JP2012227107A - Electrode body for nonaqueous electrolyte battery and nonaqueous electrolyte battery - Google Patents

Electrode body for nonaqueous electrolyte battery and nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2012227107A
JP2012227107A JP2011132626A JP2011132626A JP2012227107A JP 2012227107 A JP2012227107 A JP 2012227107A JP 2011132626 A JP2011132626 A JP 2011132626A JP 2011132626 A JP2011132626 A JP 2011132626A JP 2012227107 A JP2012227107 A JP 2012227107A
Authority
JP
Japan
Prior art keywords
active material
material layer
electrode body
positive electrode
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011132626A
Other languages
Japanese (ja)
Inventor
Mitsuho Ueda
光保 上田
Taku Kamimura
卓 上村
Yasushi Mochida
恭志 餅田
Takeshi Kanno
毅 寒野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011132626A priority Critical patent/JP2012227107A/en
Publication of JP2012227107A publication Critical patent/JP2012227107A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: an electrode body for a nonaqueous electrolyte battery, capable of preventing a binder in an active material layer from being agglutinated and forming an active material layer small in internal resistance; and a nonaqueous electrolyte battery manufactured using the electrode body.SOLUTION: In an electrode body for a nonaqueous electrolyte battery, an active material layer is formed on a collector. The active material layer contains active material powder, powder of a sulfide-based solid electrolyte, and a binder. The binder is a copolymer of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF). Since the binder is a copolymer of PTFE and PVDF, the binder is excellent in both heat resistance and dispersibility. Therefore, the binder is prevented from being agglutinated in the active material layer, internal resistance can be reduced, and the active material layer can be hot pressed without no trouble. Accordingly, an active material layer with high strength can be obtained.

Description

本発明は、電気機器などの電源に利用される非水電解質電池に好適な電極体、及びこの電極体を利用した非水電解質電池に関する。   The present invention relates to an electrode body suitable for a non-aqueous electrolyte battery used for a power source of an electric device or the like, and a non-aqueous electrolyte battery using the electrode body.

携帯機器といった比較的小型の電気機器の電源に非水電解質電池が利用されている。非水電解質電池の代表例として、正・負極体間でのリチウムイオンの授受反応を利用したリチウム電池やリチウムイオン二次電池(以下、単にリチウムイオン電池と呼ぶ)が挙げられる。   Nonaqueous electrolyte batteries are used as power sources for relatively small electric devices such as portable devices. Typical examples of the nonaqueous electrolyte battery include a lithium battery and a lithium ion secondary battery (hereinafter simply referred to as a lithium ion battery) using a lithium ion transfer reaction between the positive and negative electrode bodies.

このリチウムイオン電池は、正極体と負極体とこれら電極体の間に配される電解質層とを備える。各電極体はさらに、集電機能を有する集電体と、活物質を含む活物質層とを備える。そして、正極体と負極体との間で電解質層を介してリチウム(Li)イオンが移動することによって充放電を行う方式の二次電池である。また近年では、有機電解液に代えて無機固体電解質を用いた全固体型電池が提案されている(例えば、特許文献1参照)。   This lithium ion battery includes a positive electrode body, a negative electrode body, and an electrolyte layer disposed between these electrode bodies. Each electrode body further includes a current collector having a current collecting function and an active material layer containing an active material. And it is a secondary battery of the system which performs charging / discharging by lithium (Li) ion moving through an electrolyte layer between a positive electrode body and a negative electrode body. In recent years, an all-solid-state battery using an inorganic solid electrolyte instead of an organic electrolyte has been proposed (see, for example, Patent Document 1).

特許文献1には、正極活物質と電解質とを含む正極層(正極活物質層)が開示されており、この正極層に結着剤を含有させて、活物質同士、活物質と活物質以外の物質(電解質粒子や導電助剤)等を結着させることが記載されている。この結着剤として、ポリテトラフルオロエチレン(PTFE)や、ポリフッ化ビニリデン(PVDF)等が開示されている。   Patent Document 1 discloses a positive electrode layer (positive electrode active material layer) including a positive electrode active material and an electrolyte, and a binder is contained in the positive electrode layer so that the active materials are not in contact with each other, other than the active material and the active material. It is described that these substances (electrolyte particles and conductive assistant) are bound. As this binder, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and the like are disclosed.

