JP2012248454A - Positive electrode, and all-solid nonaqueous electrolyte battery - Google Patents

Positive electrode, and all-solid nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2012248454A
JP2012248454A JP2011120159A JP2011120159A JP2012248454A JP 2012248454 A JP2012248454 A JP 2012248454A JP 2011120159 A JP2011120159 A JP 2011120159A JP 2011120159 A JP2011120159 A JP 2011120159A JP 2012248454 A JP2012248454 A JP 2012248454A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
powder
electrode active
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011120159A
Other languages
Japanese (ja)
Inventor
Yasushi Mochida
恭志 餅田
Taku Kamimura
卓 上村
Kentaro Yoshida
健太郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011120159A priority Critical patent/JP2012248454A/en
Publication of JP2012248454A publication Critical patent/JP2012248454A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an all-solid nonaqueous electrolyte battery having a high discharge capacity and excellent cycle characteristics, and a positive electrode for the all-solid nonaqueous electrolyte battery.SOLUTION: An all-solid nonaqueous electrolyte battery 100 comprises a positive electrode 1, a negative electrode 2, and a solid electrolyte layer 3 intervening between the electrodes 1 and 2. The positive electrode 1 comprises a positive electrode active material layer 12 composed of an unsintered body containing a first active material powder, a second active material powder, and a conduction assistant powder. The first active material powder expands during discharges and shrinks during charges. On the other hand, the second active material powder shrinks during discharges and expands during charges. The percentage content of the conduction assistant powder in the positive electrode active material layer 12 is in the range of 1 to 5 mass%.

Description

本発明は、正極と負極とこれら電極の間に介在される固体電解質層とを備える全固体型非水電解質電池、およびこの全固体型非水電解質電池に使用される正極に関するものである。   The present invention relates to an all-solid-type nonaqueous electrolyte battery including a positive electrode, a negative electrode, and a solid electrolyte layer interposed between the electrodes, and a positive electrode used for the all-solid-type nonaqueous electrolyte battery.

電池反応にリチウムイオンを利用した非水電解質電池は、正極と負極とこれら電極の間に介在される電解質層とを備える。各電極は、活物質を含有する活物質層と集電機能を有する集電体とを備える。この非水電解質電池は、充放電時に、正極活物質層と負極活物質層との間でLiイオンの授受を行うので、これら活物質層が膨張・収縮を繰り返すことになる。電極が膨張と収縮を繰り返すと、活物質層が集電体から剥離するなどの不具合が生じる。特に、このような不具合は、負極よりも一般的に厚さの大きな正極において顕著であり、対策を講じることが望まれていた。   A nonaqueous electrolyte battery using lithium ions for battery reaction includes a positive electrode, a negative electrode, and an electrolyte layer interposed between these electrodes. Each electrode includes an active material layer containing an active material and a current collector having a current collecting function. Since this non-aqueous electrolyte battery exchanges Li ions between the positive electrode active material layer and the negative electrode active material layer during charge and discharge, these active material layers repeatedly expand and contract. When the electrode repeatedly expands and contracts, problems such as the active material layer peeling from the current collector occur. In particular, such a problem is remarkable in a positive electrode that is generally thicker than the negative electrode, and it has been desired to take measures.

上記問題点の対策として、例えば、特許文献1や2では、非水電解液を用いた非水電解質電池の正極活物質層に二種類の活物質を含有させている。具体的には、充電時に結晶構造が膨張する正極活物質と、充電時に結晶構造が収縮する正極活物質とで正極活物質層を構成している。   As measures against the above-described problems, for example, in Patent Documents 1 and 2, two types of active materials are contained in the positive electrode active material layer of a non-aqueous electrolyte battery using a non-aqueous electrolyte. Specifically, the positive electrode active material layer is composed of a positive electrode active material whose crystal structure expands during charging and a positive electrode active material whose crystal structure contracts during charging.

特開平5−82131号公報JP-A-5-82131 特開平8−50895号公報JP-A-8-50895

しかし、上記特許文献に記載の技術では、活物質層自体の体積変化を抑えることでサイクル特性が改善されるものの、正極活物質の利用率が低く、放電容量が小さい非水電解質電池しかできなかった。それは、活物質層中に膨張する活物質と収縮する活物質が混合されていると、電池の充放電に伴って活物質同士の接触、もしくは結合が不十分になって、活物質の利用率が低下するからであると推察される。また、特許文献2では、電池の充放電を行なっても活物質同士の接触、もしくは結合が維持され易いように焼結しているが、焼結したことにより二種類の活物質間の界面で相互拡散が生じ、活物質の利用率が低下する。   However, in the technique described in the above-mentioned patent document, although the cycle characteristics are improved by suppressing the volume change of the active material layer itself, only a nonaqueous electrolyte battery with a low utilization rate of the positive electrode active material and a small discharge capacity can be produced. It was. If the active material that expands and the active material that contracts are mixed in the active material layer, the contact or bonding between the active materials becomes insufficient with charge / discharge of the battery, and the active material utilization rate It is guessed that this is because In Patent Document 2, sintering is performed so that the contact or bonding between the active materials is easily maintained even when the battery is charged / discharged. However, by sintering, at the interface between the two types of active materials. Interdiffusion occurs and the utilization factor of the active material decreases.

