JPS61142669A - Positive pole material for solid cell - Google Patents

Positive pole material for solid cell

Info

Publication number
JPS61142669A
JPS61142669A JP59265015A JP26501584A JPS61142669A JP S61142669 A JPS61142669 A JP S61142669A JP 59265015 A JP59265015 A JP 59265015A JP 26501584 A JP26501584 A JP 26501584A JP S61142669 A JPS61142669 A JP S61142669A
Authority
JP
Japan
Prior art keywords
positive electrode
conductivity
solid
battery
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59265015A
Other languages
Japanese (ja)
Other versions
JPH0329128B2 (en
Inventor
Hideaki Otsuka
大塚 秀昭
Takeshi Okada
岡田 武司
Yoji Sakurai
桜井 庸司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59265015A priority Critical patent/JPS61142669A/en
Publication of JPS61142669A publication Critical patent/JPS61142669A/en
Publication of JPH0329128B2 publication Critical patent/JPH0329128B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve a sintering property while improving a property and conductivity by making a positive pole material for a solid cell to be expressed by a formla: (Cu1-xMx)2V2O7. CONSTITUTION:In priciple, CuO, V2O5, M2O3(SC2O3, Sm2O3, Cr2O3, Ga2O3) and XO3(MoO3, WO3, CrO3) are mixed under a prescribed condition while molding it by temporarily burning in air followed by sintering for obtaining a sintered substance to be expressed by the formla (Cu1-xMx)2V2O7. Or after molding the temporarily burnt powder the minute sintered substance said above can be obtained by a normal sintering method such as by performing hot press or the like. Thereby, a property and conductivity as positive active material can be improved while improving also its sintering property.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明は固体電池用正極材料、さらに詳しくはリチウム
固体電池に用いる正極活物質材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to positive electrode materials for solid-state batteries, and more particularly to positive electrode active materials used in lithium solid-state batteries.

〔発明の背景〕[Background of the invention]

従来、リチウム固体電池の正極活物質としてはPbI 
@ 、^gIなどの沃化物や沃素錯体hs z 、Ta
S @ 、 MoS 2のような硫化物が用いられてい
る。
Conventionally, PbI has been used as a positive electrode active material for lithium solid-state batteries.
Iodides such as @ , ^gI and iodine complexes hs z , Ta
Sulfides such as S@, MoS2 are used.

従来固体電池はこれらの正極活物質の粉末を加圧し、さ
らに固体電解質粉末を重ね、その上にLi箔あるいはL
i粉末などの負極活物質を重ねて加圧成形することによ
って、作製されている。しかし、従来においては固体電
解質を用いて電池構成要素が全て固体である電池を作製
した特徴の一つである小型薄型にできるという利点が充
分に生かされていないという欠点があった。
Conventional solid-state batteries press these positive electrode active material powders, layer solid electrolyte powder on top, and then layer Li foil or L on top of the solid electrolyte powder.
It is produced by layering negative electrode active materials such as i-powder and press-molding them. However, in the past, one of the characteristics of producing a battery in which all battery components are solid using a solid electrolyte, which is that it can be made small and thin, has not been fully utilized.

すなわち電池を小型、薄型化するには、まず正極活物質
の上に薄膜を形成することが必要であり、さらに正極活
物質についても基板上に薄膜を形成するか、あるいは基
板そのものを正極活物質で作るかの2つの方法で小型薄
膜型の固体電池が作製可能である。この後者の方法にお
いては薄膜形成の仮定が1つ少ないので構造的にも作製
上からも簡単であるが、これまで基板となり得るような
t極活物質材料がなく、事実上製造が不可能であった。
In other words, in order to make a battery smaller and thinner, it is first necessary to form a thin film on the positive electrode active material, and then either to form a thin film on the substrate for the positive electrode active material, or to replace the substrate itself with the positive electrode active material. Small thin-film solid-state batteries can be manufactured using two methods: In this latter method, there is one less assumption for thin film formation, so it is simpler in terms of structure and production. there were.