特開2009‐152077号公報JP 2009-152077 A

しかし、活物質層に結着剤を含有する場合、結着剤としてPTFEを利用すると、PTFEは分散性が低いため凝集してしまい、この凝集箇所が内部抵抗となってイオン伝導や電子伝導のパスを阻害する原因となり、電池特性を低減する虞がある。一方、結着剤としてPVDFを利用すると、活物質層を熱間プレス成形する場合、PVDFは耐熱性が低いため、熱間プレス時の温度に制約を受ける虞がある。   However, when a binder is contained in the active material layer, if PTFE is used as the binder, PTFE aggregates due to low dispersibility, and this agglomerated portion becomes an internal resistance and causes ionic conduction and electronic conduction. This may hinder the path and reduce the battery characteristics. On the other hand, when PVDF is used as the binder, when hot press molding the active material layer, PVDF has low heat resistance, and thus there is a risk of being restricted by the temperature during hot pressing.

本発明は上記事情に鑑みてなされたものであり、その目的の一つは、活物質層内での結着剤の凝集が防止でき、内部抵抗の小さい活物質層が成形可能な非水電解質電池用電極体を提供することにある。また、本発明の別の目的は、本発明の非水電解質電池用電極体を利用した非水電解質電池を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is a nonaqueous electrolyte capable of preventing the aggregation of the binder in the active material layer and forming an active material layer having a low internal resistance. The object is to provide an electrode body for a battery. Another object of the present invention is to provide a nonaqueous electrolyte battery using the electrode body for a nonaqueous electrolyte battery of the present invention.

本発明は、結着剤(バインダー)の構成材料とその化学構造とを特定することで、上記目的を達成する。   The present invention achieves the above object by specifying the constituent material of a binder (binder) and its chemical structure.

(1)本発明の非水電解質電池用電極体は、活物質層が集電体上に形成された非水電解質電池用電極体であって、上記活物質層は、活物質の粉末と硫化物系固体電解質の粉末とバインダーとを含有する。そして、上記バインダーは、ポリテトラフルオロエチレンとポリフッ化ビニリデンとの共重合体であることを特徴とする。   (1) The electrode body for a nonaqueous electrolyte battery according to the present invention is a nonaqueous electrolyte battery electrode body in which an active material layer is formed on a current collector, and the active material layer includes an active material powder and sulfide. It contains a powder of a physical solid electrolyte and a binder. The binder is a copolymer of polytetrafluoroethylene and polyvinylidene fluoride.

この構成によれば、バインダーが、ポリテトラフルオロエチレン(PTFE)とポリフッ化ビニリデン(PVDF)との共重合体であることで、PTFEとPVDFの各利点をバランスよく引き出すことができる。PTFEは耐熱性に優れ、PVDFは分散性に優れるため、両者を共重合させてできたバインダーは、耐熱性にも分散性にも優れるという効果を得ることができる。よって、電極体内における局所的なPTFE起因の分散性低下やPVDF起因の耐熱性低下を防止でき、電極体全体に亘って、耐熱性にも分散性にも優れる。PTFEとPVDFとが共重合することで、活物質層内でバインダーが凝集することを防止し、内部抵抗を低減することができ、イオン伝導及び電子伝導のパスを十分に確保することができる。また、活物質層を熱間プレス成形する際の温度の制約が少なく、活物質層内の構成材料同士の結着を強固に行うことができる。   According to this configuration, since the binder is a copolymer of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), each advantage of PTFE and PVDF can be extracted in a balanced manner. Since PTFE is excellent in heat resistance and PVDF is excellent in dispersibility, a binder obtained by copolymerizing both can have an effect of being excellent in heat resistance and dispersibility. Accordingly, it is possible to prevent local dispersibility reduction due to PTFE and PVDF deterioration due to PVDF in the electrode body, and the heat resistance and dispersibility are excellent over the entire electrode body. By copolymerizing PTFE and PVDF, the binder can be prevented from agglomerating in the active material layer, the internal resistance can be reduced, and a sufficient path for ion conduction and electron conduction can be secured. Moreover, there are few temperature restrictions at the time of hot press-molding the active material layer, and the constituent materials in the active material layer can be firmly bound to each other.