ここで、近年では、非水電解液を用いた非水電解質電池における電解液の沸騰や液漏れなどの問題を解決するために、電解質層を固体とした全固体型非水電解質電池も提案されている。本発明者らの検討の結果、この全固体型非水電解質電池において、二種類の活物質を含有する正極活物質層を適用した場合、上記正極活物質の利用率が低下する問題がより顕著になることが明らかになった。   In recent years, an all-solid-state nonaqueous electrolyte battery having an electrolyte layer as a solid has also been proposed in order to solve problems such as boiling of the electrolyte and liquid leakage in a nonaqueous electrolyte battery using a nonaqueous electrolyte. ing. As a result of the study by the present inventors, in the all solid-state non-aqueous electrolyte battery, when a positive electrode active material layer containing two kinds of active materials is applied, the problem that the utilization rate of the positive electrode active material is reduced is more remarkable. It became clear to become.

本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、放電容量が高く、サイクル特性に優れる全固体型非水電解質電池、およびこの全固体型非水電解質電池に利用される正極を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is an all-solid-state non-aqueous electrolyte battery having a high discharge capacity and excellent cycle characteristics, and the all-solid-type non-aqueous electrolyte battery. It is in providing the positive electrode made.

(1)本発明は、正極、負極、及びこれら電極の間に介在される固体電解質層を備える全固体型非水電解質電池に使用される正極であって、第一活物質粉末と第二活物質粉末と導電助剤粉末とを含む非焼結体からなる正極活物質層を備える。第一活物質粉末は、放電時に膨張し、充電時に収縮する。逆に、第二活物質粉末は、放電時に収縮し、充電時に膨張する。また、正極活物質層における導電助剤粉末の含有量は、1〜5質量%である。 (1) The present invention is a positive electrode used in an all-solid-state nonaqueous electrolyte battery including a positive electrode, a negative electrode, and a solid electrolyte layer interposed between these electrodes, the first active material powder and the second active material The positive electrode active material layer which consists of a non-sintered body containing a substance powder and a conductive support agent powder is provided. The first active material powder expands during discharge and contracts during charging. Conversely, the second active material powder shrinks during discharge and expands during charging. Moreover, content of the conductive support agent powder in a positive electrode active material layer is 1-5 mass%.

正極活物質層における導電助剤粉末の含有量(質量%)を限定することで、放電容量が高く、かつその放電容量が電池の充放電に伴って低下し難いサイクル特性に優れる全固体型非水電解質電池とすることができる。電池の放電容量が高くなるのは、導電助剤粉末の含有量を限定することで、導電助剤粉末が、正極活物質層における正極活物質間の導通を良好にできる粒径分布になっているからではないかと推察される。また、電池のサイクル特性が優れているのは、丁度良い粒径分布の導電助剤粉末が、充放電に伴って体積変化する正極活物質間の導通を良好に維持するからであると推察される。   By limiting the content (% by mass) of the conductive additive powder in the positive electrode active material layer, the discharge capacity is high, and the discharge capacity is excellent in cycle characteristics that do not easily decrease with charge / discharge of the battery. A water electrolyte battery can be obtained. The discharge capacity of the battery is increased by limiting the content of the conductive auxiliary powder, so that the conductive auxiliary powder has a particle size distribution that allows good conduction between the positive electrode active materials in the positive electrode active material layer. It is guessed that it is because there is. In addition, it is presumed that the cycle characteristics of the battery are excellent because the conductive auxiliary powder having a good particle size distribution maintains good conduction between the positive electrode active materials whose volume changes with charge and discharge. The

(2)本発明正極の一形態として、前記第一活物質粉末はスピネル型結晶構造の正極活物質、前記第二活物質粉末は層状岩塩型結晶構造の正極活物質であることが挙げられる。 (2) As one embodiment of the positive electrode of the present invention, the first active material powder is a positive electrode active material having a spinel crystal structure, and the second active material powder is a positive electrode active material having a layered rock salt crystal structure.