すなわち、このような基板となりうるためには焼結性が
良好なこと、また正極活物質として働くためには電子伝
導性が良好なことが必要であるが、たとえば上述のTi
S @などは焼結性が悪(焼結体かえられないし、Pb
I t 、BiI sなども同様に焼結性が悪く、また
電子伝導性も悪く、正極基板となるようなものは得られ
ていなかった。
In other words, in order to be able to serve as such a substrate, it is necessary to have good sinterability, and in order to work as a positive electrode active material, it is necessary to have good electronic conductivity.
S@ etc. have poor sinterability (the sintered body cannot be changed, and Pb
It, BiIs, etc. similarly have poor sinterability and poor electronic conductivity, and have not been able to be used as positive electrode substrates.

〔発明の概要〕[Summary of the invention]

本発明は上述の点に鑑みなされたものであり、正極活物
質としての特性が良好で、導電性が良く、かつ基板とな
りえるほど焼結性の良好な固体電池用活物質材料を提供
することを目的とするものである。
The present invention has been made in view of the above points, and an object of the present invention is to provide an active material for a solid battery that has good characteristics as a positive electrode active material, good conductivity, and has good sinterability so that it can be used as a substrate. The purpose is to

したがって本発明による固体電池用正極材料は一般式、
(Cul−xMx) eV *07  (ただし河は5
CSY s 5aSGdSDyの希土類元素、およびC
r、Gas Mn、、Fe5Bis Sbの3価元素、
χは0.01≦x≦0.2なる範囲の実数)で示される
ことを特徴とするものである。
Therefore, the positive electrode material for solid-state batteries according to the present invention has the general formula:
(Cul-xMx) eV *07 (However, the river is 5
CSY s 5aSGdSDy rare earth elements, and C
r, Gas Mn,, trivalent element of Fe5Bis Sb,
χ is a real number in the range of 0.01≦x≦0.2).

また本発明による第二の固体電池用正極材料は一般式、
Cll!  (V x −yX y) 2O ?  (
ただしXはMO% H、Crsの6価元素、yは0.0
1≦y≦0.2なる範囲の実数)で示されることを特徴
とするも□のである。
Further, the second positive electrode material for solid-state batteries according to the present invention has the general formula:
Cll! (V x −yX y) 2O? (
However, X is a hexavalent element of MO% H, Crs, and y is 0.0
It is characterized by being represented by a real number in the range of 1≦y≦0.2).

さらに本発明による第三の固体電池用正極材料は、一般
式、(Cul −xM x)’t  (V x −yX
 y)ioy(ただしNは5cSY % Sa+、Gd
、 DFの希土類元素、およびCrs Ga5Mn1F
e1111 Sbの3価元素、χは0.01≦x≦0.
2なる範囲の実数、Xは60、W SCrの6価元素、
yは0.01≦y≦0.2なる範囲の実数)で示される
ことを特徴とする。
Furthermore, the third positive electrode material for solid batteries according to the present invention has the general formula: (Cul -xM x)'t (V x -yX
y) ioy (N is 5cSY% Sa+, Gd
, DF rare earth elements, and Crs Ga5Mn1F
e1111 Trivalent element of Sb, χ is 0.01≦x≦0.
A real number in the range of 2, X is 60, a hexavalent element of W SCr,
y is a real number in the range of 0.01≦y≦0.2).

本発明によれば、リチウム電池用正極材料としての特性
が良好で導電性がよく、かつ焼結性も良好であ゛るので
固体電池作製の正極基板として利用可能である。このた
め比較的簡便な方法で薄型固体電池を製造可能になると
いう利点がある。
According to the present invention, the material has good characteristics as a positive electrode material for lithium batteries, has good conductivity, and has good sinterability, and can be used as a positive electrode substrate for producing solid batteries. Therefore, there is an advantage that a thin solid state battery can be manufactured by a relatively simple method.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明をさらに詳しく説明する。 The present invention will be explained in more detail.

本発明による固体電池用正極材料はリチウム二次電池用
正極活物質として良好な特性を示すCu2V207に着
目し、この材料の導電性の改良、焼結性の改良のため、
Cuの一部を5cSSII%Gdなどの希土類元素やC
rs Ga等の3価の元素で置換することにより、ある
いはVの一部をllo、 H、Orなどの6価元素で置
換することにより得た磁器組成物にしたものである。
The positive electrode material for solid-state batteries according to the present invention focuses on Cu2V207, which exhibits good characteristics as a positive electrode active material for lithium secondary batteries, and in order to improve the conductivity and sinterability of this material,
A part of Cu is replaced by a rare earth element such as 5cSSII%Gd or C.
This is a ceramic composition obtained by substituting a trivalent element such as rs Ga or by substituting a part of V with a hexavalent element such as llo, H, Or, etc.

