JPS61143559A - Reinforcing rod for concrete having superior salt resistance - Google Patents

Reinforcing rod for concrete having superior salt resistance

Info

Publication number
JPS61143559A
JPS61143559A JP26527784A JP26527784A JPS61143559A JP S61143559 A JPS61143559 A JP S61143559A JP 26527784 A JP26527784 A JP 26527784A JP 26527784 A JP26527784 A JP 26527784A JP S61143559 A JPS61143559 A JP S61143559A
Authority
JP
Japan
Prior art keywords
concrete
steel
reinforcing bars
salt
salt resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26527784A
Other languages
Japanese (ja)
Other versions
JPS6254857B2 (en
Inventor
Haruo Shimada
島田 春夫
Yoshiaki Sakakibara
榊原 義明
Takashi Waseda
早稲田 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26527784A priority Critical patent/JPS61143559A/en
Priority to US06/803,284 priority patent/US4915901A/en
Priority to AU50703/85A priority patent/AU556118B2/en
Priority to CA000496811A priority patent/CA1273511A/en
Priority to GB8531039A priority patent/GB2168380B/en
Priority to GB8611945A priority patent/GB2174407B/en
Publication of JPS61143559A publication Critical patent/JPS61143559A/en
Priority to AU61174/86A priority patent/AU605465B2/en
Publication of JPS6254857B2 publication Critical patent/JPS6254857B2/ja
Priority to CA000615704A priority patent/CA1285402C/en
Granted legal-status Critical Current

Links

Landscapes

  • Reinforcement Elements For Buildings (AREA)
  • Heat Treatment Of Steel (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To obtain a reinforcing rod for concrete having superior salt resistance by incorporating Ni and W into a steel having reduced Si and S contents. CONSTITUTION:The composition of a reinforcing rod for concrete is composed of, by weight, 0.001-1% C, 0.001-0.05% Si, 0.01-2% Mn, 0.001-0.025% P, <0.005% S, 1-5.5% Ni, 0.2-1% W, 0.001-0.1% Al, 0.0001-0.1% Ca and/or Ce and the balance Fe with inevitable impurities. The composition may furthecontain one or more among 0.01-0.2% each of Nb, Ti, V and Mo and 0.01-0.5% each of Cu and Cr.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は海砂使用のコンクリート構造物海浜地帯の橋
梁用コンクリート、砂漁地帯の建築用コンクリート、海
洋構造物コンクリート等、塩害に曝らされるコンクリー
トの耐久性を維持するために埋゛設した鉄筋自体の耐食
性を飛躍的に向上させたものである。
[Detailed Description of the Invention] (Field of Industrial Application) This invention is applicable to concrete structures using sea sand, concrete for bridges in coastal areas, concrete for buildings in sand fishing areas, concrete for marine structures, etc. that are exposed to salt damage. In order to maintain the durability of concrete, the corrosion resistance of the embedded reinforcing bars themselves has been dramatically improved.

(従来の技術) 塩害にさらされたコンクリートの耐久性を維持するため
には種々の方法があるが、鉄筋自体の耐塩性を向上させ
たものとしては本願発明者等が中心となって開発したC
u、 W共存の鉄筋(特公昭55−22546号、!#
開昭59−44457号各公報)、3.5%N1t−添
加したもの(特開昭57−48054号公報)などがあ
る。その他耐塩性のある鉄筋として約24Crを含んだ
ものが公表(日本建築学会大会学術講演概要集、p22
3〜224、昭和58年9月)されている。
(Prior art) There are various methods to maintain the durability of concrete exposed to salt damage, but the inventors of this application have developed a method that improves the salt resistance of the reinforcing bars themselves. C
U, W coexisting reinforcing bars (Special Publication No. 55-22546,!#
(Japanese Patent Application Laid-open No. 57-48054) and 3.5% N1t-added (Japanese Patent Application Laid-Open No. 57-48054). Other salt-resistant reinforcing bars containing approximately 24Cr have been published (Collection of Abstracts of Academic Lectures at the Architectural Institute of Japan, p. 22)
3-224, September 1983).