スピネル型結晶構造の正極活物質は、放電時に膨張し充電時に収縮する傾向にあり、第一活物質粉末として好適である。また、層状岩塩型結晶構造の正極活物質は、放電時に収縮し充電時に膨張する傾向にあり、第二活物質粉末として好適である。   A positive electrode active material having a spinel crystal structure tends to expand during discharge and contract during charge, and is suitable as a first active material powder. Moreover, the positive electrode active material having a layered rock salt crystal structure tends to contract during discharge and expand during charge, and is suitable as a second active material powder.

(3)本発明正極の一形態として、前記スピネル型結晶構造の第一活物質粉末は、Li、Ni、およびMnを含有し、前記層状岩塩型結晶構造の第二活物質粉末は、Li、およびCoを含有することが好ましい。 (3) As one embodiment of the positive electrode of the present invention, the first active material powder having a spinel crystal structure contains Li, Ni, and Mn, and the second active material powder having a layered rock salt crystal structure is Li, And Co is preferably contained.

上記元素を含有する活物質とすることで、電池の放電容量を向上させることができる。代表的な第一活物質粉末として、LiNi0.5Mn1.5などを挙げることができる。また、代表的な第二活物質粉末として、LiCoOなどを挙げることができる。 By using an active material containing the above element, the discharge capacity of the battery can be improved. As a typical first active material powder, LiNi 0.5 Mn 1.5 O 4 and the like can be mentioned. Further, as a typical second active material powder, and the like LiCoO 2.

(4)本発明正極の一形態として、前記第一活物質粉末と第二活物質粉末との比率は、体積%で1:2〜2:1であることが好ましい。 (4) As one form of this invention positive electrode, it is preferable that the ratio of said 1st active material powder and 2nd active material powder is 1: 2 to 2: 1 by volume%.

正極活物質層における第一活物質粉末が第二活物質粉末に比べて顕著に多くなる、あるいはその逆となると、充放電に伴う正極活物質層の体積変化を抑制する効果を得られ難くなる。これに対して、両活物質の混合比が上記範囲にあると、上記効果を十分に得ることができる。   When the amount of the first active material powder in the positive electrode active material layer is significantly larger than that of the second active material powder or vice versa, it is difficult to obtain the effect of suppressing the volume change of the positive electrode active material layer due to charge / discharge. . On the other hand, when the mixing ratio of both active materials is in the above range, the above effect can be sufficiently obtained.

(5)本発明全固体型非水電解質電池は、上記(1)〜(4)のいずれかに記載の本発明正極と、負極活物質層を有する負極と、これら電極の間に介在される固体電解質層と、を備えることを特徴とする。 (5) The all solid-state nonaqueous electrolyte battery of the present invention is interposed between the electrodes of the present invention according to any one of the above (1) to (4), a negative electrode having a negative electrode active material layer, and these electrodes. And a solid electrolyte layer.

本発明正極を備える本発明全固体型非水電解質電池は、優れた放電容量を備え、かつサイクル特性にも優れるため、種々の用途に利用することができる。   The all-solid-state nonaqueous electrolyte battery of the present invention including the positive electrode of the present invention has an excellent discharge capacity and excellent cycle characteristics, and therefore can be used for various applications.

本発明正極を使用して全固体型非水電解質電池を作製すると、充放電に伴う正極活物質層全体の膨張・収縮が抑制され、かつ、正極活物質層における各活物質間の導通が良好に維持されるので、放電容量が高く、サイクル特性に優れる全固体型非水電解質電池とすることができる。   When an all-solid-state nonaqueous electrolyte battery is produced using the positive electrode of the present invention, expansion / shrinkage of the entire positive electrode active material layer accompanying charge / discharge is suppressed, and conduction between the active materials in the positive electrode active material layer is good. Therefore, an all-solid-state nonaqueous electrolyte battery having a high discharge capacity and excellent cycle characteristics can be obtained.

実施形態に係る非水電解質電池の概略構成図である。It is a schematic block diagram of the nonaqueous electrolyte battery which concerns on embodiment.

以下、本発明の実施形態を図に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<全体構成>
図1は、本発明全固体型非水電解質電池の一例を示す概略図である。全固体型非水電解質電池100は、正極1、固体電解質層(SE層)3、および負極2を備える。正極1はさらに正極集電体11と正極活物質層12を、負極2はさらに負極集電体21と負極活物質層22とを備える。この電池100の最も特徴とするところは、正極1の正極活物質層12において、二種類の正極活物質粉末と導電助剤粉末とが含まれ、かつ当該正極活物質層12における導電助剤粉末の含有量が限定されていることにある。以下、電池100に備わる各構成について詳細に説明する。
<Overall configuration>
FIG. 1 is a schematic view showing an example of the all solid-state nonaqueous electrolyte battery of the present invention. The all-solid-state nonaqueous electrolyte battery 100 includes a positive electrode 1, a solid electrolyte layer (SE layer) 3, and a negative electrode 2. The positive electrode 1 further includes a positive electrode current collector 11 and a positive electrode active material layer 12, and the negative electrode 2 further includes a negative electrode current collector 21 and a negative electrode active material layer 22. The most characteristic feature of the battery 100 is that the positive electrode active material layer 12 of the positive electrode 1 includes two kinds of positive electrode active material powders and conductive additive powders, and the conductive auxiliary agent powders in the positive electrode active material layers 12. The content of is limited. Hereinafter, each component provided in the battery 100 will be described in detail.

