JPS6092447A - Iron reinforcing rod for concrete with superior corrosion resistance - Google Patents
Iron reinforcing rod for concrete with superior corrosion resistanceInfo
- Publication number
- JPS6092447A JPS6092447A JP20179483A JP20179483A JPS6092447A JP S6092447 A JPS6092447 A JP S6092447A JP 20179483 A JP20179483 A JP 20179483A JP 20179483 A JP20179483 A JP 20179483A JP S6092447 A JPS6092447 A JP S6092447A
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- corrosion resistance
- content
- corrosion
- reinforcing bars
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Reinforcement Elements For Buildings (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、コンクリ−1・構造物に使用される棒鋼、
型鋼或いは鋼線等の鉄筋、特に塩化物による腐食環境下
においても極めて良好な耐食性を示すコンクリート用鉄
筋に関するものである。DETAILED DESCRIPTION OF THE INVENTION This invention relates to concrete bars and steel bars used in structures.
The present invention relates to reinforcing bars such as shaped steel or steel wire, particularly reinforcing bars for concrete that exhibit extremely good corrosion resistance even in corrosive environments caused by chlorides.
一般に、鉄筋コンクIJ −ト構造物中の鉄筋は、正常
状態では1)1113程度のアルカリ性を呈するコンク
リートによって覆われているので不働態化しており、腐
食が発生しないものとされている。In general, the reinforcing bars in a reinforced concrete IJ-to structure are covered with concrete that exhibits an alkalinity of about 1113 in normal conditions, so they are passivated and corrosion does not occur.
ところが、近年、コンクリートの材料である海砂の供給
量不足が深刻化し、代替品である海砂の使用量が増大し
てくるにつれて、この海砂の中に含まれる塩化物によっ
てコンクリート中の鉄筋が腐食し、鉄筋コンクリート構
造物の耐用年数が低下するのではないかとの懸念が強ま
ってきた。即ち、コンクリート中に塩素イオンが存在す
ると鉄筋の不働態被膜が破れて腐食が進行することとな
り、発生する錆によって鉄筋とコンクリートとの付着力
が低下し、コンクリート構造物の強度低下やヒビ割れ、
或いは剥離を生ずるからである。However, in recent years, as the supply shortage of sea sand, a material for concrete, has become more serious, and the amount of sea sand used as a substitute has increased, the chlorides contained in this sea sand have weakened the reinforcing steel in concrete. Concerns have grown that reinforced concrete structures will corrode and reduce their useful life. In other words, if chlorine ions are present in concrete, the passive coating on the reinforcing bars will break and corrosion will progress, and the rust that occurs will reduce the adhesion between the reinforcing bars and concrete, resulting in a decrease in the strength of concrete structures, cracks, etc.
Otherwise, it may cause peeling.
もちろん、これは、海砂を配合したコンクリート構造物
のみに限らず、海水の影響を受ける海洋環境下や海岸地
帯における鉄筋コンクリート構造物、又はその他の塩化
物環境中で使用する鉄筋コンクリート構造物に共通する
問題でもあった。Of course, this is not limited to concrete structures mixed with sea sand, but also common to reinforced concrete structures used in marine environments or coastal areas affected by seawater, or reinforced concrete structures used in other chloride environments. It was also a problem.
更に、長期的にみると、コンクリートは空気中に含まれ
る炭酸ガスの作用によって中性化されてし捷うので、こ
の点からも鉄筋の腐食防止は非常に困難な問題だったの
である。Furthermore, in the long term, concrete becomes neutralized and crumbles due to the action of carbon dioxide gas contained in the air, so preventing corrosion of reinforcing bars has been an extremely difficult problem from this point of view as well.
