How to get the intermediate frequency response of an instrument
JPH07225136A (en) Method and apparatus for measuring electric signal
JPS614147A (en) Method of detecting voltage of measuring point and forming image as well as devide therefor
JP3023855B2 (en) Measurement device for hysteresis characteristics
SU873080A2 (en) Method of signal deactivation in electron paramagnetic resonance (epr) spectrometer
US10866141B2 (en) Device and method for spectral analysis
JPS60202329A (en) Light-path-noise suppressing modulation system in spectrochemical analysis device using variable wavelength laser
Rietveld et al. Highly sensitive picoampere meter
Leger et al. Combined use of a lock-in detector and a multichannel analyser for 1/f noise application to tunneling spectroscopy
RU2088945C1 (en) Method for spectrum analysis of broadband shf noise signals and device for its realization
JP3000746B2 (en) Method for measuring characteristics of semiconductor device
RU2080605C1 (en) Method of examination of electromagnetic fields of surfaces
HU213198B (en) Method and apparatus for measuring concentration of charge carriers in semiconductor materials
Clarke An electronic probability density machine
SU395861A1 (en) INVENTIONS
RU2532599C1 (en) Electrical field intensity measurement device
JPH03183145A (en) Electron beam apparatus
JPH06273451A (en) Ripple voltage-measuring apparatus
JPS63221593A (en) Measuring instrument of plasma energy distribution