≪正極≫
(正極集電体)
正極集電体11は、導電材料のみから構成されていても良いし、絶縁基板上に導電材料の膜を形成したもので構成されていても良い。後者の場合、導電材料の膜が集電体として機能する。導電材料としては、AlやNi、これらの合金、ステンレスから選択される1種を好適に利用することができる。
≪Positive electrode≫
(Positive electrode current collector)
The positive electrode current collector 11 may be composed of only a conductive material, or may be composed of a conductive material film formed on an insulating substrate. In the latter case, the conductive material film functions as a current collector. As the conductive material, one selected from Al, Ni, alloys thereof, and stainless steel can be suitably used.

(正極活物質層)
正極活物質層12には、種類の異なる第一活物質粉末と第二活物質粉末とが含まれる。第一活物質粉末は、放電時に膨張し、充電時に収縮する正極活物質の粉末である。第一活物質粉末としては、スピネル型結晶構造を有する正極活物質、例えば、LiとMnを含有するもの(LiMnなど)や、Li、Ni、およびMnを含有するもの(LiNi0.5Mn1.5など)を挙げることができる。特に、後者の正極活物質は、電池100の放電容量を向上させる点で好ましい。なお、上記組成式における元素の一部が他の元素に置換されていても良いし、Li欠損やO欠損があっても良い。
(Positive electrode active material layer)
The positive electrode active material layer 12 includes different types of first active material powder and second active material powder. The first active material powder is a positive electrode active material powder that expands during discharge and contracts during charging. As the first active material powder, a positive electrode active material having a spinel crystal structure, for example, a material containing Li and Mn (such as LiMn 2 O 4 ), a material containing Li, Ni, and Mn (LiNi 0. 5 Mn 1.5 O 4 etc.). In particular, the latter positive electrode active material is preferable in terms of improving the discharge capacity of the battery 100. Note that some of the elements in the above composition formula may be substituted with other elements, or there may be Li deficiency or O deficiency.

第二活物質粉末は、放電時に収縮し、充電時に膨張する正極活物質の粉末である。第二活物質粉末としては、層状岩塩型結晶構造を有する正極活物質、例えば、LiとNiを含有するもの(LiNiOなど)や、LiとMnを含有するもの(LiMnOなど)、LiとCoを含有するもの(LiCoOなど)を挙げることができる。特に、LiとCoを含有する物が、電池100の放電容量を向上させる点で好ましい。なお、上記組成式における元素の一部が他の元素に置換されていても良いし、Li欠損やO欠損があっても良い。 The second active material powder is a positive electrode active material powder that shrinks during discharge and expands during charging. As the second active material powder, a positive electrode active material having a layered rock salt type crystal structure, for example, a material containing Li and Ni (such as LiNiO 2 ), a material containing Li and Mn (such as LiMnO 2 ), Li and Examples thereof include those containing Co (LiCoO 2 and the like). In particular, a material containing Li and Co is preferable in terms of improving the discharge capacity of the battery 100. Note that some of the elements in the above composition formula may be substituted with other elements, or there may be Li deficiency or O deficiency.

上記第一活物質粉末と第二活物質粉末の比率は、体積%で1:2〜2:1とすることが好ましい。このような比率とすることで、正極活物質層12の体積変化を効果的に抑制することができる。   The ratio of the first active material powder to the second active material powder is preferably 1: 2 to 2: 1 by volume%. By setting it as such a ratio, the volume change of the positive electrode active material layer 12 can be suppressed effectively.

また、上記正極活物質層12には、導電助剤粉末が含有されている。正極活物質層12における導電助剤粉末の含有量は、1〜5質量%とする。導電助剤粉末の材質としては、カーボンブラックやアセチレンブラックなどの炭素系材料を利用できる。   Moreover, the positive electrode active material layer 12 contains a conductive additive powder. Content of the conductive support agent powder in the positive electrode active material layer 12 shall be 1-5 mass%. As the material of the conductive assistant powder, a carbon-based material such as carbon black or acetylene black can be used.