従来、このようなコンクリート用鉄筋の防食対策として
、
■ コンクリート中にインヒビター(硝酸ナトリウム等
)を添加して環境を制御する方法、■ 鉄筋に表面処理
(表面塗装、エポキシ樹脂コーティング、亜鉛メッキ、
アルミニウムメッキ等)を施す方法、
等の手段が採用されていたが、前記0項で示したインヒ
ビター添加法は、期間の経過につれて雨水や海水がコン
クリート中へ浸入するので、これによってコンクリート
中のインヒビターが系外へ拡散してしまい、インヒビタ
ーとしての有効濃度を保持しつづけることが極めて困難
となって、結局は防食効果が劣化してしまうという問題
があシ、他方、前記0項で示した表面処理法のうちの表
面塗装を施す方法では効果が長期にわたって持続されず
、エポキシ樹脂コーティングによる方法では溶接部が裸
になってしまうので、その部分からの腐食を避けること
ができず、まだ亜鉛やアルミニウムメッキによる方法ヲ
」、短ルJ的FCVJ、非常に有効な手段であるがJ(
期的には完全な防食対策とは言えず、しかも、エポキシ
樹脂コーティングや金属メッキ法には処理コストが極め
て高いという問題点があって、いずれも満足できるもの
ではなかったのである。Conventionally, corrosion prevention measures for concrete reinforcing bars include: ■ adding inhibitors (sodium nitrate, etc.) to the concrete to control the environment, ■ surface treatments for reinforcing bars (surface painting, epoxy resin coating, galvanizing, etc.).
However, the inhibitor addition method shown in item 0 above allows rainwater and seawater to seep into the concrete over time, so this prevents the inhibitor from being contained in the concrete. However, there is a problem in that the anti-corrosion effect is deteriorated as a result of diffusion of the inhibitor out of the system, making it extremely difficult to maintain an effective concentration as an inhibitor. Of the treatment methods, the effect of surface painting is not sustained over a long period of time, and the method of coating with epoxy resin leaves the welded area bare, making it impossible to avoid corrosion from that area. Aluminum plating is a very effective method, but it is very effective.
In the long term, it could not be said to be a complete anti-corrosion measure, and furthermore, epoxy resin coating and metal plating had the problem of extremely high processing costs, so neither method was satisfactory.
このようなことから、最近、鉄筋の成分自体を調整して
その耐食性を従来鉄筋の2〜3倍に上昇させ、これによ
りコンクリート構造物の強度低下につながる錆発生量を
極力抑えて寿命延長を図ろうとの提案がみられるように
なり(例えば、特開昭5.6−152944号公報、特
開昭58−77551号公報、特開昭58−’7’75
52号公報、特開昭58−77554号公報、特開昭5
8−83°152号公報等)、比較的良好な結果が報告
されてはいるが、これまで提案された成分調整耐食鉄筋
は高価な特殊元素の添加が必須であったり、或いは耐食
性に今−歩不満が残るものであって、より廉価で、かつ
塩化物等が含まれているコンクリート中においても十分
に満足できる耐食性を有する鉄筋の開発が待たれている
のが現状であった。For this reason, we have recently adjusted the ingredients of reinforcing bars to increase their corrosion resistance to two to three times that of conventional reinforcing bars, thereby minimizing the amount of rust that occurs and reducing the strength of concrete structures, thereby extending their lifespan. (For example, Japanese Patent Application Laid-Open No. 5.6-152944, Japanese Patent Laid-Open No. 77551-1982, Japanese Patent Laid-Open No. 58-77-75)
No. 52, JP-A-58-77554, JP-A-Sho. 5
8-83° 152, etc.), relatively good results have been reported, but the composition-adjusted corrosion-resistant reinforcing bars proposed so far require the addition of expensive special elements, or have insufficient corrosion resistance. However, there remains a need for the development of a reinforcing bar that is less expensive and has sufficient corrosion resistance even in concrete containing chlorides and the like.
本発明者等は、上述のような観点から、塩化物等を含有
するコンクリート中であっても優れた面j食性を示し、
塩化物環境におけるコンクリート構造物寿命の飛躍的延
長を図り得るコンクリート用鉄筋を、コスト安く提供す
べく、まず、コンクリート中のアルカリ環境では、中性
環境におけるような全面腐食型のものとは異なって孔食
タイプの腐食が問題になるのであり、従って鉄筋の耐食
性に及ぼす合金元素の効果も一般環境中での鋼における
場合とは異なるということをふまえて、特にアルカリ性
環境下での鉄筋の孔食発生現象に関する基礎的な仙究を
爪ねたところ、
(a) アルカリ性環境で発生する鋼の孔食には、腐食
の起点となシやすい硫化物系介在物(特にMn5)を鋼
中にて形成する8分が大きく影響するものであシ、従っ
て、コンクリート中での鉄筋の腐食防止にはS含有量の
抑制が欠かせないこと、(b) このように8含有量を
極力抑えだ鋼中に所定量のCuを添加含不さぜると銅の
配孔食性が一層向上し、塩化物含有コンクリート環境中
においても優れた向・1食に1を発揮するようになるこ
と。From the above-mentioned viewpoint, the present inventors have demonstrated excellent surface corrosion resistance even in concrete containing chlorides, etc.
