JPS5877554A - Salt resistant steel bar for reinforced concrete - Google Patents

Salt resistant steel bar for reinforced concrete

Info

Publication number
JPS5877554A
JPS5877554A JP17409281A JP17409281A JPS5877554A JP S5877554 A JPS5877554 A JP S5877554A JP 17409281 A JP17409281 A JP 17409281A JP 17409281 A JP17409281 A JP 17409281A JP S5877554 A JPS5877554 A JP S5877554A
Authority
JP
Japan
Prior art keywords
salt
concrete
reinforced concrete
corrosion
steel bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17409281A
Other languages
Japanese (ja)
Inventor
Takao Kurisu
栗栖 孝雄
Satoru Owada
哲 大和田
Tsukasa Imazu
今津 司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17409281A priority Critical patent/JPS5877554A/en
Publication of JPS5877554A publication Critical patent/JPS5877554A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforcement Elements For Buildings (AREA)

Abstract

PURPOSE:To obtain an inexpensive steel bar for reinforced concrete with high resistance to corrosion due to salt in concrete by regulating the S content to an especially low value and by adding prescribed percentages of Cr, C, Si, Mn and P. CONSTITUTION:This salt resistant steel bar for reinforced concrete consists of, by weight, <=0.035% C, <=1.0% Si, <=2.0% Mn, <=0.050% P, <=0.005% S in particular, 0.1-3.0% Cr and the balance Fe with inevitable impurities. The steel bar has superior resistance to corrosion due to salt in concrete. Accordingly, when it is used in a reinforced concrete structure or the like in coastal or oceanic environment or environment along a road over which antifreezing salt is spread, the safety and durability of the structure are remarkably enhanced.

Description

【発明の詳細な説明】 この発明は鉄筋コンクリート構造物に使用される鉄筋用
棒鋼に関し、特に港湾施設、海上プラントホーム、海底
資源堀削装置、海上貯油タンクなど、沿岸もしくは海洋
環境下の鉄筋コンクリート構造物、あるいは凍結防止塩
を散布した道路沿いの鉄筋コンクリート構造物、さらに
は海砂や海水を使用して施工した鉄筋コンクリート構造
物など、塩分による腐食環境下にある鉄筋コンクリート
構造物の鉄筋として好適に使用される鉄筋コンクリート
用棒鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to steel bars for reinforcing bars used in reinforced concrete structures, particularly for reinforced concrete structures in coastal or marine environments such as port facilities, offshore plant homes, submarine resource excavation equipment, and offshore oil storage tanks. It is also suitable for use as reinforcing bars in reinforced concrete structures that are exposed to corrosive environments due to salt, such as reinforced concrete structures along roads that have been sprayed with antifreeze salt, or even reinforced concrete structures constructed using sea sand or seawater. This relates to steel bars for reinforced concrete.

周知のように鉄筋コンクリート構造物中の鉄筋はPI(
10〜13程度の強アルカリ性のコンクリートによって
覆われるだめ、不働態被膜と称される緻密な酸化層によ
っで表面が保護され、通常はほとんど1副食し々いもの
とされている。しかしながら前述のような沿岸もしくは
海洋順境−トあるいは凍結防止塩散布道路沿いの順境下
で建設されたコンクリート構造物や海砂、海水を用いて
施工された鉄筋コンクリート構造物においては、コンク
リート中の塩分一度が増大することかあり、この場合コ
ンクリート中の鉄筋表面の不働態被膜が塩分によシ破壊
されて腐食が著しく進行する。このように腐食が進行す
れば、発生した錆によって鉄筋とコンクリートとの間の
付着力が低1し、鉄筋コンクリート構造物の強度を低下
させ、址だコンクリートの剥離を引き起す問題がある。
As is well known, the reinforcing bars in reinforced concrete structures are PI (
The surface is protected by a dense oxidized layer called a passive film, which is covered with strong alkaline concrete of about 10 to 13, and is usually considered to be just one side dish. However, in the case of concrete structures built in coastal or marine environments or along roads sprayed with antifreeze salt, as mentioned above, and reinforced concrete structures constructed using sea sand or seawater, the salt content in the concrete In this case, the passive film on the surface of the reinforcing bars in the concrete is destroyed by the salt, and corrosion progresses significantly. If corrosion progresses in this way, the generated rust reduces the adhesion between the reinforcing bars and the concrete, reducing the strength of the reinforced concrete structure and causing peeling of the concrete.