すなわち本発明によれば、 (1)  一般式、(Cul −xM x) eV 2
O 7  (ただしnは50% Y % 5lls G
ds Dyの希土類元素、およびCrs Gas Mn
、Fe5Bi、 Sbの3価元素、χは0.01≦x≦
0.2なる範囲の実数)で示される固体電池用正極材料
、 (2)  一般式、Cue  (Vz−yXy)s07
 (ただしXはMO% W 、Cr、の6価元素、yは
0.01≦y≦0.2なる範囲の実数)で示される固体
電池用正極材料、 (3)  一般式、(Cut −xHx) t  (V
 x −yXy)ioy(ただしhは5cSY 5St
aSGds Dyの希土類元素、およびCrSGa5M
n5 Fes 81% Sbの3価元素、χは0.01
≦x≦0.2なる範囲の実数、XはMOSW 、Crの
6価元素、yは0.01≦y≦0.2なる範囲の実数)
で示される固体電池用正極材料を提供するものである。
That is, according to the present invention, (1) General formula, (Cul -xM x) eV 2
O 7 (However, n is 50% Y % 5lls G
ds Dy rare earth elements, and Crs Gas Mn
, Fe5Bi, Sb trivalent elements, χ is 0.01≦x≦
(2) General formula, Cue (Vz-yXy)s07
(where X is a hexavalent element of MO% W, Cr, and y is a real number in the range of 0.01≦y≦0.2), (3) General formula, (Cut −xHx ) t (V
x -yXy) ioy (h is 5cSY 5St
aSGds Dy rare earth elements, and CrSGa5M
n5 Fes 81% Trivalent element of Sb, χ is 0.01
(Real number in the range ≦x≦0.2, X is a hexavalent element of MOSW, Cr, y is a real number in the range 0.01≦y≦0.2)
The object of the present invention is to provide a positive electrode material for a solid battery shown in the following.

上述の式においてXおよびyは0.01≦X+3’≦0
゜2の範囲にあるが、χ、yがこの範囲を逸脱すると後
述の実施例に示すように焼結性が悪化したり、導電性が
低下するからである。
In the above formula, X and y are 0.01≦X+3'≦0
If χ and y are within the range of .degree.

上記に示した固体電池用正極材料は、たとえば下記のよ
うに製造することができる。
The solid battery positive electrode material shown above can be manufactured, for example, as follows.

まず原料としてCuOSV @ Os 、M ! Oa
  (Sct Oa 、SIl$+ 03、Crs O
a 、Gay Oaなど)およびX 03(Mo03 
、WOa 、Cr03など)を上記式(1)、(2)、
(3)に基づいて混合し、空気中で600℃で24時間
仮焼成し、It/−の圧力で成形し、これを620℃で
10時間焼成して焼結体を得る、あるいは仮焼粉末を成
形した後、620℃で2時間、400Kg/adの圧力
でホットプレスを行う等の方法にjり通常焼成法により
緻密な焼結体が得られる。
First, CuOSV@Os, M! Oa
(Sct Oa, SIl$+ 03, Crs O
a, Gay Oa, etc.) and X03 (Mo03
, WOa, Cr03, etc.) using the above formulas (1), (2),
(3), calcined in air at 600℃ for 24 hours, molded at a pressure of It/-, and calcined at 620℃ for 10 hours to obtain a sintered body, or calcined powder. After molding, a dense sintered body can be obtained by a normal firing method such as hot pressing at 620° C. for 2 hours at a pressure of 400 kg/ad.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

実施例I Cuを置換する3価の元素としてScを採り上げ、(C
ul −xScx ) t V sIo 7なる式にお
いて、0≦x≦0.30の範囲の試料について上記通常
磁器焼成法により作成した。
Example I Taking Sc as a trivalent element to replace Cu, (C
In the formula ul - x Scx ) t V sIo 7, samples in the range of 0≦x≦0.30 were prepared by the above-mentioned normal porcelain firing method.