その他、正極活物質層12は、固体電解質粉末やバインダーを含有していても良い。固体電解質粉末は、正極活物質層12におけるLiイオン伝導性を向上させることができる。固体電解質には、後述するSE層3に用いることができる固体電解質と同じものを利用できる。正極活物質層12に用いる固体電解質は、SE層3に用いるものと異なっていても良いが、同じとすることが好ましい。また、バインダーは、粉体を圧縮して正極活物質層12を形成したときに、正極活物質層12を構成する粉体同士を結合するためのものであり、例えばポリフッ化ビニリデンなどを利用することができる。   In addition, the positive electrode active material layer 12 may contain a solid electrolyte powder or a binder. The solid electrolyte powder can improve Li ion conductivity in the positive electrode active material layer 12. As the solid electrolyte, the same solid electrolyte that can be used for the SE layer 3 described later can be used. The solid electrolyte used for the positive electrode active material layer 12 may be different from that used for the SE layer 3, but is preferably the same. The binder is used to bond powders constituting the positive electrode active material layer 12 when the positive electrode active material layer 12 is formed by compressing the powder. For example, polyvinylidene fluoride is used. be able to.

≪SE層≫
SE層3は、例えばLiPONなどの酸化物固体電解質や、LiSとPとを含む硫化物系固体電解質(必要に応じてPを含有させても良い)のアモルファス膜あるいは多結晶膜などで構成することができる。このSE層3の形成には、固相法や気相法を利用できる。
≪SE layer≫
The SE layer 3 is, for example, an oxide solid electrolyte such as LiPON, or an amorphous film of a sulfide-based solid electrolyte containing Li 2 S and P 2 S 5 (may contain P 2 O 5 as necessary). Alternatively, it can be composed of a polycrystalline film or the like. The SE layer 3 can be formed by using a solid phase method or a vapor phase method.

≪負極≫
(負極集電体)
負極集電体21は、正極集電体11と同様に、導電材料のみから構成されていても良いし、絶縁基板上に導電材料を形成したもので構成されていても良い。導電材料としては、CuやNi、Fe、Cr、及びこれらの合金、ステンレスから選択される1種が好適に利用できる。
≪Negative electrode≫
(Negative electrode current collector)
Similarly to the positive electrode current collector 11, the negative electrode current collector 21 may be composed of only a conductive material, or may be composed of a conductive material formed on an insulating substrate. As the conductive material, one selected from Cu, Ni, Fe, Cr, alloys thereof, and stainless steel can be suitably used.

(負極活物質層)
負極活物質層22は、例えば、金属Liや金属Liと合金を形成することのできる化合物などで構成することができる。後者の例としてチタン酸リチウム(LiTi12や、LiTiOなど)などを挙げることができる。なお、金属Liからなる負極活物質層22は、負極集電体21を兼ねることができ、その場合、上記負極集電体21は省略することができる。
(Negative electrode active material layer)
The negative electrode active material layer 22 can be made of, for example, metal Li or a compound capable of forming an alloy with metal Li. Examples of the latter include lithium titanate (such as Li 4 Ti 5 O 12 or Li 2 TiO 3 ). Note that the negative electrode active material layer 22 made of metal Li can also serve as the negative electrode current collector 21, and in this case, the negative electrode current collector 21 can be omitted.

負極活物質層22には、正極活物質層12と同様に、固体電解質粉末や、導電助剤粉末、バインダーなどを含有させても良い。   Similarly to the positive electrode active material layer 12, the negative electrode active material layer 22 may contain a solid electrolyte powder, a conductive additive powder, a binder, and the like.

≪その他≫
正極活物質層12が酸化物の活物質を含み、SE層3が硫化物の固体電解質を含む場合、両層12,3の界面近傍に空乏層が形成され、電池100の特性を低下させることがある。その対策として、これら両層12,3の間に空乏層の形成を抑制するための中間層(図示せず)を形成することが好ましい。中間層の材料としては、例えば、LiTaOや、LiNbOなどを挙げることができる。
≪Others≫
When the positive electrode active material layer 12 includes an oxide active material and the SE layer 3 includes a sulfide solid electrolyte, a depletion layer is formed in the vicinity of the interface between the layers 12 and 3, thereby degrading the characteristics of the battery 100. There is. As a countermeasure, it is preferable to form an intermediate layer (not shown) between these layers 12 and 3 for suppressing the formation of a depletion layer. Examples of the material for the intermediate layer include LiTaO 3 and LiNbO 3 .