まだコンクリートのひび割れを伴った鉄筋の孔食し1、
構造物に対して切欠き効果をおよぼし、台風や地震等の
過大応力によシ構造物破壊を引き起す危険性がある。こ
のように鉄筋の塩分による腐食は構造物の安全性および
耐久性を著しく低−トさせるから、従来から塩分腐食に
対する鉄筋の防食技術の確立が強く望1れている。
Pitting corrosion of reinforcing steel with still concrete cracks 1,
It has a notch effect on structures, and there is a risk of structural failure due to excessive stress caused by typhoons, earthquakes, etc. As described above, corrosion of reinforcing bars due to salt significantly reduces the safety and durability of structures, and therefore, there has been a strong desire to establish corrosion protection technology for reinforcing bars against salt corrosion.

従来のこの釉の防食対策としでは、コンクリート自体の
施工仕様を改良する方法、例えば鉄筋に対するコンクリ
ートのかぶシ厚を増大させたり、あるいはひび割れ防止
用のインヒビターをコンクリートに添加したシ、またポ
リマーセメントを使用したシ、さらには表面塗装を施す
等の方法によって鉄筋表面近くのコンクリートの塩分濃
度が増加しないようにする方法が知られており、捷た鉄
筋自体を防食するだめに鉄筋にznメッギやheメッキ
を施したυあるいは鉄筋表面にエポキシ粉体塗装を施し
たりする方法も知られている。し、が[2ながらこれら
の方法ではいずれも充分な防食効果を得ることは困難で
あシ、壕だ方法によっては施工コストを押し上げる問題
もあった。したがって塩分による腐食を防止するために
は、鉄筋の鋼成分を調整することが最も有望であると考
えられる。
Conventional anti-corrosion measures for this glaze include improving the construction specifications of the concrete itself, such as increasing the thickness of the concrete cover over the reinforcing bars, adding inhibitors to the concrete to prevent cracking, and adding polymer cement to the concrete. There are known methods to prevent the salt concentration of concrete near the surface of reinforcing bars from increasing by applying a surface coating, etc., and in order to prevent corrosion of the broken reinforcing bars themselves, the reinforcing bars may be coated with ZN Meggi or He. It is also known to apply epoxy powder coating to the surface of plated υ or reinforcing bars. However, it is difficult to obtain a sufficient corrosion protection effect with any of these methods, and depending on the trench method, there is also the problem of increasing construction costs. Therefore, adjusting the steel composition of reinforcing bars is considered to be the most promising way to prevent salt-induced corrosion.

ところで従来一般に成分調整によって耐食性を附与した
低合金鋼としては、P 、 Cu 、 Ni 、 Cr
等を添加した耐候性鋼、Cr 、 Cu 、 Mo等を
添加した耐海水鋼、あるいはCu 、 Ni等を添加し
た耐硫酸鋼等が知られている。しかしながらこれらの鋼
材の適用環境はPH8以下の中性もしくは酸性環境であ
って、その腐食機構および添加合金元素の作用が強アル
カリ性のコンクリート中の環境下とは異なると考えられ
、したかって既存の耐候性鋼、耐海水鋼や耐硫酸鋼に、
IUける成分調整をその丑まコンクリート中の鉄筋に適
用しても、コンクリート中における鉄筋に耐塩性効果を
与えることは困難である。
By the way, conventional low alloy steels that have been given corrosion resistance by adjusting their composition include P, Cu, Ni, and Cr.
Weathering-resistant steels with additions of Cr, Cu, Mo, etc., and sulfuric acid-resistant steels with additions of Cu, Ni, etc., are known. However, the environment in which these steel materials are applied is a neutral or acidic environment with a pH of 8 or less, and the corrosion mechanism and the action of added alloying elements are thought to be different from the environment in strongly alkaline concrete. steel, seawater-resistant steel, and sulfuric acid-resistant steel.
Even if component adjustment using IU is applied to reinforcing bars in concrete, it is difficult to impart salt resistance to the reinforcing bars in concrete.

この発明は以上の事情に鑑みてなされたものであり、従
来の耐食鋼とは異々る成分、714整によってコンクリ
ート中の塩分腐食に対する良好な耐食効果を与えかつコ
スト的にも安価にした鉄筋コンクリート用棒鋼を提供す
ることを[1的とするものである。
This invention was made in view of the above circumstances, and it is a reinforced concrete that has a composition different from that of conventional corrosion-resistant steel, and has a 714 composition, which provides good corrosion resistance against salt corrosion in concrete and is also inexpensive. The first objective is to provide steel bars for industrial use.