これらの試料はSc量が2%程度から焼結性が良好にな
り、特に5〜20%の範囲の試料がよく焼結することが
わかった。20℃における導電率と組成の関係を第1図
に示す、この第1図より明らかなように、Scが0.5
%から13%の範囲でScを添加していないCub V
 207の20倍以上の導電性を示しており、10%を
過ぎると減少してくるが、それでも20%においてCu
2 V @ 07と同じ程度になる。
It was found that the sinterability of these samples becomes good when the Sc content is around 2%, and the samples in which the Sc content is in the range of 5 to 20% sinter well. Figure 1 shows the relationship between conductivity and composition at 20°C.As is clear from Figure 1, when Sc is 0.5
Cub V with no added Sc in the range of % to 13%
The conductivity is more than 20 times that of 207, and it decreases after 10%, but still, at 20%, Cu
It will be about the same as 2 V @ 07.

この導電率の減少はScがCu2 V t 07に固溶
できず、ScV OaとなってCu2V107の結晶相
に混在してくるからであると考えられる。
This decrease in electrical conductivity is thought to be because Sc cannot form a solid solution in Cu2Vt07, and becomes ScVOa, which is mixed in the crystal phase of Cu2V107.

この(Cul −xScx) * V 2O 7では、
0.02≦x≦0.15の範囲で焼結性も良く、導電性
も良い。
In this (Cul -xScx) *V 2O 7,
In the range of 0.02≦x≦0.15, the sinterability is good and the conductivity is also good.

しかし、0.01≦x≦0.02の範囲でも導電性は充
分に大きく、ホットプレス法によって焼結体を得ること
が可能である。しかしながらχ<0.01となると焼結
体を得るのが困難になる。 0.15<χ≦0.2の範
囲では導電率は0.01≦x≦0.15に比較して小さ
くなるが、Cu2 V @ 07より大きく、焼結性は
良好であるので正極基板として使用することが可能であ
る。
However, even in the range of 0.01≦x≦0.02, the conductivity is sufficiently high, and it is possible to obtain a sintered body by hot pressing. However, when χ<0.01, it becomes difficult to obtain a sintered body. In the range of 0.15<χ≦0.2, the conductivity is smaller than that in 0.01≦x≦0.15, but it is higher than Cu2V@07 and has good sinterability, so it can be used as a positive electrode substrate. It is possible to use.

実施例2 実施例1と同様にCuを置換する元素としてCr 5G
as Mn5Fes BISSbを用い、上記の方法に
よって焼結した。これらの材料にっても導電率と組成に
関係は実施例1と同様の傾向を示した。焼結性において
も0.O1≦x≦0.2の範囲において良好であった。
Example 2 Similar to Example 1, Cr 5G was used as an element to replace Cu.
As Mn5Fes BISSb was used and sintered by the method described above. These materials also showed the same tendency as Example 1 in terms of the relationship between conductivity and composition. The sinterability is also 0. Good results were obtained within the range of O1≦x≦0.2.

実施例3 実施例1と同様な方法で、Cむ (V 1−γXγ)2
O7なる式に基づいて、XとしてFIoS賀、Crを用
いて、05V≦0.3の範囲で焼結体を製造した。
Example 3 In the same manner as in Example 1, Cmu (V1-γXγ)2
Based on the formula O7, a sintered body was manufactured using FIoS and Cr as X in the range of 05V≦0.3.

y >0.2の範囲ではCu2 V 207相以外の相
との混合相になり導電性が低下する。焼結性に関しては
y <0.01ではCugVs+Ovと同様焼結性が悪
(、焼結体は得られなかった。o、oi≦y≦0.2の
範囲では比較的焼結性が良く、また導電性もCu2v2
07よりも大きくなる。
In the range of y>0.2, a mixed phase with phases other than the Cu2V207 phase is formed, and the conductivity decreases. Regarding sinterability, when y < 0.01, the sinterability was poor (no sintered body was obtained), similar to CugVs+Ov. In the range of o, oi≦y≦0.2, the sinterability was relatively good; Also, the conductivity is Cu2v2
It becomes larger than 07.

実施例4 (Cul −xM x) t (V 1−y Xy) 
*Otなる式に基づき、台としてSc、 Gds Cr
s Ga5Mn、 Fe5BiSSbSxとしてMo 
S−を用い、上記の方法で焼結体を作成した。代表的な
試料の室温における導電率を第1表に示す。
Example 4 (Cul -xM x) t (V 1-y Xy)
*Based on the formula Ot, Sc, Gds Cr as the base
s Ga5Mn, Mo as Fe5BiSSbSx
A sintered body was produced using S- by the method described above. Table 1 shows the electrical conductivity of typical samples at room temperature.