(発明が解決しようとする問題点) 本願発明者等がすでに公表した上記のコンクリート用鉄
筋で、塩害に対して抵抗力の大きいコンクリート構造物
の製造が可能になっているが、最近、コンクリート中に
蓄積される塩分がかなシ高濃度になっても著しく優れた
耐塩性が要求されている。具体的には水溶液中に換算し
て1.2チ〜3.6%NaCJ、コンクリート中の砂中
含有量に換算して0.3〜1. O% NiCJで腐食
速度の最も大きい塩分濃度で発錆無ないし極微の耐塩性
鉄筋の開発が要望されつつある。
(Problems to be Solved by the Invention) It has become possible to manufacture concrete structures with high resistance to salt damage using the above-mentioned reinforcing bars for concrete, which the inventors of the present application have already announced. Remarkably excellent salt tolerance is required even if the salt accumulated in the water reaches a very high concentration. Specifically, the content is 1.2 to 3.6% NaCJ in aqueous solution, and 0.3 to 1% in terms of content in sand in concrete. O% There is a growing demand for the development of salt-resistant reinforcing bars that exhibit minimal or no rusting at the salt concentration where the corrosion rate is highest in NiCJ.

本発明は上記の要望に応えるために特に高濃度の塩分領
域においてもコノクリート中埋設鉄筋の耐塩性を飛躍的
に向上させることを目的としたもので、特に腐食量大の
もの全零ないし極めて軽微にして上記の問題点を本質的
に改善したものである。
In order to meet the above-mentioned demands, the present invention aims to dramatically improve the salt resistance of reinforcing bars buried in conocret, even in areas with particularly high salt concentrations. This essentially improves the above problems.

(問題点を解決するための手段) 本発明のコンクリート用鉄筋はコンクリート中の高pH
領域で塩分が存在する典型的なコンクリート腐食環境中
において特に優れた耐食性をもち、かつ用途に応じて必
要な機械的性質および経済性を有する鉄筋でC;0.0
01 、to%、5iHQ、001〜0.05 % 、
Mn ; 0.01〜Z OTo、P 、 0.001
〜0.025%、s 、 o、oosチ以下、Ni;L
0〜5.5%、W;0.2超〜1. O%、Aに0.0
01〜α1%、Ca%Ce(La11!:伴ってもよい
)を単独ないし複合して0.0001〜0.1%含有し
て残部鉄および不可避的不純物からなるものを第1発明
とし、これにつづいて次に機械的特性たとえば高張力、
低温靭性などを考慮してNb、Ti%V%Nb、を添加
し、コンクリート打ち込みまでの耐候性を向上するため
にCu、Crt−添加したものを第2発明としている。
(Means for solving the problem) The reinforcing bars for concrete of the present invention have high pH in concrete.
C; 0.0 for reinforcing bars that have particularly excellent corrosion resistance in the typical concrete corrosive environment where salt is present in the area, and have the necessary mechanical properties and economy depending on the application.
01, to%, 5iHQ, 001~0.05%,
Mn; 0.01~ZOTo, P, 0.001
~0.025%, s, o, oos or less, Ni; L
0-5.5%, W; more than 0.2-1. O%, 0.0 to A
The first invention is one containing 0.0001 to 0.1% of Ca%Ce (may be accompanied by La11!), alone or in combination, with the balance consisting of iron and unavoidable impurities. Next, mechanical properties such as high tensile strength,
The second invention is one in which Nb, Ti%V%Nb, etc. are added in consideration of low-temperature toughness, and Cu and Crt- are added in order to improve weather resistance up to concrete pouring.

本発明は高純度鋼に3.5−Niを添加したコンクリー
ト用鉄筋の耐塩性が抜群に優れていることと高濃度の塩
分を含んだコンクリートブロックの高温での乾湿繰シ返
し長期経過後のCu−W系高純度鋼鉄筋の耐食性の優秀
性の両方に着目し、特にNi系高純度鋼にwt−さらに
添加して高濃度の塩分を含んだコンクリート中で飛躍的
な耐塩性が得られるかどうかを検討した結果、予想以上
の相乗効果が得られたものでわる。
The present invention is based on the fact that concrete reinforcing bars made of high-purity steel with 3.5-Ni added have excellent salt resistance, and that concrete blocks containing high concentrations of salt can survive repeated drying and wetting at high temperatures for a long period of time. Focusing on both the excellent corrosion resistance of Cu-W based high purity steel reinforcing bars, in particular, by adding wt- to Ni based high purity steel, dramatic salt resistance can be obtained in concrete containing a high concentration of salt. As a result of considering whether or not it was possible, we found that the synergistic effect was greater than expected.

本発明のように高純度化した鋼、すなわちSl、Sを低
減した鋼にNt、Wを共存させた場合、コンクリートに
接している鉄筋表面に存在する不働態被膜を安定させる
と同時に、不働態被膜の(Fe 。
When Nt and W are made to coexist in highly purified steel as in the present invention, that is, steel with reduced Sl and S, it stabilizes the passive film existing on the reinforcing steel surface in contact with concrete, and at the same time of the coating (Fe.