すなわちこの発明は、コンクリート中の(鉄筋の塩分腐
食の発生機構および進行状況を詳細に検討した結果々さ
れたものであシ、本発明者が沿岸、海洋環境あるいは海
水、海水使用施工熔により塩分を多針に含むコンクIJ
−1−構造物中の鉄筋の腐食状況を、含NaC−g飽和
Ca (OH) 2溶蔽をJfJいで実験室的に再現さ
せて、鉄筋の塩分腐食の発、生状況および塩分腐食に石
よほす合金成分の影響を詳細に調査横割した結果、鋼中
のS含有量を従来の通常の鋼のS含有量よりも格段に低
減させるとともにその低S領域にてCrを添加すること
によって、腐食の起点を減少させるとともに不働態被膜
を強化して耐塩性を向上さぜ得ること、またさらにAe
In other words, this invention was made as a result of a detailed study of the mechanism and progress of salt corrosion of reinforcing bars in concrete. Conch IJ with multiple needles
-1- We simulated the corrosion situation of reinforcing bars in structures in a laboratory setting using NaC-g saturated Ca (OH) 2 melting at JfJ. As a result of a detailed cross-sectional investigation into the influence of Yohosu alloy components, we found that by significantly reducing the S content in the steel compared to the S content of conventional ordinary steel, and adding Cr in the low S region, It is possible to reduce the starting points of corrosion and strengthen the passive film to improve salt resistance, and furthermore,
.

Cu 、 Niを添加することによって上述の11νI
 塩性効(5) 果を一層向上させ得ることを見出し、この発明をなすに
至ったのである。
By adding Cu and Ni, the above 11νI
It was discovered that the salt effect (5) could be further improved, and this invention was made.

上述の知見についてさらに詳細に説明すると、通常の鉄
筋コンク’J −ト用棒鋼として使用される熱間圧延材
は、JIS規格においで8.0.050%以を生じ、熱
間加工性および靭性の低1やit等の際の切欠き効果に
よりi接強度を低下させるものであり、これらの観点か
らSの上限が(1,050%と規定されているのである
。しかし々からこれらの規定は製鋼、熱間加工、浴接等
の面から規定されたものであって、コンクリート構造物
中の鉄筋の塩分腐食については何等考慮されていない。
To explain the above findings in more detail, hot-rolled materials used as ordinary steel bars for reinforced concrete have a hardness of 8.0.050% or more according to the JIS standard, and have poor hot workability and toughness. The i-contact strength is reduced due to the low 1 of The regulations are stipulated from the aspects of steel manufacturing, hot working, bath welding, etc., and do not take into account salt corrosion of reinforcing bars in concrete structures.