In order to provide concrete reinforcing bars that can dramatically extend the lifespan of concrete structures in chloride environments at a low cost, first of all, in an alkaline environment in concrete, unlike fully corroding reinforcing bars like in a neutral environment, Pitting type corrosion is a problem, and the effect of alloying elements on the corrosion resistance of reinforcing bars is therefore different from that of steel in the general environment. After doing some basic research on the phenomenon, we found that (a) Pitting corrosion of steel that occurs in an alkaline environment is caused by sulfide-based inclusions (especially Mn5) in the steel that tend to become corrosion starting points. Therefore, suppressing the S content is indispensable to prevent corrosion of reinforcing bars in concrete. When a predetermined amount of Cu is added to the concrete, the pitting corrosion properties of copper are further improved, and it exhibits excellent corrosion resistance and corrosion resistance even in a chloride-containing concrete environment.
(C) 前述のような、S含有量を抑えた上でC11を
含有せしめた鋼に、史にV、 P、 Zr、 Sn、
Y、 AiN及びT1のうちの1種又は2種以上を添加
し共存させると、コンクリート用鉄筋としての耐食性が
一段と改善され、塩化物を含有するコンクリート中での
腐食がほとんど起らなくなって、鉄筋コンクリート構造
物の寿命延長に顕著な効果が得られ、耐久性、安全性が
より以上に確実化すること、以上(a)〜(c)に示さ
れる如き知見を得るに至ったのである。(C) As mentioned above, steel containing C11 while suppressing the S content has V, P, Zr, Sn,
When one or more of Y, AiN, and T1 are added and allowed to coexist, the corrosion resistance as reinforcing bars for concrete is further improved, and corrosion hardly occurs in concrete containing chlorides, making it possible to improve reinforced concrete. We have come to the knowledge shown in (a) to (c) above that a remarkable effect is obtained in extending the life of the structure, and the durability and safety are further ensured.
この発明は、上記知見に基づいてなされたものであり、
コンクリート用鉄筋を、
C: 0.001〜0.300%(以下、成分割合を表
わすチは重量基準とする)。This invention was made based on the above knowledge, and the reinforcing bars for concrete are: C: 0.001 to 0.300% (hereinafter, "C" representing the component ratio is based on weight).
Si:1.0%以下。Si: 1.0% or less.
Mn:1.’i’チ以下。Mn:1. 'I' below.
S : 0.0001〜0.0100%を含有するか、
更に必要により
Cu: 0.03〜0.60%
をも含有し、かつ、
V:0.02〜0.50%。S: Contains 0.0001 to 0.0100%,
Furthermore, if necessary, it also contains Cu: 0.03 to 0.60%, and V: 0.02 to 0.50%.
P:0.05%を越え0.15%以下。P: more than 0.05% and less than 0.15%.
Zr: 0.02〜0.80%。Zr: 0.02-0.80%.
Sn: 0.02〜0.60%。Sn: 0.02-0.60%.
Y : 0.0 1〜030 %。Y: 0.0 1-030%.
At : O,02〜1.00 チ。At: O, 02-1.00.
N : O,O’L〜o、 o 5 qb *’I’i
: 0.0 2〜0.3 0 %。N: O, O'L~o, o 5 qb *'I'i
: 0.02~0.30%.
のうちの1種以上をも含み、 Fe及びその他の不1jJii):不純物:残り。Also includes one or more of the following: Fe and other impurities: Remaining.
から成る成分組成で構成することによって、特に塩化物
に対する耐食性を格段に向上させた点に特徴を有するも
のである、。It is characterized by significantly improved corrosion resistance, especially against chlorides, by having a component composition consisting of the following.
次に、この発明のコンクリート用鉄筋において成分含有
割合を前記の如くに数値限定した理由を説明する。Next, the reason why the content ratio of the components in the reinforcing bar for concrete of the present invention is numerically limited as described above will be explained.
a) C
Cは、塩化物による鉄筋の腐食を助長する有害な元素で
あり、特に0.30%を越えて含有させると多量のFe
5Cの析出により耐食性が急激に劣化することがらC含
有量の上限を0.30%と定めた。a) C C is a harmful element that promotes corrosion of reinforcing bars due to chloride, and in particular, if it is contained in excess of 0.30%, a large amount of Fe
Since the corrosion resistance rapidly deteriorates due to the precipitation of 5C, the upper limit of the C content was set at 0.30%.