N1)OのPfi半導体を通して鋼中のWがきわめてス
ムーズに腐食抑制効果のある旬、−イオ/の典型的なイ
ンヒビタール変化させる作用がちる。したがって本発明
の特徴はP型の半導体被膜のF@0を安定させるよう鋼
中81、Sを下げ、典型的なP型半導体を生成するN1
t−添加してFe0Fe  を部分的にNi  に置き
代えて強化し、この強化安定した不働態被gXt利用し
て鋼中WのWO4−イオンへの転化と蓄積全容易にした
ものである。
N1) Through the Pfi semiconductor of O, W in steel has a very smooth corrosion inhibiting effect, and has the effect of changing the typical inhibitor of -io/. Therefore, the feature of the present invention is to lower the 81, S in the steel to stabilize the F@0 of the P-type semiconductor film, and to reduce the N1 to produce a typical P-type semiconductor.
The steel is strengthened by adding T- to partially replace Fe0Fe with Ni, and by utilizing this strengthened and stable passive gXt, the conversion and accumulation of W in the steel to WO4- ions is facilitated.

この作用を達成するために本発明の鉄筋の成分範囲を以
下のように定めた。その理由を説明する。
In order to achieve this effect, the component range of the reinforcing bar of the present invention was determined as follows. Let me explain the reason.

Cは機械的強度の上昇に必須でちるが1. O慢超では
脆化するので上限は1.0チとした。又、下限をO,0
01%としたのは鉄筋を結線する際の軟鋼線用に軟かい
細径の鋼線を必要とするためである。
C is essential for increasing mechanical strength, but 1. The upper limit was set at 1.0 inch because it becomes brittle if the temperature is too high. Also, the lower limit is O, 0
The reason why it is set at 01% is because a soft, small diameter steel wire is required for the mild steel wire when connecting reinforcing bars.

Slはコンクリートに埋込まれた鉄筋表面の不働態被膜
を劣化させる傾向があるので可能な限り低下させること
が望ましいが、製鋼上混在は避けられず、且つ介在物制
御等から極端に減らすことができない。したがって下限
’io、oo1%とし、上限t−o、osチとした。
Sl has a tendency to deteriorate the passive film on the surface of reinforcing bars embedded in concrete, so it is desirable to reduce it as much as possible, but its presence in steelmaking is unavoidable, and it cannot be reduced to an extreme degree from the perspective of controlling inclusions. Can not. Therefore, the lower limit 'io, oo was set as 1%, and the upper limit was set as t-o, oschi.

凪は一般に鋼の強度上昇に寄与することが知られている
。λOsを越えて添加すると脆化をし九〇、0.01n
未満では軟鋼線としての強度が保証できない。したがっ
て止置の下限t−o、oisとし、上限t−10チとし
た。
Calmness is generally known to contribute to increasing the strength of steel. If added in excess of λOs, it will become brittle and 90,0.01n
If it is less than that, the strength as a mild steel wire cannot be guaranteed. Therefore, the lower limit of stopping was set as t-o, ois, and the upper limit was set as t-10.

Pは一般に耐海水性を向上する元素として知られている
が、コンクリート中ではむしろPの量を低下させる方が
耐塩性の向上には寄与する。しかし製鋼上の理由からP
の量を極端に下げることができない。したがって下限t
−0,0011とし上限を0.025チとした。
P is generally known as an element that improves seawater resistance, but in concrete, reducing the amount of P contributes to improving salt resistance. However, for steel manufacturing reasons, P
It is not possible to reduce the amount of Therefore, the lower limit t
-0,0011, and the upper limit was set to 0.025 inches.

Sはコンクリート中の塩分による不働態′4i膜の波壊
を招くので可能なかぎり低下させることが望ましい。o
、oosチを超えて含有されると、不働態被膜が破壊さ
れ錆発生に導くのでo、oos*以下とした。最も好ま
しい範囲はo、ooos〜0.002%である。
It is desirable to reduce S as much as possible since it causes wave breakage of the passive '4i film due to salt in the concrete. o
If the content exceeds o, oos, the passive film will be destroyed and rust will occur, so the content is set to be less than o, oos*. The most preferred range is o,oos to 0.002%.