コンクリート構造物中の鉄筋はその周囲のコンクリート
が強アルカリ性であるため、通常は前述のように不働態
被膜を形成してほとんど腐食され々いが、沿岸・海洋環
境、凍結防止塩散布道路沿いの環境、あるいは細骨材や
水事情の悪化による海砂や海水使用施工の場合などに5
いては、鉄筋コン(6) クリート構造物中のコンクリートの塩分濃度が増大し、
そのため鉄筋表面の不働態敲)模が破壊され易く、特に
NaC(3VC換算して01%以%以下AK分を含むコ
ンクリート中では著しく腐食が進行する。本発明者等は
このような塩分濃度が旨いコンクリート中の実環境を含
NaCe飽オli Ca (OII ) 2沼沿にてシ
ミュレートして、鉄筋の塩分による腐食発生状況を詳細
に調べた結果、鉄筋の塩分腐食し1非合属介在物、特に
Mn8等の硫化物系非金属介在物を起点どして発生する
ことを見出し、さらに、ilt!I査を進めたところ、
Sが0005%を越える場合にはj^食の起点が増し、
腐食面積および孔食が増大1.、−C耐」ム性が低下す
ること、換言すればS含有量をf蓋来の通常の鋼におけ
る含有1i(003〜(101悌程黒)よりも低い0.
005 %以1に規制することが耐1原−hb向十に必
要であることを見出した。そして前記同様に塩分濃度が
高いコンクリート中の実環境を含Na昨飽オn ca(
oH)2溶液にてシミュレートして、鉄筋の塩分腐食に
Jjよばず合金成分の影響を詳細に調べた結果、低S領
域におけるCr (1)14\加れ1コンクリート中の
鉄筋表面の不働態被膜を強固にして錆および孔食の発生
を抑制する顕著な耐塩性向上効果があることを見出した
。さらに上述のような低S領域に5lr)るCr添加に
併せて、Al1 、 Ni 。
Since the surrounding concrete is strongly alkaline, reinforcing bars in concrete structures normally form a passive film as mentioned above and are almost corroded, but they are used in coastal/marine environments and along roads sprayed with antifreeze salt. 5 for construction using sea sand or sea water due to environmental concerns or deterioration of fine aggregate or water conditions.
In contrast, the salt concentration of concrete in reinforced concrete structures (6) increases,
As a result, the passive structure on the surface of the reinforcing bars is easily destroyed, and corrosion progresses markedly, especially in concrete containing NaC (3VC equivalent, 01% to 01% AK). As a result of simulating the actual environment in delicious concrete in a swamp containing NaCe and Ca (OII), we investigated in detail the corrosion occurrence of reinforcing bars due to salt. It was discovered that it occurs from substances, especially sulfide-based nonmetallic inclusions such as Mn8, and further investigation revealed that
When S exceeds 0005%, the number of starting points for eclipses increases,
Increased corrosion area and pitting 1. In other words, the S content is lower than the content 1i (003 to (101 black) of ordinary steel).
It has been found that it is necessary to limit the content to 1.005% or more for resistance to 1. Similarly to the above, the actual environment in concrete with high salt concentration was investigated.
As a result of a detailed investigation of the influence of Jj Yobazu alloy components on salt corrosion of reinforcing bars by simulating with oH)2 solution, it was found that Cr (1) 14 It has been found that this method has a remarkable effect of improving salt resistance by strengthening the passive film and suppressing the occurrence of rust and pitting corrosion. Furthermore, in addition to adding 5lr) of Cr to the low S region as described above, Al1 and Ni were added.

Cuの18ftだ02s以上を添加することによっで耐
塩性効果が飛躍的に増大し、コンクリート自体のひび割
れ部分においてもH2O、02,Cβ等の腐食性物質の
侵入に対して抵抗性のある不働態被膜が形成されること
を見出したのである。
By adding more than 18 ft.02s of Cu, the salt resistance effect increases dramatically, and even in the cracks of the concrete itself, it becomes a non-resistant material that is resistant to the intrusion of corrosive substances such as H2O, 02, and Cβ. They discovered that a functional film is formed.

したがってこの発明の鉄筋コンクリート用棒鋼は、鋼中
のSを0.005 %以下に規制すると同時にCrを添
加して優れた耐塩性を与んたものであ)、壕だそれに加
えてhe 、 Cu 、 Niの1梗捷だは2種以上を
添加して耐塩性効果をさらに向」ニさせたものである。
Therefore, the steel bar for reinforced concrete of this invention has excellent salt resistance by controlling the S content in the steel to 0.005% or less and adding Cr at the same time. In addition, two or more types of Ni are added to further improve the salt tolerance effect.

具体的には、第1番目の発明による鉄筋コンクリート用
棒鋼は、C035チ以1、S+1.0%以下、Mn 2
. O%以1、Po、050%以寸、S O,005%
以下、Cr01〜30%を含有し、残部Feゎよび不可
避的不純物からなることを特徴とするものである。壕だ
第2番目の発明による鉄筋コンクリート用棒鋼は、上記
各成分のほか、Ag 、 Cu 、 Niのうちから選
はれた1種または24ili以−1−をそれぞれ1.0
%以下、合計針で01〜3.0チの範囲で添加したもの
である。
Specifically, the steel bar for reinforced concrete according to the first invention has C035 or more 1, S+1.0% or less, and Mn 2
.. O% or more 1, Po, 050% or more, SO, 005%
Hereinafter, it is characterized in that it contains 01 to 30% Cr, and the remainder consists of Fe and inevitable impurities. The steel bar for reinforced concrete according to the second invention contains, in addition to the above-mentioned components, one selected from Ag, Cu, and Ni, or 1.0 or more of 24ili or more.
It is added in a range of 0.01 to 3.0% in total.

次にこの発明の鉄筋コンクリート111棒鋼1(c 、
(、;ける各成分の挙動および成分限定理由につい−C
説明する。
Next, the reinforced concrete 111 steel bar 1 (c,
Regarding the behavior of each component and the reason for limiting the components,
explain.