一方、C含有i+1を0.001%未満にまで低減する
ことは、経済的な鋼製造の限界を越えるものであること
から、C含有量の下限を0.001%と定めだ。On the other hand, since reducing the C content i+1 to less than 0.001% exceeds the limit of economical steel production, the lower limit of the C content is set at 0.001%.
b) 5i
S1成分は、鋼の脱酸剤として有用な元素であるでの用
途をも考慮してSi含有量を手中→−]、 #と定めた
。b) The 5i S1 component is an element useful as a deoxidizing agent for steel, and the Si content was determined to be 0.5 - 0.
C)Mn
Mnは、一般には鋼の強度確保のために重宝されている
元素であるが、Sとともに腐食の起点となりやすいMn
S非金属介在物を形成することから、本発明鉄筋では極
力低減する方が望ましい。特にその含有量が1. ’7
fiを越うると耐食性劣化傾向が著しくなることから
、Mn含有量を17%以下と定め牟・
d) S
Sは、鋼中において腐食の起点となりゃすい硫化物系介
在物(主としてMn5)を形成するので、該介在物の生
成を抑えるためにもその含有量な極力低くする心安があ
る。特に、0.0100%を越えてSが含有されるとH
[望のi1食性を確保することができないので、S含有
量の上限を0.010’0チと定めた1、一方、)−:
含有量をO,OOO1%未満にまで低減することは鋼の
製造能率並びに製造コストの大幅な悪化をもたらすので
、経済性を考慮してS含有量1の下限を0.0001%
とした。C) Mn Mn is an element that is generally valued for ensuring the strength of steel, but along with S, Mn tends to be the starting point for corrosion.
Since S nonmetallic inclusions are formed, it is desirable to reduce S as much as possible in the reinforcing bars of the present invention. In particular, its content is 1. '7
If it exceeds fi, the corrosion resistance tends to deteriorate significantly, so the Mn content is set at 17% or less. d) S S contains sulfide-based inclusions (mainly Mn5) that act as starting points for corrosion in steel. Therefore, in order to suppress the formation of inclusions, it is safe to keep the content as low as possible. In particular, if S exceeds 0.0100%, H
[Since it was not possible to secure the desired i1 edibility, the upper limit of the S content was set at 0.010'01, on the other hand) -:
Reducing the O, OOO content to less than 1% will result in a significant deterioration of steel manufacturing efficiency and manufacturing costs, so in consideration of economic efficiency, the lower limit of S content 1 is set to 0.0001%.
And so.
e) cυ
Cu成分は、銅の1m・1食性改善、特に耐孔食性改善
に優れた効果を発揮し、■成分との共存下では一層その
効果が顕著となるので、必要により含有せしめられるも
のであるが、その含有量が0.03%未満では耐食性改
善効果が十分でなく、一方0.50チを越えて含有させ
ようとしても鋼中に固溶しないことから、Cu含有I1
1は0.03〜0.60%と定めた。e) The cυ Cu component has an excellent effect on improving copper's 1m/1 corrosion resistance, especially pitting corrosion resistance, and its effect becomes even more pronounced when it coexists with component (■), so it may be included as necessary. However, if the content is less than 0.03%, the effect of improving corrosion resistance is not sufficient, and on the other hand, even if the content exceeds 0.50%, it will not dissolve in the steel, so Cu-containing I1
1 was set at 0.03 to 0.60%.
f) v、p、 Zr、S++、y、Ag、、N、及び
Tiこれらの成分には、それぞれ、低S化、低地化、低
C化、そしてC1l添加と相俟って鋼の面]食性を一段
と改善し、塩化物含有コンクリート中においても十分に
耐え得るだけの性能なイ」与するという同等の作用があ
るので、これらの中から1種以上を含有させるものであ
るが、それぞれの成分について、その含有量の限定理由
を以下に詳述する。f) v, p, Zr, S++, y, Ag, , N, and Ti These components, in combination with low S, low carbon, low carbon, and C1l addition, improve the quality of the steel] Since it has the same effect as further improving the edibility and providing sufficient performance to withstand even in chloride-containing concrete, one or more of these is added. The reason for limiting the content of the components will be explained in detail below.