Niは本発明のカギt−握る重要な元素でコンクリート
中の塩分くよる不働態被膜の破壊を可能なかぎシ低下さ
せて不働態被膜自体を安定強化させると同時に、(Fe
%Ni ) Oの被膜表面に多量の溶存酸素を吸着させ
て錆の発生を遅らせると同時に錆に変化した場合におい
ても遂次的に錆の生成を促進する密着錆の生成を避ける
ことができる点できわめて特徴のある元素でおる。この
効果はNi量1.0チ未満では期待できずS、SS超で
は経済的理由から不利となる。したがってその下限t−
LO9g、上限を5.5%とした。
Ni is an important element that holds the key to the present invention. It reduces the possibility of destruction of the passive film due to salt in concrete, stabilizes and strengthens the passive film itself, and at the same time stabilizes and strengthens the passive film itself.
%Ni) O adsorbs a large amount of dissolved oxygen on the surface of the coating, delaying the formation of rust, and at the same time avoiding the formation of adhesive rust that successively promotes the formation of rust even if it changes to rust. It is an extremely distinctive element. This effect cannot be expected when the Ni content is less than 1.0, and it becomes disadvantageous for economic reasons when the Ni content exceeds S or SS. Therefore, its lower limit t-
LO9g, upper limit 5.5%.

Wも又本発明の重要な元素である。最近の研究から高純
度鋼にWt−添加した場合添加したWが鋼中81が少な
い場合腐食抑制に有効なWO4″″−イオンがよシ多く
生成され効果を発揮することが確認され九が、Niと共
存すると既述のように安定化されてPa半導体の(Fe
、Ni ) Of通して鋼中のWがWO4−″″イオン
よシ変化しやすく又、(F4!、N1)0上により多く
トラップ、蓄積されて、(Fe、N1)0が錆に変化し
て−もその錆直下の(Fe 、 Ni 10の方に移行
して腐食の抑制効果を長期に亘って維持する。
W is also an important element in the present invention. Recent research has confirmed that when Wt- is added to high-purity steel, if the amount of added W is low in the steel, more WO4''''- ions, which are effective in inhibiting corrosion, are generated and are effective. When it coexists with Ni, it is stabilized as mentioned above and the (Fe
, Ni) Of, W in the steel easily changes into WO4-'''' ions, and more of it is trapped and accumulated on (F4!, N1)0, causing (Fe, N1)0 to change into rust. However, the corrosion suppressing effect is maintained over a long period of time by transferring to the (Fe, Ni 10) directly under the rust.

したがってNiと共存した場合、夏期の耐火性を要求さ
れる鉄筋コンクリート構造物にとってきわめて有利であ
る。この場合添加量0.2チ超で特に顕著でらり1.0
−を超えると経済的に不利に力る。
Therefore, when it coexists with Ni, it is extremely advantageous for reinforced concrete structures that require fire resistance in summer. In this case, it is especially noticeable when the amount added exceeds 0.2 inch.
Exceeding - will put you at an economic disadvantage.

したがって下限t−0,2チ(ただし0.2を含まず)
上限fcLO%とした。
Therefore, the lower limit t-0.2ch (but does not include 0.2)
The upper limit was set as fcLO%.

Mは耐食性とは本質的に関係がないか、鋳造法の相違に
よる脱酸力調整のため添加させたもので下限はリムド鋼
ペースのものを考慮してO,001%とし、上限は連鋳
材等でMを多量に添加することを考慮して0.1チとし
た。
M is essentially unrelated to corrosion resistance, or is added to adjust the deoxidizing power due to differences in casting methods.The lower limit is O,001% considering the rimmed steel pace, and the upper limit is for continuous casting. Considering that a large amount of M is added to materials, etc., it was set to 0.1 inch.

CζCo(Lmを行うことが多い)の単独ないし複合添
加の最大の狙いは、鋼中の脆硫(よシS量を著しく低減
させることにあるが、同時に庵量が高い場合でも残存す
る硫化物が完全なαMnSになることを避け、Ca又は
Ceを含む硫化物に変化させてその化学性状を変化させ
耐塩性が向上することも期待して添加したものである。
The main aim of adding CζCo (Lm is often performed) alone or in combination is to significantly reduce the amount of brittle sulfur (S) in steel, but at the same time, even when the amount is high, residual sulfide It was added in the hope that it would avoid turning into a complete αMnS, change it into a sulfide containing Ca or Ce, change its chemical properties, and improve its salt resistance.