Cは鋼の強度、靭性、溶接性J5よび通常の面・1食性
に影響を与える元素であり、03%以斗であればその影
響は少ないが、03%を越えて冷力[ヒJれば靭性、溶
接性および通常の耐食性を低1させる。
C is an element that affects the strength, toughness, weldability, and normal surface/monocorrosion properties of steel.If it is 0.3% or more, the effect is small, but if it exceeds 0.3%, Reduces toughness, weldability and general corrosion resistance.

したがってCの下限は03%とした。Therefore, the lower limit of C was set at 03%.

Siけ脱酸作用を有するものであって、通常の耐食性を
向」=させるためにある程度含腫れることが好捷しいが
、Si含有量が10係をdJ!!;<−t′+ば加工性
および溶接性に悪影響を与えるから、Siの上限t」、
10チとした。
It has a deoxidizing effect on Si, and it is preferable to have some degree of swelling in order to improve normal corrosion resistance, but the Si content is lower than 10. ! If <-t'+, it will have a negative effect on workability and weldability, so the upper limit of Si is t';
It was set at 10.

Mnは脱酸作用を有するものであり、強1Gを向上させ
るとともに熱間加工性および溶接性を向上さく9) せる。但しMn 0.2%未満ではこれらの効果が小さ
いので02チ以上Mnを含有させることが望ましい。
Mn has a deoxidizing effect and improves the strength 1G as well as hot workability and weldability9). However, if Mn is less than 0.2%, these effects are small, so it is desirable to contain Mn in an amount of 0.2% or more.

一方Mnが20係を越えても添加量と比較し熱間加工性
および浴接性向上効果がさほど大きくならないから、経
済的コストの点から上限を20%とした。
On the other hand, even if Mn exceeds 20%, the effect of improving hot workability and bath weldability is not so great compared to the amount added, so the upper limit was set at 20% from the viewpoint of economic cost.

Sは前述のようにコンクIJ −1−中における塩分腐
食に対して有害々元素であり、S含有量を低減すること
によって耐塩性を向上さぜることかできる。S O,0
05%以下では耐塩性向上効果が著しいが、0.005
%を越えれば有害な硫化物系非金属介在物を鋼中に多量
に存在せしめて、耐塩性を阻害するから、Sの上限をO
,OO5%とした。
As mentioned above, S is a harmful element to salt corrosion in conc IJ-1-, and salt resistance can be improved by reducing the S content. SO,0
Below 0.05%, the effect of improving salt tolerance is remarkable;
%, harmful sulfide-based nonmetallic inclusions will be present in large quantities in the steel, impeding salt resistance, so the upper limit of S is set to O.
, OO5%.

Pは多量に添加すれば耐塩性が向上されるが、過剰に含
有されれば熱間加工性、靭性および溶接性が低下するか
ら、上限を0.05 %とした。
Salt resistance is improved if a large amount of P is added, but hot workability, toughness, and weldability are reduced if P is added in excess, so the upper limit was set at 0.05%.

C【は低S領域において添加することにより耐塩性効果
を相乗的に増大させるが、01チ以1ではその効果が小
さく、シたがって下限を01%とした。またCrの添加
量が3俤を越入れば熱間加工性(10) および靭性が低下し、また耐塩性向−1−効果も添加量
に比べてあ捷り向上せず、コスト高となるからCrの上
限を30%とした。
When added in the low S range, C synergistically increases the salt resistance effect, but the effect is small below 01%, so the lower limit was set at 01%. In addition, if the amount of Cr added exceeds 30, the hot workability (10) and toughness will decrease, and the salt resistance -1 effect will not be improved compared to the amount added, resulting in higher costs. The upper limit of Cr was set to 30%.