■ V
V成分には、低S化した鋼のアルカリ性環境での配食性
を一段と改善する作用があり、あるが、その含有量が0
.02 %未満では前記作用に所望の効果が得られず、
一方、050チを越えて含有させると熱間加工性に悪影
響が出てくることから、■含有量を0.02〜050%
と定めた。■ V The V component has the effect of further improving the feeding ability of low-S steel in an alkaline environment, but when its content is 0
.. If it is less than 0.02%, the desired effect cannot be obtained,
On the other hand, if the content exceeds 0.050%, the hot workability will be adversely affected, so
It was determined that
@ P
P成分は、耐食性改善に非常に有効な元素であるが、そ
の含有量が0.05%未満では所望の耐食性改善効果が
得られず、一方0.15チを越えて含有させると溶接性
の悪化を招くことから、P含有量を0.05%を越え0
.15−以下と定めた。@ P The P component is a very effective element for improving corrosion resistance, but if its content is less than 0.05%, the desired effect of improving corrosion resistance cannot be obtained, while if it is contained in excess of 0.15%, welding Do not exceed the P content of 0.05%, as this may lead to deterioration of the
.. It was set as 15- or less.
θ Zr
Zr成分は、難溶性の硫化物を形成することで耐食性に
寄力する元素であるが、その含有量が0.02%未満で
は所望の耐食性改善効果が得られず、一方080チを越
えて含有させるとPと同様、溶接性の劣化を招くことか
ら、Zr含有fj4’、を0.02〜0.80%と定め
た。θ Zr The Zr component is an element that contributes to corrosion resistance by forming poorly soluble sulfides, but if its content is less than 0.02%, the desired effect of improving corrosion resistance cannot be obtained; Since Zr content fj4' is set at 0.02 to 0.80%, since Zr content in excess of Zr causes deterioration of weldability like P.
@511
811成分は、0.0にチ以上の添加によって所望の耐
食性改善効果を発揮するものであるが、0.60%全越
えて含有させると熱間加工性が悪化して製造」1問題を
呈するようになることから、;;11含イjJiiを(
1,(J 2〜060チと定めた。@511 Component 811 exhibits the desired corrosion resistance improvement effect when added in an amount of 0.0% or more, but if it is added in excess of 0.60%, hot workability deteriorates and manufacturing Since ;; 11 contains jJii (
1, (J 2~060chi).
@ Y
Y成分は、硫化物を形成することで脱硫を行い、これに
よって鋼の耐食性を向上する元素であるが、その含有量
が0.01 %未満では所望の耐食性向上効果が得られ
ず、一方0.30チを越えて含イ〕させると溶接性の劣
化を来たすことから、Y含有量を0.01〜0.30%
と定めた。@ Y The Y component is an element that desulfurizes by forming sulfides and thereby improves the corrosion resistance of steel, but if its content is less than 0.01%, the desired effect of improving corrosion resistance cannot be obtained. On the other hand, if the Y content exceeds 0.30%, the weldability deteriorates, so the Y content should be 0.01 to 0.30%.
It was determined that
Ae
M成分は、0.02%以上の添加によって所望の耐食性
改善効果を発揮するものであるが、1.00%を越えて
含有させると、やはり溶接性が劣化することから、Ae
含有量を0.02〜1.00%と定めた。The AeM component exhibits the desired effect of improving corrosion resistance when added in an amount of 0.02% or more, but if it is added in an amount exceeding 1.00%, weldability deteriorates.
The content was determined to be 0.02 to 1.00%.
■ N
N成分は、溶解によってアンモニウムイオンを形成する
ことで耐食性に寄与する元素であるが、その含有量が0
.01%未満では所望の耐食性改善効果が得られず、一
方0.05%を越えて含有させようとしても鋼中に完全
に固溶しないことから、N含有量を0.01〜005%
と定めた。■ N The N component is an element that contributes to corrosion resistance by forming ammonium ions when dissolved, but if its content is 0
.. If the N content is less than 0.01%, the desired effect of improving corrosion resistance cannot be obtained, and on the other hand, even if the N content exceeds 0.05%, it will not be completely dissolved in the steel.