本発明では、活物質層は、活物質の粉末と硫化物系固体電解質の粉末とを含むことから、活物質層において、活物質の粒子の周囲に硫化物系固体電解質が存在する構造となっている。この硫化物系固体電解質が、活物質層内でイオンの伝導を媒介するので、イオンのやり取りを安定して行うことができる。硫化物系固体電解質は、酸化物系のものに比較して、一般的に高いイオン伝導性を示すので好適である。活物質層は硫化物系固体電解質を含むが、上記バインダーは硫化物系とは反応しないため、活物質層内の凝集を防止することができる。   In the present invention, since the active material layer includes the active material powder and the sulfide-based solid electrolyte powder, the active material layer has a structure in which the sulfide-based solid electrolyte exists around the active material particles. ing. Since this sulfide-based solid electrolyte mediates the conduction of ions in the active material layer, the exchange of ions can be performed stably. A sulfide-based solid electrolyte is preferable because it generally exhibits higher ionic conductivity than an oxide-based solid electrolyte. Although the active material layer includes a sulfide-based solid electrolyte, the binder does not react with the sulfide-based material, and thus aggregation in the active material layer can be prevented.

本発明の非水電解質電池用電極体は、粉末状の材料(活物質の粉末と硫化物系固体電解質の粉末とを含む)をプレスして活物質層を成形するにあたり、活物質層がバインダーを含有することで、変形性に優れるので、活物質層に割れや亀裂が生じにくい。また、上記粉末状の材料同士の結着効果により、活物質層の強度も高められる。   The electrode body for a nonaqueous electrolyte battery according to the present invention is formed by pressing a powdered material (including an active material powder and a sulfide solid electrolyte powder) to form an active material layer. Since it contains excellent deformability, it is difficult for the active material layer to crack or crack. Moreover, the strength of the active material layer is also increased by the binding effect between the powdery materials.

(2)本発明の非水電解質電池用電極体の一形態として、上記ポリテトラフルオロエチレンとポリフッ化ビニリデンとの共重合比が、10:90〜40:60であることが挙げられる。   (2) As one form of the electrode body for nonaqueous electrolyte batteries of this invention, the copolymerization ratio of the said polytetrafluoroethylene and polyvinylidene fluoride is 10: 90-40: 60.

ポリテトラフルオロエチレン(PTFE)とポリフッ化ビニリデン(PVDF)との共重合体において、共重合体中のPTFEの重合割合が少なくなると、耐熱性の低下を招く虞がある。一方、共重合体中のPTFEの重合割合が多くなり過ぎると、相対的にPVDFの重合割合が少なくなり、分散性の低下を招く虞がある。そのため、共重合体中のPTFEとPVDFとの好ましい共重合比は、10:90〜40:60であり、より好ましくは、25:75〜35:65である。   In a copolymer of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), if the polymerization ratio of PTFE in the copolymer is reduced, heat resistance may be lowered. On the other hand, if the polymerization ratio of PTFE in the copolymer is too large, the polymerization ratio of PVDF is relatively decreased, which may cause a decrease in dispersibility. Therefore, the preferable copolymerization ratio of PTFE and PVDF in the copolymer is 10:90 to 40:60, and more preferably 25:75 to 35:65.

(3)本発明の非水電解質電池用電極体の一形態として、上記活物質の粉末と硫化物系固体電解質の粉末との混合比が、体積比で80:20〜40:60であることが挙げられる。   (3) As one form of the electrode body for nonaqueous electrolyte batteries of this invention, the mixing ratio of the said active material powder and the sulfide type solid electrolyte powder is 80: 20-40: 60 by volume ratio. Is mentioned.