Ag 、 Cu 、 Niけ低S領域にてCrと併tJ
ニー c単独も1−<は複合添加することによシ鉄筋表
向の不働態被膜を強固にしてコンクリートのひび割れ部
における局部腐食を低減し、耐塩性を皆1.<向−1さ
せる。但し単独添加、複合添加のいずれに4□5い−C
も01%未満では面j1福性向士効果か顕著でt]なく
、したがって合計添加量の1・限を01φとした。−力
へ〇の添加量が10チを越えれば熱間加工1/1.J、
5よび靭性を低]・させ、−チたCuの添加111か+
1)%を越んれば一般的なlll−1食性t」増すもの
の、清、iri 、熱間圧延時に表面欠陥や疵を生じ、
歯σノ砲/Jll iriが10チを越んれは1制珈性
向士効果と比17て」スl−尚となるから、単独添加、
複合添加のいi“れの場r1もそれぞれの添力11曖の
上限を10%とり、 、#、、チたAg 、 Cu 、
 Niの複合添加の場合、低S iil’t ’aでの
Cr添加に対する相乗的な向・1」話性向上効果が冷加
用に比べてさほど大きくなら4”、コスト高となるから
合計添加量の上限を30係とした。なJ、3 Ae 、
 Cu 。
Ag, Cu, Ni combined with Cr in the low S region
When added alone or in combination, Knee C strengthens the passive film on the surface of the reinforcing steel, reduces local corrosion in cracked areas of concrete, and improves salt resistance to 1. <Direction -1. However, 4□5-C for both single addition and combined addition.
If the amount is less than 01%, the surface j1 effect is not significant, and therefore the limit of the total addition amount is set to 01φ. - If the amount of 〇 added to the force exceeds 10 inches, hot processing will be 1/1. J.
5 and the addition of Cu to lower the toughness and -111 or +
1) If it exceeds 1%, it will increase the general eating quality, but it will cause surface defects and scratches during hot rolling.
If tooth σ no cannon/Jll iri exceeds 10chi, it will be compared to the 1-control propensity effect and become 17"su l-sho, so it will be added alone,
The upper limit of each addition 11 is taken as 10% for the compound addition case r1, and Ag, Cu,
In the case of composite addition of Ni, if the synergistic effect on Cr addition at low Siil't'a is so large that the talkability improvement effect is not so large compared to that for cooling, the total addition will be expensive. The upper limit of the amount was set to 30.J, 3 Ae,
Cu.

N1はS O,005%以−トの低S領域にてCrの祭
加と併せて重加することによりdじめて銅塩性向上効果
が得られるのであり、S含有前が高い場合に添加しても
l1j4塩性向上効果ははとんと期待できない。
By adding N1 together with Cr addition in the low S range of SO, 0.005% or more, the effect of improving copper salt property can be obtained for the first time, and when the S content is high, Even if it is added, the l1j4 salinity improvement effect cannot be expected at all.

以下にこの発明の実htti例、、16よび比較例を記
す。
Below are 16 practical examples of the present invention and comparative examples.

実施例 第1表の試料番号7〜13に7バせ不発明組成範囲内の
各銅極について100ゆ鋼塊を溶製して鍛造した後、一
般工程ヒレットに接合して紛引きし、呼び径D13の棒
鋼を製造した。このように(〜て得られた鉄筋用棒鋼を
水/セメント比(160,11骨@62%、イ用骨刊−
(山砂)38%、コンクリート中の塩分濃庶(NaC看
換算)を02条とした直径50酊、長さ300 m++
のコンクl) −トの中心に埋込み、水深4mの海中4
.5よび海水飛沫帯に5年間暴露して、試験片回収後鉄
筋の腐食面積率および最犬孔食深を測定した。その結果
を第1表に併せて示す。
EXAMPLES Sample numbers 7 to 13 in Table 1 were melted and forged for each copper electrode within the non-inventive composition range, and then joined to a general process fillet, drawn, and A steel bar with a diameter of D13 was manufactured. In this way, the steel bar for reinforcing bars obtained by
(Mountain sand) 38%, salt concentration in concrete (NaC conversion) 02, diameter 50mm, length 300m++
Concrete l) - Embedded in the center of the concrete, underwater at a depth of 4 m 4
.. 5 and a seawater spray zone for 5 years, and after collecting the test pieces, the corrosion area rate and maximum pitting depth of the reinforcing bars were measured. The results are also shown in Table 1.

比較例 第1表の試料番号1〜6に示す本発明イ、11成範囲外
の各鋼種について前記同様に鉄筋用棒鋼金製i告j〜、
前記同様にコンクリート中に押込んでni+計1同様な
腐食試験を行った。その結果を第1ノ<にイffせて示
す。
Comparative Example For each steel type shown in Sample Nos. 1 to 6 in Table 1, which are outside the range of A and 11 of the present invention, steel bars for reinforcing bars were prepared in the same manner as above.
A similar corrosion test was conducted by pushing the sample into concrete in the same manner as described above. The results are shown in the first column.

(1:3 ) 第1表に示される腐食試験結果によれば、鉄筋の腐食は
海水中よりも海水飛沫帯の方が激しいが、いずれの環境
に46いても鋼中Sを0.005%以下に規制するとと
もにCrを添加することによって、著しく耐塩性が良好
と々ることが明らかである。
(1:3) According to the corrosion test results shown in Table 1, the corrosion of reinforcing bars is more severe in the seawater splash zone than in seawater, but in any environment, 0.005% S in steel is used. It is clear that the salt resistance can be significantly improved by adding Cr along with the following restrictions.