下限は必要最小限の含有量であり、上限の硫化物の性状
を著るしく変化させるために規定したもので0.000
1〜0.11の範囲とした。
The lower limit is the minimum necessary content, and the upper limit is 0.000, which is specified to significantly change the properties of the sulfide.
The range was 1 to 0.11.

なおCoはLat−伴うことがなく、−ヲ含んでも有効
である。
Note that Co is not accompanied by Lat, and is effective even if it includes -.

第2発明のめ、v、’rt%庵、の添加は高張力と低温
靭性を向上させた耐塩鉄筋の開発を狙いとしたもので、
歯、7%Ti 、Muを単独もしくは複合して添加しこ
れらの炭窒化物の抽出硬化と細粒効果を利用したもので
下限t−o、oos*としたのはこれ以下ではその効果
が認められないためであシ、上限を0.2チとしたのは
これ以上では鋼の脆化をもたらすためである。そのため
各々0.01〜0.2チの範囲とする。又、第2発明の
Cu、 Crは耐候性を向上させる元素として知られて
いるが、特に鉄筋をコンクリートに埋設するまでに大気
中に放置する際の耐食性向上に寄与する。0.01チ未
満では耐食効果が認められず、 Cuの場合0.5チ超
では鋼の脆化を導き、Crの場合0.5チ超ではコンク
リート中で塩分による孔食を発生しやすい。したがって
下限t−0,01%、上限をO,Sチとした。
For the second invention, the addition of v,'rt%an is aimed at developing salt-resistant reinforcing bars with improved high tensile strength and low-temperature toughness.
Tooth, 7% Ti, and Mu are added singly or in combination to take advantage of the extraction hardening and fine grain effect of these carbonitrides, and the lower limit t-o, oos* was set because below this, the effect is recognized. The reason why the upper limit was set at 0.2 inch is that if it exceeds this value, the steel will become brittle. Therefore, each range is set to 0.01 to 0.2 inches. Further, Cu and Cr of the second invention are known as elements that improve weather resistance, and particularly contribute to improving corrosion resistance when reinforcing bars are left in the atmosphere before being buried in concrete. If it is less than 0.01 inch, no corrosion resistance effect will be observed, if it exceeds 0.5 inch in the case of Cu, it will lead to embrittlement of the steel, and if it exceeds 0.5 inch in the case of Cr, pitting corrosion due to salt will easily occur in concrete. Therefore, the lower limit was set to t-0.01%, and the upper limit was set to O.S.

本発明に従い前記の化学成分で構成された鋼は転炉、電
気炉等で溶製され、次いで造塊、分塊の工程を通るか、
あるいは連続鋳造後、圧延された後に必要に応じてパチ
ンライング等の熱処理が施され、線引きされて鉄筋とし
て供される。又、必要に応じて表面に亜鉛メッキ、有機
被層を施すこともできる。
According to the present invention, the steel composed of the above chemical components is melted in a converter, electric furnace, etc., and then passes through the steps of ingot making and blooming, or
Alternatively, after continuous casting and rolling, heat treatment such as snaplining is performed as necessary, and wire is drawn to serve as reinforcing bars. Further, the surface can be galvanized or coated with an organic layer if necessary.

(実施例) 実施例1 転炉で本発明の成分範囲の鋼を溶製し、造塊、分塊後、
線引きした鉄筋と従来鋼からなる鉄筋との成分および腐
食試験結果を下記の表に示した。
(Example) Example 1 Steel having the composition range of the present invention was melted in a converter, and after ingot formation and blooming,
The table below shows the composition and corrosion test results of the drawn reinforcing bars and the reinforcing bars made of conventional steel.

表の各種鉄筋の中火部より巾25絹×長さ60躇×厚さ
2鱈の試片を採取し、機械研削して表面研摩した。
Samples measuring 25 mm in width x 60 mm in length x 2 mm in thickness were taken from the medium-heated parts of various reinforcing bars on the table, and the surfaces were polished by mechanical grinding.

他方コンクリートの主成分であるCaOfCl、 6 
%NaC7,3,6* Na(J水溶液中に溶融させて
pH1: OCa (OH) 、 +Na(J水溶液を
準備した。
On the other hand, CaOfCl, which is the main component of concrete, 6
%NaC7,3,6*Na(J aqueous solution was dissolved to pH 1: OCa(OH), +Na(J aqueous solution).