第1表 いずれもCu2V207の5 xlO−2(S /m 
)に比較して導電率が1桁以上大きくなっていた。
Table 1 shows 5xlO-2 (S/m) of Cu2V207.
), the electrical conductivity was greater than 1 digit.

また焼結性においても、M、Xを0.05≦x;y≦0
゜2の範囲で添加した場合、良好であった。
Also, regarding sinterability, M and X are 0.05≦x; y≦0
Good results were obtained when the amount was added within the range of 2°C.

実施例1、実施例2、実施例3、実施例4で述ベた代表
的なものの導電率の温度依存性を第2図に示す。番号1
.2.3.4.5.6.7.8.9.10はそれぞれ(
Cu(13Sca、J 2 V it O?、(Cuo
JGaao+) S! V t 07、(Cug1Mn
ao+) w V t 07、(CufiJCr+u+
+) ff1v IIOr、Cut  (VanMOa
a+) t07 、Cug  (V 、、W 1ot)
 207、(Cu43Scax) t V2O7、(C
uIL、Ga1Lx) ! V * 07 、Cug 
 (V 6,5N。
FIG. 2 shows the temperature dependence of the conductivity of the typical materials described in Examples 1, 2, 3, and 4. number 1
.. 2.3.4.5.6.7.8.9.10 are respectively (
Cu(13Sca, J 2 V it O?, (Cuo
JGaao+) S! V t 07, (Cug1Mn
ao+) w V t 07, (CufiJCr+u+
+) ff1v IIOr, Cut (VanMOa
a+) t07, Cug (V,, W 1ot)
207, (Cu43Scax) t V2O7, (C
uIL, Ga1Lx)! V*07, Cug
(V 6,5N.

0.1) w Ol−、(Cuo3Sco、x) 2(
V gMoao+) 207であり、比較のためCu1
V107を11として示ピた。
0.1) w Ol-, (Cuo3Sco, x) 2(
V gMoao+) 207, and Cu1 for comparison
V107 was shown as 11.

実施例5 実施例1で述べた材料の1つである(Cuo、5SCa
□) 2V eo ?を正極材料に用い、有機電解液を
用 。
Example 5 One of the materials mentioned in Example 1 (Cuo, 5SCa
□) 2Veo? is used as the positive electrode material, and an organic electrolyte is used.

いたP電池を作成し、その電池特性を調べた。A P battery was prepared and its battery characteristics were investigated.

電池は次ぎのようにして作成した。まず、正極活物質に
導電剤としてケッチェンブラックECおよびポリテトラ
フルオロエチレンを重量比で75 : 25:5の割合
で混合し、正極混合物を厚み0.6fl、系16關の円
盤系に成型し、これをステンレス製の正極容器に入れ、
径18鰭のNiの網で固定し、さらにセパレータを重ね
、電解液としてlN−LiCl0a/PC+DME  
(プロピレンカーボネイト+1,2−ジェトキシエタン
の等容積混合溶媒)を適量注入し、その上にLi金属を
圧着した負極容器をかぶせて、かしめ、径23龍、厚さ
2fiのコイン型電池を作成した。
The battery was created as follows. First, Ketjenblack EC and polytetrafluoroethylene as conductive agents were mixed with the positive electrode active material in a weight ratio of 75:25:5, and the positive electrode mixture was molded into a disk with a thickness of 0.6 fl and a diameter of 16 mm. , put this in a stainless steel cathode container,
It was fixed with a Ni net with a diameter of 18 fins, a separator was further layered, and lN-LiCl0a/PC+DME was used as the electrolyte.
(equal volume mixed solvent of propylene carbonate + 1,2-jethoxyethane) was injected, and a negative electrode container with Li metal crimped was placed on top of the negative electrode container to create a coin-shaped battery with a diameter of 23mm and a thickness of 2fi.