またS O,005条以1・の低S領域におりるCr添
加に併せてAe、 Cu 、 Niの1棟または2独以
十を添加することによって相乗効果を示して耐J焦性が
飛躍的に自生することが明らかである。なお比較例3は
尚S領域に”−CCrを添加したものであり、捷だ比較
例4〜6は高S領域e(てC[添加と併せてCu r 
Nr + ke k t4>加したものであるが、いず
れの場合も耐塩性の同上り小さく、シたかってCrの添
加、およびCrとCu 、 Ni 、 Aeの添加は低
S領域で有効であることが確認された。
Furthermore, by adding one or two or more of Ae, Cu, and Ni in addition to the addition of Cr, which is in the low S range of SO, 005 Article 1, a synergistic effect is exhibited, resulting in a dramatic increase in J pyrolysis resistance. It is clear that it grows naturally. Comparative Example 3 is one in which -CCr is added to the S region, and Comparative Examples 4 to 6 are added in the high S region e (in addition to the addition of C [Cu r
Although Nr + ke k t4> is added, the increase in salt resistance is small in both cases, and therefore the addition of Cr and the addition of Cr and Cu, Ni, and Ae are effective in the low S region. was confirmed.

以上の説明で明らか々ようにこの発明の鉄筋コンクリー
ト用棒鋼は、コンクリート中の塩分による腐食に対しで
潰れた1制食性を有するものであシ、したがって沿岸も
1−くけ海洋1JJLあるいけ凍結防止塩散布道路沿い
の環境にある鉄筋コンクリート(15) 構造物、さらには海砂、dσ水を1)I・ハI 1.−
 t’ lAl土]〜だコンクリート構造物等に1史用
1“f+は、CJIらの構造物の安全性、耐久性を著t
、 < 1714−1さ11ることができる。
As is clear from the above description, the steel bar for reinforced concrete of the present invention has anti-corrosion properties that are resistant to corrosion caused by salt in concrete, and therefore, it can be used in coastal areas as well as in oceans and seas. Reinforced concrete in the environment along the sprayed road (15) Structures, as well as sea sand and dσ water 1) I・HaI 1. −
t' lAl soil] - 1 "f+" for use in concrete structures, etc., significantly improves the safety and durability of structures by CJI et al.
, < 1714-1.

出願人 川崎製鉄株式イMl (16)Applicant: Kawasaki Steel Corporation (16)

Claims (2)

【特許請求の範囲】[Claims] (1)CO.35%(重量%、以下同じ)以下、Si1
.0%以下、Mn2.0%以下、P0,050%以下、
80005%以下、Cr01〜30%を含有し、残部が
Feおよび不可避的不純物からなることを特徴とする銅
塩性鉄筋コンクリート用棒鋼。
(1) CO. 35% (weight%, same below) or less, Si1
.. 0% or less, Mn 2.0% or less, P 0,050% or less,
A copper salt steel bar for reinforced concrete, characterized in that it contains 80005% or less, 01 to 30% Cr, and the remainder consists of Fe and inevitable impurities.
(2) CO,35%以=ト、8410%以1、Mn 
2.0チ以下、P O,050%以1、S O,005
%以下、Cr 0.1〜30%Mを含有するとともに、
Aβ。 Cu 、 Niのうちから選ばれた1棟または2種以上
をそれぞれ10%以下、合計量が01〜3.0%となる
範囲内で含有し、残部がFeおよび不可避的不純物から
なることを特徴とする耐塩性鉄筋コンクリート用棒鋼。
(2) CO, 35% or more = T, 8410% or more 1, Mn
2.0 inches or less, P O, 050% or more 1, S O, 005
% or less, containing Cr 0.1 to 30%M,
Aβ. It is characterized by containing one or more selected from Cu and Ni in an amount of 10% or less each, with a total amount of 01 to 3.0%, and the remainder consisting of Fe and unavoidable impurities. Salt-resistant steel bars for reinforced concrete.
JP17409281A 1981-10-30 1981-10-30 Salt resistant steel bar for reinforced concrete Pending JPS5877554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17409281A JPS5877554A (en) 1981-10-30 1981-10-30 Salt resistant steel bar for reinforced concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17409281A JPS5877554A (en) 1981-10-30 1981-10-30 Salt resistant steel bar for reinforced concrete