It was determined that
■ Tl
T1成分は、難溶性硫化物を形成することでSを固定し
、安定化することによって腐食の起点となるMnSの生
成を防止する元素であるが、その含有量が0.02%未
満ではMnSの生成を防止して所望の耐食性を得る効果
が十分に得られず、一方030チを越えて含有させると
溶接性の劣化を招くことから、T1含有量を0.02〜
0;うOチと定めた。■ Tl The T1 component is an element that fixes and stabilizes S by forming hardly soluble sulfides, thereby preventing the formation of MnS, which is the starting point of corrosion. However, if its content is less than 0.02% In this case, the effect of preventing the formation of MnS and obtaining the desired corrosion resistance cannot be sufficiently obtained, and on the other hand, if the content exceeds 0.030 mm, weldability deteriorates, so the T1 content is set to 0.02 ~
0: Decided to be a no-go.
なお、以上の成分のほかに、0.005〜0.0!50
チのNb、及びO,OOU 3〜O,OO50%のBの
うちのlf!I!又は2種を含イJさせると、耐食性に
悪影舎を及ぼすことなく強度を向上できるので、より高
強度拐を必要とする場合には好ましい手段である。In addition to the above ingredients, 0.005 to 0.0!50
Nb of Chi, and lf of B of O, OOU 3 to O, OO50%! I! Or, if two types are included, the strength can be improved without adversely affecting the corrosion resistance, so this is a preferable means when higher strength is required.
また、この発明のコンクリート用鉄筋を使用するに際し
て、+111鉛メッキ或いはアルミニウムメッキを施し
ておりば、コンクリート構造物の耐久性がより一層改前
されることはもちろんのことである。Furthermore, when using the reinforcing bars for concrete according to the present invention, it goes without saying that if +111 lead plating or aluminum plating is applied, the durability of the concrete structure will be further improved.
そして、この発明のコンクリート用鉄筋は、炉外精錬等
をも含む通常の溶解、@造、圧延の工程で十分に製造で
きるものである。The reinforcing bars for concrete according to the present invention can be sufficiently manufactured by ordinary melting, casting, and rolling processes, including out-of-furnace refining.
次いで、この発明を、実施例により比較例と対比しなが
らよシ具体的に説明する。Next, the present invention will be explained in more detail through Examples and in comparison with Comparative Examples.
実施例
まず、炉外精錬をも含む通常の方法で第1表に示される
如き成分組成の鋼を実験室的に500 kg溶製し、常
法通りに熱間圧延して直径が20Mの鉄筋1〜20を製
造した。Example: First, 500 kg of steel having the composition shown in Table 1 was melted in a laboratory using a conventional method including out-of-furnace refining, and hot-rolled in a conventional manner to form a reinforcing bar with a diameter of 20M. 1 to 20 were manufactured.
続いて、このようにして得られた各鉄筋について次の2
つの条件の腐食試験を実施し、その腐食状況を調査した
。Next, for each reinforcing bar obtained in this way, the following two
Corrosion tests were conducted under two conditions and the corrosion status was investigated.
○ 試験条件 A
第1表に示される成分組成の各鉄筋の中央部から幅:1
0mm、長さ:50myn、厚さ13間の試験片を切シ
出し、320番エメリー研摩及び脱脂を順次線してから
、これを、P H12に調整した飽和Ca(OH)2水
溶液にNaC4を05%添加して成る液温、50℃の試
験液に30日間浸漬する。○ Test conditions A Width from the center of each reinforcing bar with the composition shown in Table 1: 1
A test piece of 0 mm, length: 50 myn, and thickness of 13 was cut out, polished with No. 320 emery and degreased in sequence, and then added with NaC4 to a saturated Ca(OH)2 aqueous solution adjusted to pH 12. The sample was immersed for 30 days in a test solution containing 0.5% additive at a temperature of 50°C.
○ 試験条件 B
長さ:200+u+の鉄筋のま捷の試験片を、03%N
aC1を含有したコンクリート(砂、ポルトランドセメ
ント、砂利、及び水よシ成るもの)中に埋め込み、海岸
地帯の屋外に6ケ月間曝露。なお。○ Test conditions B Length: 03%N
Embedded in concrete (consisting of sand, portland cement, gravel, and water) containing aC1 and exposed outdoors in a coastal area for 6 months. In addition.
このとき使用したコンクリートの水・セメント比は06
であり、カプリ厚は10Wu!Lであった。The water/cement ratio of the concrete used at this time was 06
And the capri thickness is 10Wu! It was L.