しかる後、前記のように表面研削し、側面と裏面をシリ
コンレジンで被覆した試片を脱脂後乾燥し、直ちに上記
のCa (OH)、 + NaCJ3水溶液中に浸漬し
た。なお試験中は液の表面を流動パラフィンでシールし
、3日毎に液を交換して20日間連続浸漬し、錆の発生
状況を観察した。
Thereafter, the surface of the sample was ground as described above, the side and back surfaces were coated with silicone resin, and the sample was degreased and dried, and immediately immersed in the above Ca (OH), + NaCJ3 aqueous solution. During the test, the surface of the liquid was sealed with liquid paraffin, and the liquid was replaced every 3 days, and the samples were immersed continuously for 20 days to observe the occurrence of rust.

表中(Alは錆の発生面積(チ)、表中(B)は最大腐
食深さ−をしめす。なお参考までにこれら試片の若干の
ものについて、前述のpH12のCa (OH)t+ 
1.6 % NaCJ水溶液中で陽分極特性をしらぺた
In the table (Al indicates the area where rust occurs (ch), and (B) in the table indicates the maximum corrosion depth.
The anodic polarization characteristics were investigated in a 1.6% NaCJ aqueous solution.

その結果を図面にしめす。The results are shown in a drawing.

図面より表で錆発生の認められなかったものは錆発生の
認められたものよシミ位が著しく責であることがわかる
。これはコンクリートのような高pH領域の液中で生成
する鉄筋の不働態被膜がNaCJ濃度1.6チと高濃度
になっても破壊され難いことを鉦明している。
It can be seen from the drawings that the stains are significantly more to blame for the items for which no rust was observed than for the items for which rust was observed. This proves that the passive coating of reinforcing bars, which is formed in liquids in a high pH range such as concrete, is difficult to be destroyed even when the NaCJ concentration is as high as 1.6%.

実施例2 NaCJ量が0.5%である砂、ポルトランドセメント
、水、砂利からなるコンクリートモルタルに表の成分か
ら々る熱延鉄筋(9絹φ)をうめ込み28日間常温養生
した後、海浜地帯に1年間曝露した。なおコンクリート
の水、セメント比は0.60゜カプリ厚さは20とした
Example 2 Hot-rolled reinforcing bars (9 silk φ) from the ingredients shown in the table were embedded in a concrete mortar consisting of sand, portland cement, water, and gravel with an NaCJ content of 0.5%, and after curing at room temperature for 28 days, it was placed on a beach. exposed to the zone for one year. The water/cement ratio of concrete was 0.60° and the capri thickness was 20.

1年間曝露後コンクリートヲ破壊して鉄筋の発錆状況f
:調べた、その結果を表の(C)に示した。
After one year of exposure, the concrete is destroyed and the reinforcing bars are rusted f
: The results are shown in (C) of the table.

(発明の効果) 本発明は、今後ますます問題になる海砂使用コンクリー
ト、塩害にさらされるコンクリート構造物の耐久性を維
持するのくきわめて有効なコンクリート用鉄筋として役
立つものである。
(Effects of the Invention) The present invention is useful as an extremely effective reinforcing bar for concrete in order to maintain the durability of concrete using sea sand and concrete structures exposed to salt damage, which will become increasingly problematic in the future.

図面には、Ca (OH)t + 1.61 NJLC
J7)C溶液(pH12)中、25℃において測定した
供試鋼の陽分極曲線を示したものである。なお、図中の
番号(A)は表の鋼層を示すものである。
In the drawing, Ca (OH)t + 1.61 NJLC
J7) It shows the anodic polarization curve of the test steel measured at 25° C. in a C solution (pH 12). Note that the number (A) in the figure indicates the steel layer on the front.

―ロノ- Rono

【図面の簡単な説明】[Brief explanation of drawings]