Publications (1)

Publication Number Publication Date
JPS5877554A true JPS5877554A (en) 1983-05-10

Family

ID=15972507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17409281A Pending JPS5877554A (en) 1981-10-30 1981-10-30 Salt resistant steel bar for reinforced concrete

Country Status (1)

Country Link
JP (1) JPS5877554A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6092451A (en) * 1983-10-27 1985-05-24 Sumitomo Metal Ind Ltd Iron-reinforcing rod for concrete with superior corrosion resistance
JPS60103161A (en) * 1983-11-10 1985-06-07 Nippon Steel Corp Unnormalized steel bar for hot forging
WO1986004361A1 (en) * 1985-01-17 1986-07-31 Nisshin Steel Co., Ltd. Highly anti-corrosive aluminized sheet for exhaust gas members
JPS61284554A (en) * 1985-06-12 1986-12-15 Kobe Steel Ltd Alloy steel for unrefined bolt or the like having superior toughness and steel material for unrefined bolt or the like using same
JPS62188754A (en) * 1986-02-14 1987-08-18 Mitsubishi Steel Mfg Co Ltd Corrosion resistant steel reinforcing bar for concrete
JPH02240238A (en) * 1989-03-15 1990-09-25 Nkk Corp Salt damage resistant pc steel bar

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6092451A (en) * 1983-10-27 1985-05-24 Sumitomo Metal Ind Ltd Iron-reinforcing rod for concrete with superior corrosion resistance
JPH0468379B2 (en) * 1983-10-27 1992-11-02 Sumitomo Metal Ind
JPS60103161A (en) * 1983-11-10 1985-06-07 Nippon Steel Corp Unnormalized steel bar for hot forging
WO1986004361A1 (en) * 1985-01-17 1986-07-31 Nisshin Steel Co., Ltd. Highly anti-corrosive aluminized sheet for exhaust gas members
US4729929A (en) * 1985-01-17 1988-03-08 Nisshin Steel Co., Ltd. Highly corrosion resistant aluminized steel sheet for the manufacture of parts of exhaust gas system
JPS61284554A (en) * 1985-06-12 1986-12-15 Kobe Steel Ltd Alloy steel for unrefined bolt or the like having superior toughness and steel material for unrefined bolt or the like using same
JPS62188754A (en) * 1986-02-14 1987-08-18 Mitsubishi Steel Mfg Co Ltd Corrosion resistant steel reinforcing bar for concrete
JPH02240238A (en) * 1989-03-15 1990-09-25 Nkk Corp Salt damage resistant pc steel bar

Similar Documents

Publication Publication Date Title
TWI404807B (en) Corrosion resistant steel product for crude oil tanker
US10774396B2 (en) Seawater-resistant stainless clad steel
JP5092932B2 (en) Marine steel structures, steel pipe piles, steel sheet piles and steel pipe sheet piles
JP4525687B2 (en) Corrosion resistant steel for ships
KR20080097479A (en) Corroson-resistant steel material for crude oil storage tank, and crude oil storage tank
KR101786413B1 (en) Steel for crude oil tank and crude oil tank
KR20150095582A (en) Coated steel with excellent corrosion resistance
JP4325421B2 (en) Seawater resistant
JP4868917B2 (en) Steel material for crude oil tank bottom plate with excellent corrosion resistance
JP6149943B2 (en) Steel for crude oil tank and crude oil tank
JP5771011B2 (en) Steel for structural members with excellent corrosion resistance
JPS5877554A (en) Salt resistant steel bar for reinforced concrete
JP4483107B2 (en) Marine steel with excellent coating life
US3853544A (en) Corrosion resistant steels having improved weldability
JPS5877551A (en) Slat resistant steel bar for reinforced concrete
JP6409963B2 (en) Steel for crude oil tanks and crude oil tanks with excellent corrosion resistance
JPS5877552A (en) Salt resistant steel bar for reinforced concrete
JP7339508B2 (en) Steel plate for chain locker and chain locker
JP6409962B2 (en) Steel for crude oil tanks and crude oil tanks with excellent corrosion resistance
JPH07310141A (en) Seawater resistant steel for high temperature moisty environment and its production
JPS609588B2 (en) Pitting corrosion resistant low alloy steel
JP2012214907A (en) Steel products coated with heavy corrosion resistant protected cover
JP6405909B2 (en) Corrosion resistant steel
Conde New materials for the marine and offshore industry
JP2021025065A (en) Chain locker and steel sheet for chain locker