得られた腐食試験結果を、第1表に併せて示した。なお
、腐食状況の評価は、試験条件Aのものについては試験
後その捷ま、また試験条件Bのものについては試験後コ
ンクリートを解体して鉄筋を取り出し、それぞれ、錆発
生の面積率及び最大孔食深さを測定して行った。The obtained corrosion test results are also shown in Table 1. In addition, the corrosion status was evaluated by breaking the concrete after the test for test condition A, and by dismantling the concrete and removing the reinforcing bars after the test for test condition B, and evaluating the area ratio of rust occurrence and the maximum hole. The eating depth was measured.
第1表に示さハる結果からも、本発明鉄筋は従来使用さ
れていた比較鉄筋に比して格段に耐食性の優れているこ
とがわかる。特に、最大孔食深さを比較すると、本発明
鉄筋は比較鉄筋の約1/2〜1/3程度以下にしか達し
ないことが認められ、塩化物による腐食に対して極めて
優れた抵抗力を有していることが明白である。The results shown in Table 1 also show that the reinforcing bars of the present invention have much better corrosion resistance than comparative reinforcing bars that have been used conventionally. In particular, when comparing the maximum depth of pitting corrosion, it was found that the reinforcing bars of the present invention reach only about 1/2 to 1/3 of the depth of the comparative reinforcing bars, demonstrating extremely excellent resistance to corrosion caused by chlorides. It is clear that it has.
上述のように、この発明によれば、塩化物等を含有する
コンクリート中においても極めて優れた耐食性を示す鉄
筋を比較的安価に得ることができインヒビターの注入や
鉄筋の表面処理等の格別な付随的対策を講じることなく
、塩化物環境を余儀なくされるコンクリート構造物の耐
久性をも十分に向上することが可能になるなど、産業上
有用な効果がもたらされるのである。As described above, according to the present invention, it is possible to obtain reinforcing bars that exhibit extremely excellent corrosion resistance even in concrete containing chlorides, etc., at a relatively low cost. This brings about industrially useful effects, such as making it possible to sufficiently improve the durability of concrete structures that are forced to live in chloride environments without having to take any countermeasures.
出願人 住友金属工業株式会社 代理人 富 1) 和 夫 ほか1名Applicant: Sumitomo Metal Industries, Ltd. Agent Tomi 1) Kazuo and 1 other person
Claims (2)
れたコンクリート用鉄筋。(1) C: 0.001 to 0.3.00% by weight. Sj:i, 0% or less. Mn: 1.7% or more -1. S: Contains U, 0001 to 0.0100%, and ■: 00 to 0.50%. P: More than 0.05% and less than 0.15%. Zr: 0.02~080chi. 811: 0.02-060%. Y: 0.01-030%. AU: 0.02-1.00%. N: rJ, 01-005%. Also includes one or more of Ti: 0.02 to 0.30%, Fe and other unavoidable impurities: the remainder. Reinforcing bars for concrete with excellent corrosion resistance against chlorides, characterized by consisting of:
れたコンクリート用鉄筋。(2) M content ratio: C: 0.001 to 0.300%. Si:1. O Chili bottom. Mn: 1.7- or less. S: O,0OO1-0.0100%. Cu: 0.03-0.60%. Contains V: 0.02 to 0.50%. P: more than 0.05% and less than 0.15%. Zr: 0.02-0.80%. Sn: 0.02-0.60%. Y:0.01~030chi. AQ: 0.02-1.00%. N: 0.01-0.05%. Ti: 0.02-0.30%. Contains one or more of the following: Fe and other unavoidable impurities: Remains. A reinforcing bar for concrete with excellent corrosion resistance against pentachlorides, characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20179483A JPS6092447A (en) | 1983-10-27 | 1983-10-27 | Iron reinforcing rod for concrete with superior corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20179483A JPS6092447A (en) | 1983-10-27 | 1983-10-27 | Iron reinforcing rod for concrete with superior corrosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6092447A true JPS6092447A (en) | 1985-05-24 |
JPH0459384B2 JPH0459384B2 (en) | 1992-09-22 |
Family
ID=16447039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20179483A Granted JPS6092447A (en) | 1983-10-27 | 1983-10-27 | Iron reinforcing rod for concrete with superior corrosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6092447A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62243739A (en) * | 1986-04-17 | 1987-10-24 | Nippon Steel Corp | Corrosion resistant steel material |
JPS62243738A (en) * | 1986-04-17 | 1987-10-24 | Nippon Steel Corp | Steel material having high corrosion resistance |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5014528A (en) * | 1973-06-13 | 1975-02-15 | ||