以下に説明する試料1〜12の全固体型非水電解質電池を作製し、各電池の容量維持率(%)を測定することで各電池のサイクル特性を評価した。容量維持率は、100サイクル目の放電容量を1サイクル目の放電容量で除することにより求めた。充放電条件は、カットオフ電圧3.0−4.2V、電流密度0.05mA/cmであった。 The all-solid-state nonaqueous electrolyte batteries of Samples 1 to 12 described below were prepared, and the cycle characteristics of each battery were evaluated by measuring the capacity retention rate (%) of each battery. The capacity retention rate was determined by dividing the discharge capacity at the 100th cycle by the discharge capacity at the first cycle. The charge / discharge conditions were a cut-off voltage of 3.0-4.2 V and a current density of 0.05 mA / cm 2 .

<試料1〜4>
試料1〜4の電池は、下記構成を備える。各試料の相違点は、正極活物質層に含まれる導電助剤粉末の含有量のみである。各試料における導電助剤粉末の含有量は表1に示す。なお、表1では、導電助材粉末の含有量を、質量%と体積%の両方で示す。
<Samples 1 to 4>
The batteries of Samples 1 to 4 have the following configuration. The difference between the samples is only the content of the conductive additive powder contained in the positive electrode active material layer. Table 1 shows the content of the conductive additive powder in each sample. In Table 1, the content of the conductive additive powder is shown in both mass% and volume%.

[正極集電体]…ステンレス
[正極活物質層]…体積%で50:50の割合で混合されたLiCoOとLiNi0.5Mn1.5の正極活物質粉末、固体電解質粉末、導電助剤粉末、およびバインダーを含む加圧成形体
全体に占める正極活物質粉末の割合は44体積%、固体電解質粉末の割合は47体積%
[SE層]…硫化物固体電解質からなる蒸着膜
[負極活物質層]…チタン酸リチウム(LiTi12)の負極活物質粉末、固体電解質粉末、導電助剤粉末、およびバインダーを含む加圧成形体
全体に占める負極活物質粉末の割合は45体積%、固体電解質粉末の割合は45体積%
[負極集電体]…ステンレス
[Positive electrode current collector] Stainless steel [Positive electrode active material layer] Positive electrode active material powder of LiCoO 2 and LiNi 0.5 Mn 1.5 O 4 mixed in a volume ratio of 50:50, solid electrolyte powder, The proportion of the positive electrode active material powder in the entire pressure-formed body containing the conductive auxiliary powder and the binder is 44% by volume, and the proportion of the solid electrolyte powder is 47% by volume.
Including [SE layer] ... vapor deposition film of sulfide solid electrolyte [negative electrode active material layer] ... negative electrode active material powder of the lithium titanate (Li 4 Ti 5 O 12) , a solid electrolyte powder, conductive additive powder, and a binder The proportion of the negative electrode active material powder in the whole of the pressure-formed body is 45% by volume, and the proportion of the solid electrolyte powder is 45% by volume.
[Negative electrode current collector] ... Stainless steel

<試料5〜12>
試料5〜12の電池と、上述した試料1〜4の電池との相違点は、正極活物質層に含有させる正極活物質が1種類であることである。具体的には、試料5〜8の電池では正極活物質としてLiCoOを利用し、試料9〜12の電池では正極活物質としてLiNi0.5Mn1.5を利用した。これら試料5〜12の電池における導電助剤粉末の含有量を表1に示す。
<Samples 5 to 12>
The difference between the batteries of Samples 5 to 12 and the batteries of Samples 1 to 4 described above is that the positive electrode active material contained in the positive electrode active material layer is one kind. Specifically, LiCoO 2 was used as the positive electrode active material in the batteries of Samples 5 to 8, and LiNi 0.5 Mn 1.5 O 4 was used as the positive electrode active material in the batteries of Samples 9 to 12. Table 1 shows the content of the conductive additive powder in the batteries of Samples 5 to 12.

Figure 2012248454
Figure 2012248454

表1の結果から、正極活物質層中に、放電時に膨張し、充電時に収縮するLiNi0.5Mn1.5(第一活物質粉末)と、放電時に収縮し、充電時に膨張するLiCoO(第二活物質粉末)とを含有させることで、100サイクル後に電池の放電容量が低下することを効果的に抑制できることがわかった。さらに、正極活物質層中の導電助剤粉末の含有量を1〜5質量%に調整することで、100サイクル後に電池の放電容量が低下することをほぼ無くすことができることがわかった。特に、導電助材粉末の含有量を3〜5質量%に調節することで、良好な結果となった。 From the results of Table 1, in the positive electrode active material layer, LiNi 0.5 Mn 1.5 O 4 (first active material powder) that expands during discharging and contracts during charging, and contracts during discharging and expands during charging. It has been found that inclusion of LiCoO 2 (second active material powder) can effectively suppress a decrease in the discharge capacity of the battery after 100 cycles. Furthermore, it has been found that by adjusting the content of the conductive additive powder in the positive electrode active material layer to 1 to 5% by mass, it is possible to almost eliminate the decrease in the discharge capacity of the battery after 100 cycles. In particular, good results were obtained by adjusting the content of the conductive additive powder to 3 to 5% by mass.