このように作製された電池を1 mAで定電流放電を行
ったところ、第3図のへのような放電曲線になった。電
池電圧が2vに低下するまでの正極活物質の放電容量密
度は330 Ah/Ig、エネルギ密度は861Wh 
/Kgであり、電圧が1vに低下するまでの放電容量密
度は520 Ah/にg、エネルギ密度は1j−50賀
h /Kgであった。
When the battery thus prepared was subjected to constant current discharge at 1 mA, a discharge curve as shown in Fig. 3 was obtained. The discharge capacity density of the positive electrode active material until the battery voltage drops to 2V is 330 Ah/Ig, and the energy density is 861Wh.
/Kg, the discharge capacity density was 520 Ah/Kg until the voltage decreased to 1V, and the energy density was 1j-50Ah/Kg.

また比較のため、Cu1V107を正極活物質に用いた
このコイン型電池を用いて、1 mAの定電流で充放電
を行った。充放電サイクルは放電15時間、休止1時間
、充電15時間、休止1時間である。第4図は充放電の
結果を示す図である0曲線^、B %C,Dはそれぞれ
第1回目、第2回目、第10回目、第20回目の放電充
電の様子を示している。
For comparison, this coin-shaped battery using Cu1V107 as the positive electrode active material was charged and discharged at a constant current of 1 mA. The charge/discharge cycle is 15 hours of discharging, 1 hour of rest, 15 hours of charging, and 1 hour of rest. FIG. 4 is a diagram showing the results of charging and discharging. 0 curve ^, B%C, and D show the states of the first, second, tenth, and 20th discharging and charging, respectively.

このように(CLlasSCal) * V t 07
を正極活物質として用いたコイン型電池は放電電圧の平
坦製、放電容′量の大きさ、充放電のサイクル性で優れ
た特性を示している。すなわち、(CuasScaz)
 t V2O7はリチウム二次電池の正極材料として優
れた特性を有していることがわかった。
Like this (CLlasSCal) * V t 07
Coin-type batteries using this as the positive electrode active material have shown excellent characteristics in terms of flat discharge voltage, large discharge capacity, and charge/discharge cycle performance. That is, (CuasScaz)
It was found that tV2O7 has excellent properties as a positive electrode material for lithium secondary batteries.

実施例6 実施例5で述べたように(CuasSco、x) 2 
V 207はリチウム二次電池の正極活物質として良好
な特性を示すので、この材料を用い、固体電池を作製し
た。まず、この(Cu43Scax) e V e 0
7を通常焼成法で作製し、粉砕し、成形した後、ホット
プレス法により、直径25u+、厚み8鶴程度の円盤を
作製した。これをスライスし研磨して、Q、3mm厚の
基板を作製した。この基板の表面に電解質としてLi3
 Zng、5GeOa非晶質膜を5000人はどスパッ
タ法により堆積させた。裏面には正極側集電極としてA
uのスパッタ膜を約1000人程度付着させた。
Example 6 As stated in Example 5 (CuasSco, x) 2
Since V207 exhibits good properties as a positive electrode active material for lithium secondary batteries, a solid battery was fabricated using this material. First, this (Cu43Scax) e V e 0
7 was produced by a normal firing method, crushed and molded, and then a disk having a diameter of 25 U+ and a thickness of about 8 cranes was produced by a hot pressing method. This was sliced and polished to produce a substrate Q with a thickness of 3 mm. Li3 is used as an electrolyte on the surface of this substrate.
A Zng, 5GeOa amorphous film was deposited by sputtering using 5,000 people. On the back side, there is A as a positive collector electrode.
Approximately 1,000 sputtered films of u were deposited.

この電解質を付着させた正極基板を8鶴角の正方形に切
り出し、この電解質薄膜の上側に面積0゜2cjのLi
極を形成し、電池を構成させた。負極側集電極としてN
i板を重ねた。
The positive electrode substrate to which this electrolyte was adhered was cut into an 8-square square, and Li with an area of 0°2cj was placed on top of this electrolyte thin film.
The poles were formed and the battery was constructed. N as negative electrode side collector electrode
I stacked the i-boards.

この電池を用いて放電試験を行った結果を第5図に示す
。放電電流密度は5μA/−であった。
FIG. 5 shows the results of a discharge test conducted using this battery. The discharge current density was 5 μA/−.