JPS52113319A (en) * | 1976-03-18 | 1977-09-22 | Sumitomo Metal Ind Ltd | Seam welded steel pipe containing copper |
JPS5310525A (en) * | 1976-07-15 | 1978-01-31 | Matsushita Electric Works Ltd | Roof tile for ridge |
JPS53100121A (en) * | 1977-02-14 | 1978-09-01 | Kawasaki Steel Co | Low alloy steel providing electric resistance welding part with good groove corrosion resistance |
JPS5435113A (en) * | 1977-06-20 | 1979-03-15 | British Steel Corp | Reinforcing steel |
JPS5623254A (en) * | 1979-07-31 | 1981-03-05 | Nippon Kokan Kk <Nkk> | Very soft steel pipe for piping having superior corrosion resistance |
-
1983
- 1983-10-27 JP JP20179483A patent/JPS6092447A/en active Granted
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5014528A (en) * | 1973-06-13 | 1975-02-15 | ||
JPS52113319A (en) * | 1976-03-18 | 1977-09-22 | Sumitomo Metal Ind Ltd | Seam welded steel pipe containing copper |
JPS5310525A (en) * | 1976-07-15 | 1978-01-31 | Matsushita Electric Works Ltd | Roof tile for ridge |
JPS53100121A (en) * | 1977-02-14 | 1978-09-01 | Kawasaki Steel Co | Low alloy steel providing electric resistance welding part with good groove corrosion resistance |
JPS5435113A (en) * | 1977-06-20 | 1979-03-15 | British Steel Corp | Reinforcing steel |
JPS5623254A (en) * | 1979-07-31 | 1981-03-05 | Nippon Kokan Kk <Nkk> | Very soft steel pipe for piping having superior corrosion resistance |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62243739A (en) * | 1986-04-17 | 1987-10-24 | Nippon Steel Corp | Corrosion resistant steel material |
JPS62243738A (en) * | 1986-04-17 | 1987-10-24 | Nippon Steel Corp | Steel material having high corrosion resistance |
Also Published As
Publication number | Publication date |
---|---|
JPH0459384B2 (en) | 1992-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3524707B1 (en) | Steel material | |
KR930005899B1 (en) | Heat-resistant austenitic stainless steel | |
JP5053213B2 (en) | High-strength steel with excellent corrosion resistance during painting in the coastal area and its manufacturing method | |
CN111621698A (en) | Corrosion-resistant low-alloy steel bar for tropical marine atmospheric environment port facilities and preparation method thereof | |
JP3828845B2 (en) | Steel with excellent machinability and wet corrosion resistance | |
JPS6092447A (en) | Iron reinforcing rod for concrete with superior corrosion resistance | |
CN111655889A (en) | Steel for anchor chain and anchor chain | |
JP4241552B2 (en) | High-strength low-alloy steel with hydrogen penetration inhibition effect | |
CN111655887A (en) | Steel for anchor chain and anchor chain | |
JP2004099921A (en) | Seawater resistant steel and manufacturing method | |
JP2620068B2 (en) | Corrosion resistant steel bars for concrete | |
JPH09263886A (en) | Concrete reinforcing steel product | |
JPS6199660A (en) | High strength welded steel pipe for line pipe | |
GB2186886A (en) | Steel composition | |
JPH0536489B2 (en) | ||
JPS6092451A (en) | Iron-reinforcing rod for concrete with superior corrosion resistance | |
EP0570985B1 (en) | Iron-chromium alloy with high corrosion resistance | |
US4861548A (en) | Seawater-corrosion-resistant non-magnetic steel materials | |
JPS5877551A (en) | Slat resistant steel bar for reinforced concrete | |
JPS5877554A (en) | Salt resistant steel bar for reinforced concrete | |
JP3554456B2 (en) | Steel with excellent pickling and corrosion resistance | |
JPS6199656A (en) | High strength welded steel pipe for line pipe | |
JPS5983749A (en) | Ferrite stainless steel having wheatherability | |
JPH11335789A (en) | Corrosion resisting steel excellent in acid-cleaning | |
JP2955385B2 (en) | Manufacturing method of steel wire for glass reinforcement with excellent high temperature properties |