図面は供試鋼の陽分極曲線図である。 特許 出願人 新日本製鉄株式会社 =%A立(x’¥ y、5s、。、6)手 続 補 正
 V(自発) 昭和ω年5月9日 特許庁長官 志 賀   学 殿 1、事件の表示 特願昭59−265277号2、 発
明の名称 耐塩性Kfれたコンクリート鉄筋3、 補正
をする者 事件との関係 出願人 (665)新日本製鉄株式会社 4、 代 理 人 東京都港区虎ノ門−丁目1番18号
5、 補正の対象 明細書中発明の詳細な説明の欄。 6、補正の内容 (1)  明細書第2頁4〜6行、「コンクリート構造
物海浜地帯の−−−−−建築用コンクリート、」とある
な、「コンクリート構造物、海浜地帯のリート、」と補
正する。 (2)  明細書第3頁9行、rNaCLで」とあるを
、rNaCLの」と補正する・ (3)  明細書第4ffl1行、r Nb、 Ti、
 V、 Nb Jとあるを、rNb、Ti、V、MOJ
と補正する。 (4)  明細書第5頁9行、「インヒビタール変化さ
せる作用」とあるな、「インヒビターメに変化する作用
」と補正する。 (5)  明細書第6頁9〜10行、「脆化をしたC、
Jとあるな、「脆化をきたし、」と補正する。 (6)  明細書第9頁7行、「なおCeはL&を伴う
ことがなく、」とあるな、「なお(、lはL&を伴5事
が多く、」と補正する・ (7)明細書第9頁11行、r Nb、V、Ti、Mn
Jとあるを、r Nb、V、Tl、Mo Jと補正する
。 以上
The drawing is a positive polarization curve diagram of the sample steel. Patent Applicant: Nippon Steel Corporation = %A (x'¥y, 5s, ., 6) Procedures Amendment V (voluntary) May 9, 1925 Manabu Shiga, Commissioner of the Patent Office 1, of the case Description: Japanese Patent Application No. 59-265277 2, Title of the invention: Concrete reinforcing steel bar with salt resistance 3, Relationship to the amended case: Applicant (665) Nippon Steel Corporation 4, Agent: Toranomon, Minato-ku, Tokyo -Chome 1-18-5, Subject of amendment Detailed description of the invention in the specification. 6. Contents of the amendment (1) Page 2 of the specification, lines 4 to 6, it says, "Concrete structures, concrete for construction in beach areas," and "Concrete structures, REITs in beach areas." and correct it. (2) On page 3, line 9 of the specification, amend "in rNaCL" to "in rNaCL." (3) On page 4 of the specification, line 1, r Nb, Ti,
V, Nb J, rNb, Ti, V, MOJ
and correct it. (4) On page 5, line 9 of the specification, the phrase "action to change the inhibitor" should be corrected to "action to change to the inhibitor." (5) Page 6 lines 9-10 of the specification, “Embrittled C,
It says "J", but I corrected it to "become brittle." (6) On page 9, line 7 of the specification, it says, "Ce is never accompanied by L&," which has been amended to read, "In addition, (, l is often accompanied by L&.") (7) Specification Book page 9, line 11, r Nb, V, Ti, Mn
J is corrected to r Nb, V, Tl, Mo J. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)C;0.001〜1.0%、Si;0.001〜
0.05%、Mn;0.01〜20%、P;0.001
〜0.025%、S;0.005%以下、Ni;1.0
〜5.5%、W;0.2超〜1.0%、Al;0.00
1〜0.1%、とCa、Ceを単独ないし複合して0.
0001〜0.1%含有して残部鉄および不可避的不純
物からなる耐塩性に優れたコンクリート鉄筋。
(1) C: 0.001~1.0%, Si: 0.001~
0.05%, Mn; 0.01-20%, P; 0.001
~0.025%, S; 0.005% or less, Ni; 1.0
~5.5%, W; more than 0.2 ~ 1.0%, Al; 0.00
1 to 0.1%, and Ca and Ce alone or in combination to 0.
A concrete reinforcing bar with excellent salt resistance containing 0001 to 0.1% with the balance being iron and unavoidable impurities.
(2)C;0.001〜1.0%、Si;0.001〜
0.05%、Mn;0.01〜2.0%、P:0.00
1〜0.025%、S;0.005%以下、Ni;1.
0〜5.5%、W;0.2超〜1.0%、Al;0.0
01〜0.1%、とCa、Ceを単独ないし複合して0
.0001〜0.1%含有し、さらに必要に応じてNb
、Ti、V、Mo、Cu、Crを単独ないし複合してN
b、Ti、V、Moは各々0.01〜0.2%、Cu、
Crは各々0.01〜0.5%を含有し、残部鉄および
不純物からなる耐塩性に優れたコンクリート鉄筋。
(2) C: 0.001~1.0%, Si: 0.001~
0.05%, Mn; 0.01-2.0%, P: 0.00
1 to 0.025%, S; 0.005% or less, Ni; 1.
0 to 5.5%, W; more than 0.2 to 1.0%, Al; 0.0
01 to 0.1%, and Ca and Ce alone or in combination.
.. 0001 to 0.1%, and further contains Nb as necessary.
, Ti, V, Mo, Cu, Cr alone or in combination with N
b, Ti, V, Mo are each 0.01 to 0.2%, Cu,
Concrete reinforcing bars with excellent salt resistance, each containing 0.01 to 0.5% of Cr, with the remainder consisting of iron and impurities.
JP26527784A 1984-12-18 1984-12-18 Reinforcing rod for concrete having superior salt resistance Granted JPS61143559A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP26527784A JPS61143559A (en) 1984-12-18 1984-12-18 Reinforcing rod for concrete having superior salt resistance
US06/803,284 US4915901A (en) 1984-12-18 1985-12-02 Reinforcing steel having resistance to salt and capable of preventing deterioration of concrete
AU50703/85A AU556118B2 (en) 1984-12-18 1985-12-03 Salt resistant reinforcing steel capable of preventing deterioration of concrete
CA000496811A CA1273511A (en) 1984-12-18 1985-12-04 Reinforcing steel having resistance to salt and capable of preventing deterioration of concrete
GB8531039A GB2168380B (en) 1984-12-18 1985-12-17 A reinforcing steel
GB8611945A GB2174407B (en) 1984-12-18 1986-05-16 A reinforcing steel
AU61174/86A AU605465B2 (en) 1984-12-18 1986-08-14 Reinforcing steel having resistance to salt and capable of preventing deterioration of concrete
CA000615704A CA1285402C (en) 1984-12-18 1990-04-17 Reinforcing steel having resistance to salt and capable of preventing deterioration of concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26527784A JPS61143559A (en) 1984-12-18 1984-12-18 Reinforcing rod for concrete having superior salt resistance