なお、本発明の実施形態は、上述した実施形態に限定されるわけではなく、本発明の要旨を逸脱しない範囲において適宜変更することができる。   The embodiment of the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.

本発明正極は、放電容量が高く、サイクル特性に優れた全固体型非水電解質電池の構成部材として好適に利用することができる。また、本発明全固体型非水電解質電池は、携帯機器の電源などに好適に利用することができる。   The positive electrode of the present invention can be suitably used as a constituent member of an all-solid-state nonaqueous electrolyte battery having a high discharge capacity and excellent cycle characteristics. Moreover, the all solid-state nonaqueous electrolyte battery of the present invention can be suitably used as a power source for portable devices.

100 全固体型非水電解質電池
1 正極
11 正極集電体 12 正極活物質層
2 負極
21 負極集電体 22 負極活物質層
3 固体電解質層(SE層)
100 all solid-state nonaqueous electrolyte battery 1 positive electrode 11 positive electrode current collector 12 positive electrode active material layer 2 negative electrode 21 negative electrode current collector 22 negative electrode active material layer 3 solid electrolyte layer (SE layer)

Claims (5)

正極、負極、及びこれら電極の間に介在される固体電解質層を備える全固体型非水電解質電池に使用される正極であって、
放電時に膨張し、充電時に収縮する第一活物質粉末と、
放電時に収縮し、充電時に膨張する第二活物質粉末と、
導電助剤粉末と、を含む非焼結体からなる正極活物質層を備え、
前記正極活物質層における前記導電助剤粉末の含有量は、1〜5質量%であることを特徴とする正極。
A positive electrode used in an all-solid-type nonaqueous electrolyte battery including a positive electrode, a negative electrode, and a solid electrolyte layer interposed between the electrodes,
A first active material powder that expands upon discharge and contracts upon charge;
A second active material powder that shrinks during discharge and expands during charge;
A positive electrode active material layer comprising a non-sintered body containing a conductive additive powder,
Content of the said conductive support agent powder in the said positive electrode active material layer is 1-5 mass%, The positive electrode characterized by the above-mentioned.
前記第一活物質粉末はスピネル型結晶構造の正極活物質であり、
前記第二活物質粉末は層状岩塩型結晶構造の正極活物質であることを特徴とする請求項1に記載の正極。
The first active material powder is a positive electrode active material having a spinel crystal structure,
The positive electrode according to claim 1, wherein the second active material powder is a positive electrode active material having a layered rock salt crystal structure.
前記スピネル型結晶構造の第一活物質粉末は、Li、Ni、およびMnを含有し、
前記層状岩塩型結晶構造の第二活物質粉末は、Li、およびCoを含有することを特徴とする請求項2に記載の正極。
The first active material powder having a spinel crystal structure contains Li, Ni, and Mn,
3. The positive electrode according to claim 2, wherein the second active material powder having a layered rock salt type crystal structure contains Li and Co. 4.
前記第一活物質粉末と第二活物質粉末との比率は、体積%で1:2〜2:1であることを特徴とする請求項1〜3のいずれか1項に記載の正極。   The ratio of said 1st active material powder and 2nd active material powder is 1: 2 to 2: 1 by volume%, The positive electrode of any one of Claims 1-3 characterized by the above-mentioned. 請求項1〜4のいずれか一項に記載の正極と、
負極活物質層を有する負極と、
これら電極の間に介在される固体電解質層と、
を備えることを特徴とする全固体型非水電解質電池。
The positive electrode according to any one of claims 1 to 4,
A negative electrode having a negative electrode active material layer;
A solid electrolyte layer interposed between these electrodes;
An all-solid-state non-aqueous electrolyte battery comprising:
JP2011120159A 2011-05-30 2011-05-30 Positive electrode, and all-solid nonaqueous electrolyte battery Withdrawn JP2012248454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011120159A JP2012248454A (en) 2011-05-30 2011-05-30 Positive electrode, and all-solid nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011120159A JP2012248454A (en) 2011-05-30 2011-05-30 Positive electrode, and all-solid nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2012248454A true JP2012248454A (en) 2012-12-13