図のように2v以上を保持する放電容量は、単位面積あ
たり、200μAh以上であり、電池の厚みが0.3 
w程度の非常に薄い電池として良好な電池特性を示して
いた。
As shown in the figure, the discharge capacity to maintain 2V or more is 200μAh or more per unit area, and the battery thickness is 0.3V or more.
It showed good battery characteristics as a very thin battery of about 200 lbs.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による固体電池用正極材料
は、リチウム電池用正極材料としての特性が良好で、か
つ導電性がよく、焼結性が良好であるので、固体電池作
製の正極基板として利用することができる。これにより
、比較的簡単な手順で薄型固体電池の作製が可能になる
As explained above, the positive electrode material for solid-state batteries according to the present invention has good characteristics as a positive electrode material for lithium batteries, has good conductivity, and has good sinterability, so it can be used as a positive electrode substrate for manufacturing solid-state batteries. can be used. This makes it possible to manufacture thin solid-state batteries using relatively simple procedures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例の(Cu1− x 5c
X)2V 2O 7の20℃における導電率と組成の関
係を示した図、第2図は本発明における代表的材料の導
電率の温度依存性を示した図、第3図は本発明における
(Cuo、3Sco、1) 2 V 207を正極材料
を用いたリチウム電池の放電試験の結果を示す図、第4
図は本発明による(Cu(1,5Sco、z) ffi
 V t 07を正極材料に用いたリチウム電池の充放
電試験の結果を示す図、第5図は本発明による(Cug
、3SCax )1!VI107を正極材料として用い
た固体電池の放電特性を示す図である。 出願人代理人     雨 宮 正 季第1図 sc  シ資加11 (0ム ) 1000/T  (に ) 臂    M     (N     e−。 (^)V番)S凄I (^)1″iIP♀f車 第5図 江電容’l(yAh)
FIG. 1 shows one embodiment of the present invention (Cu1- x 5c
X) A diagram showing the relationship between the conductivity and composition of 2V 2O 7 at 20°C, Figure 2 is a diagram showing the temperature dependence of the conductivity of representative materials in the present invention, and Figure 3 is a diagram showing the relationship between the conductivity and composition of (X) 2V 2O 7 in the present invention. Cuo, 3Sco, 1) Figure 4 showing the results of a discharge test of a lithium battery using 2V 207 as a positive electrode material.
The figure is according to the present invention (Cu(1,5Sco,z) ffi
Figure 5 is a diagram showing the results of a charge/discharge test of a lithium battery using V t 07 as the positive electrode material.
,3SCax)1! FIG. 3 is a diagram showing the discharge characteristics of a solid battery using VI107 as a positive electrode material. Applicant's agent Masaki Amemiya Figure 1 SC Shishika 11 (0mu) 1000/T (ni) Arm M (Ne-. Car Figure 5 Jiangden Yong'l (yAh)

Claims (3)

【特許請求の範囲】[Claims] (1)一般式、(Cu_1_−_xM_x)_2V_2
O_7(ただしMはSc、Y、Sm、Gd、Dyの希土
類元素、およびCr、Ga、Mn、Fe、Bi、Sbの
3価元素、xは0.01≦x≦0.2なる範囲の実数)
で示されることを特徴とする固体電池用正極材料。
(1) General formula, (Cu_1_−_xM_x)_2V_2
O_7 (M is a rare earth element of Sc, Y, Sm, Gd, Dy, and a trivalent element of Cr, Ga, Mn, Fe, Bi, Sb, x is a real number in the range of 0.01≦x≦0.2 )
A positive electrode material for solid-state batteries characterized by:
(2)一般式、Cu_2(V_1_−_yX_y)_2
O_7(ただしxはMo、W、Cr、の6価元素、yは
0.01≦y≦0.2なる範囲の実数)で示されること
を特徴とする固体電池用正極材料。
(2) General formula, Cu_2(V_1_−_yX_y)_2
A positive electrode material for a solid battery, characterized in that it is represented by O_7 (where x is a hexavalent element such as Mo, W, or Cr, and y is a real number in the range of 0.01≦y≦0.2).
(3)一般式、(Cu_1_−_xM_x)_2(V_
1_−_yX_y)_2O_7(ただしnはSc、Y、
Sm、Gd、Dyの希土類元素、およびCr、Ga、M
n、Fe、Bi、Sbの3価元素、xは0.01≦x≦
0.2なる範囲の実数、XはMo、W、Crの6価元素
、yは0.01≦y≦0.2なる範囲の実数)で示され
ることを特徴とする固体電池用正極材料。
(3) General formula, (Cu_1_−_xM_x)_2(V_
1_-_yX_y)_2O_7 (where n is Sc, Y,
Rare earth elements Sm, Gd, Dy, and Cr, Ga, M
n, trivalent elements of Fe, Bi, and Sb, x is 0.01≦x≦
A positive electrode material for a solid battery, characterized in that X is a hexavalent element such as Mo, W, or Cr, and y is a real number in the range of 0.01≦y≦0.2.
JP59265015A 1984-12-14 1984-12-14 Positive pole material for solid cell Granted JPS61142669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59265015A JPS61142669A (en) 1984-12-14 1984-12-14 Positive pole material for solid cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59265015A JPS61142669A (en) 1984-12-14 1984-12-14 Positive pole material for solid cell