Publications (2)

Publication Number Publication Date
JPS61143559A true JPS61143559A (en) 1986-07-01
JPS6254857B2 JPS6254857B2 (en) 1987-11-17

Family

ID=17414983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26527784A Granted JPS61143559A (en) 1984-12-18 1984-12-18 Reinforcing rod for concrete having superior salt resistance

Country Status (1)

Country Link
JP (1) JPS61143559A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659919A (en) * 1994-08-30 1997-08-26 Sharp Kabushiki Kaisha Upright vacuum cleaner
CN113512680A (en) * 2021-06-21 2021-10-19 中联重科股份有限公司 Concrete conveying pipe, preparation method thereof and concrete pump truck

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659919A (en) * 1994-08-30 1997-08-26 Sharp Kabushiki Kaisha Upright vacuum cleaner
CN113512680A (en) * 2021-06-21 2021-10-19 中联重科股份有限公司 Concrete conveying pipe, preparation method thereof and concrete pump truck

Also Published As

Publication number Publication date
JPS6254857B2 (en) 1987-11-17

Similar Documents

Publication Publication Date Title
KR930005899B1 (en) Heat-resistant austenitic stainless steel
JP4325421B2 (en) Seawater resistant
JP2010065301A (en) High-strength steel excellent in corrosion resistance at coating in seashore area, and method of producing the same
JPS61143559A (en) Reinforcing rod for concrete having superior salt resistance
JP2004068098A (en) Steel showing excellent machinability and wet corrosion resistance
US4836981A (en) Concrete reinforcing steel bar or wire
JP3182995B2 (en) High Mn non-magnetic steel with excellent stress corrosion cracking resistance and mechanical properties
JP6720942B2 (en) Duplex stainless steel with excellent corrosion resistance and hydrogen embrittlement resistance
JPS5944457A (en) Reinforcing iron wire for concrete
JPS58210155A (en) High-strength alloy for oil well pipe with superior corrosion resistance
GB2199045A (en) Seawater-corrosion-resistant non-magnetic steel materials
JPH01246343A (en) Stainless steel
KR100863713B1 (en) A composition for inhibiting and rust-converting concrete corrosion and process thereof
JPH05255784A (en) Ni-base alloy for oil well excellent in corrosion resistance
JPS645099B2 (en)
JPS6017060A (en) Steel fiber for reinforcing concrete or mortar
JP2021091923A (en) Ce-CONTAINING CORROSION-RESISTANT STEEL
JPS623222B2 (en)
JPS5883752A (en) Reinforcing iron wire for concrete excellent in salt resistance
JPS62188754A (en) Corrosion resistant steel reinforcing bar for concrete
JPS62199748A (en) Steel bar for reinforcing bar seawater resistant
JPH02138440A (en) Seawater corrosion resisting steel excellent in rust resistance
JPS62274050A (en) Reinforcing bar having resistance to salt-water corrosion
JPS6092447A (en) Iron reinforcing rod for concrete with superior corrosion resistance
JP2000309857A (en) Stainless steel