Family

ID=47468708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011120159A Withdrawn JP2012248454A (en) 2011-05-30 2011-05-30 Positive electrode, and all-solid nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2012248454A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015176803A (en) * 2014-03-17 2015-10-05 トヨタ自動車株式会社 Positive electrode mixture layer
JP2016081791A (en) * 2014-10-20 2016-05-16 トヨタ自動車株式会社 All-solid secondary cell
WO2017145894A1 (en) * 2016-02-24 2017-08-31 富士フイルム株式会社 Electrode active material for secondary batteries, solid electrolyte composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode active material for secondary batteries, method for producing electrode sheet for all-solid-state secondary batteries, and method for manufacturing all-solid-state secondary battery
JP2021039887A (en) * 2019-09-03 2021-03-11 マクセルホールディングス株式会社 Electrode for all-solid battery and manufacturing method thereof, and all-solid battery and manufacturing method thereof
JP2021039860A (en) * 2019-09-02 2021-03-11 マクセルホールディングス株式会社 Negative electrode for all-solid battery, and all-solid battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015176803A (en) * 2014-03-17 2015-10-05 トヨタ自動車株式会社 Positive electrode mixture layer
JP2016081791A (en) * 2014-10-20 2016-05-16 トヨタ自動車株式会社 All-solid secondary cell
WO2017145894A1 (en) * 2016-02-24 2017-08-31 富士フイルム株式会社 Electrode active material for secondary batteries, solid electrolyte composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode active material for secondary batteries, method for producing electrode sheet for all-solid-state secondary batteries, and method for manufacturing all-solid-state secondary battery
CN108604676A (en) * 2016-02-24 2018-09-28 富士胶片株式会社 The manufacturing method of electrode for secondary battery active material, solid electrolyte composition, solid state secondary battery electrode slice and solid state secondary battery and electrode for secondary battery active material, solid state secondary battery electrode slice and solid state secondary battery
JPWO2017145894A1 (en) * 2016-02-24 2018-11-22 富士フイルム株式会社 Secondary battery electrode active material, solid electrolyte composition, all-solid secondary battery electrode sheet and all-solid secondary battery, and secondary battery electrode active material, all-solid secondary battery electrode sheet and all-solid-state secondary battery Secondary battery manufacturing method
CN108604676B (en) * 2016-02-24 2021-04-27 富士胶片株式会社 Electrode active material for secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary battery, method for producing all-solid-state secondary battery, and solid electrolyte composition
US11050057B2 (en) 2016-02-24 2021-06-29 Fujifilm Corporation Electrode active material for secondary battery, solid electrolyte composition, electrode sheet for all-solid state secondary battery, all-solid state secondary battery and methods for manufacturing electrode active material for secondary battery, electrode sheet for all-solid state secondary battery, and all-solid state secondary battery
JP2021039860A (en) * 2019-09-02 2021-03-11 マクセルホールディングス株式会社 Negative electrode for all-solid battery, and all-solid battery
JP7313236B2 (en) 2019-09-02 2023-07-24 マクセル株式会社 Negative electrodes for all-solid-state batteries and all-solid-state batteries
JP2021039887A (en) * 2019-09-03 2021-03-11 マクセルホールディングス株式会社 Electrode for all-solid battery and manufacturing method thereof, and all-solid battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5316809B2 (en) Lithium battery and manufacturing method thereof
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
JP2012227107A (en) Electrode body for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2012243645A (en) Electrode and all-solid state nonaqueous electrolyte battery
JP2014116149A (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP7129144B2 (en) All-solid-state battery and manufacturing method thereof
JP2009152077A (en) Lithium battery
JP2012164571A (en) Negative electrode body and lithium ion battery
JP2012243644A (en) Electrode and all-solid state nonaqueous electrolyte battery
JP2010140664A (en) Method of manufacturing sintered cathode body and sintered cathode body
JP2009301959A (en) All-solid lithium secondary battery
JP2009259696A (en) Lithium cell
JP2009277381A (en) Lithium battery
JP6694133B2 (en) All solid state battery
JP5190762B2 (en) Lithium battery
JP7047667B2 (en) All solid state battery
JP2013051171A (en) Electrode body for all solid-state battery and all solid-state battery
JP2012248454A (en) Positive electrode, and all-solid nonaqueous electrolyte battery
CN105470473A (en) Positive electrode active material and secondary battery
JP2009064715A (en) Positive electrode and lithium secondary battery using the same
JPWO2011010552A1 (en) Nonaqueous electrolyte battery and solid electrolyte for nonaqueous electrolyte battery
Bilal et al. Assessment of Li-S battery performance as a function of electrolyte-to-sulfur ratio
JP5677779B2 (en) Solid lithium ion secondary battery
JP2012054151A (en) Solid electrolyte battery
JP2011086555A (en) Nonaqueous electrolyte battery, and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805