Publications (2)

Publication Number Publication Date
JPS61142669A true JPS61142669A (en) 1986-06-30
JPH0329128B2 JPH0329128B2 (en) 1991-04-23

Family

ID=17411392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59265015A Granted JPS61142669A (en) 1984-12-14 1984-12-14 Positive pole material for solid cell

Country Status (1)

Country Link
JP (1) JPS61142669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0423117A1 (en) * 1987-11-25 1991-04-24 DURACELL INC. (a Delaware corporation) Electrochemical cells
JP2013058479A (en) * 2011-09-08 2013-03-28 Eaglepicher Technologies Llc High-rate and high-energy cathode material for lithium cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512675A (en) * 1978-07-12 1980-01-29 Sanyo Electric Co Ltd Nonaqueous electrolyte cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512675A (en) * 1978-07-12 1980-01-29 Sanyo Electric Co Ltd Nonaqueous electrolyte cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0423117A1 (en) * 1987-11-25 1991-04-24 DURACELL INC. (a Delaware corporation) Electrochemical cells
JP2013058479A (en) * 2011-09-08 2013-03-28 Eaglepicher Technologies Llc High-rate and high-energy cathode material for lithium cell
CN103022455A (en) * 2011-09-08 2013-04-03 伊格皮切尔科技有限责任公司 High rate and energy cathode material for lithium batteries
EP2568525A3 (en) * 2011-09-08 2014-04-02 EaglePicher Technologies, LLC High rate and energy cathode material for lithium batteries
US10355306B2 (en) 2011-09-08 2019-07-16 Eaglepicher Technologies, Llc High rate and energy cathode material for lithium batteries

Also Published As

Publication number Publication date
JPH0329128B2 (en) 1991-04-23

Similar Documents

Publication Publication Date Title
US20040096745A1 (en) Lithium ion conductor and all-solid lithium ion rechargeable battery
JPS61126770A (en) All solid type lithium cell
JPH06506657A (en) Method for producing LiMn↓2O↓4 and LiCoO↓2 insertion compounds used in secondary lithium batteries
JP2000311710A (en) Solid electrolyte battery and its manufacture
JP2009301959A (en) All-solid lithium secondary battery
JP2020009619A (en) All-solid battery, and method for manufacturing the same
JPH02139861A (en) Non-aqueous electrolyte secondary battery
JPS61142669A (en) Positive pole material for solid cell
JP2012248454A (en) Positive electrode, and all-solid nonaqueous electrolyte battery
JPS6166369A (en) Lithium secondary battery
JPS5830749B2 (en) Zinc oxide piezoelectric crystal film
JPS6174264A (en) Lithium cell
JP2016027563A (en) Solid electrolyte, lithium battery and lithium air battery
JPH0547943B2 (en)
JPS63126159A (en) Lithium cell
JPS59224064A (en) Positive pole material for lithium cell
JPS5978451A (en) Battery
JPS61128468A (en) Solid electrolyte battery
JPH03271365A (en) Electrode material
JP2023100298A (en) Positive electrode for solid secondary battery, and solid secondary battery
TWI247726B (en) Method for modifying and preparing LiMn2O4
JPS59134562A (en) Lithium secondary cell
JPS6086761A (en) Positive material for lithium battery
JP3176703B2 (en) Lithium battery
JP2022152275A (en) Electrode for all-solid-state battery and all-solid-state battery