活物質層全体に対する活物質の割合が少なくなると、電池容量の低下を招く虞がある。一方、活物質層全体に対する活物質の割合が多くなり過ぎると、相対的に硫化物系固体電解質の割合が少なくなり、活物質層内でのイオンの伝導を媒介し難くなり内部抵抗の増加を招く虞がある。そのため、活物質層における活物質及び硫化物系固体電解質の各粉末の好ましい混合比は、体積比で80:20〜40:60であり、より好ましくは、体積比で70:30〜60:40である。   If the ratio of the active material to the entire active material layer is reduced, the battery capacity may be reduced. On the other hand, if the ratio of the active material to the entire active material layer becomes too large, the ratio of the sulfide-based solid electrolyte decreases relatively, making it difficult to mediate the conduction of ions in the active material layer and increasing the internal resistance. There is a risk of inviting. Therefore, a preferable mixing ratio of each powder of the active material and the sulfide-based solid electrolyte in the active material layer is 80:20 to 40:60 by volume ratio, and more preferably 70:30 to 60:40 by volume ratio. It is.

(4)本発明の非水電解質電池は、正極体と、負極体と、両電極体の間に配される固体電解質層とを備える非水電解質電池であって、上記正極体及び負極体の少なくとも一方に、本発明の非水電解質電池用電極体を利用したことを特徴とする。   (4) The non-aqueous electrolyte battery of the present invention is a non-aqueous electrolyte battery comprising a positive electrode body, a negative electrode body, and a solid electrolyte layer disposed between both electrode bodies. The electrode body for a nonaqueous electrolyte battery according to the present invention is used for at least one of them.

上記構成を備える非水電解質電池であれば、電池特性に優れる。これは、非水電解質電池用電極体の説明の際に述べたように、利用する電極体は、活物質層内でバインダーが凝集することを防止し、内部抵抗を低減することができ、イオン伝導及び電子伝導のパスを十分に確保することができているからである。   If it is a nonaqueous electrolyte battery provided with the said structure, it is excellent in a battery characteristic. This is because, as described in the description of the electrode body for a non-aqueous electrolyte battery, the electrode body to be used can prevent the binder from aggregating in the active material layer, and can reduce the internal resistance. This is because a sufficient path for conduction and electron conduction can be secured.

(5)本発明の非水電解質電池の一形態として、上記固体電解質層が、硫化物系固体電解質を含有することが挙げられる。   (5) As one form of the nonaqueous electrolyte battery of this invention, it is mentioned that the said solid electrolyte layer contains sulfide type solid electrolyte.

上述したように、硫化物系固体電解質は、酸化物系のものに比較して、一般的に高いリチウムイオン伝導性を示すので好適である。   As described above, sulfide-based solid electrolytes are preferable because they generally exhibit higher lithium ion conductivity than oxide-based ones.

本発明の非水電解質電池用電極体は、活物質層においてバインダーがPTFEとPVDFとの共重合体であることで、耐熱性にも分散性にも優れるので、活物質層内でバインダーが凝集することを防止し、内部抵抗を低減することができる。また、活物質層を熱間プレスする際の温度の制約が少なく、活物質層を支障なく熱間プレス成形することができ、高強度な活物質層を得ることができる。   In the electrode body for a non-aqueous electrolyte battery of the present invention, since the binder is a copolymer of PTFE and PVDF in the active material layer, the binder is agglomerated in the active material layer because it is excellent in heat resistance and dispersibility. And the internal resistance can be reduced. Moreover, there are few temperature restrictions at the time of hot pressing an active material layer, an active material layer can be hot press-molded without trouble, and a high-strength active material layer can be obtained.

本発明の非水電解質電池は、本発明の非水電解質電池用電極体を利用するので、電池特性に優れる。   Since the nonaqueous electrolyte battery of the present invention uses the electrode body for a nonaqueous electrolyte battery of the present invention, the battery characteristics are excellent.

実施例における電極体のSEM写真であり、(1−1)は試料No.1の正極体、(1−2)は試料No.1の負極体、(2−1)は試料No.2の正極体、(2−2)は試料No.2の負極体、(3−1)は試料No.3の正極体、(3−2)は試料No.3の負極体である。It is a SEM photograph of the electrode body in an Example, (1-1) is sample No.2. No. 1 positive electrode body (1-2) is sample No. No. 1 negative electrode body, (2-1) is Sample No. No. 2 positive electrode body, (2-2) is Sample No. 2 negative electrode body, (3-1) is the sample No. 3 and (3-2) are sample Nos. 3 is a negative electrode body.

以下、本発明の非水電解質電池用電極体の実施形態を説明する。本発明の電極体は、非水電解質電池(リチウムイオン電池)の正極体や負極体として利用できる。この非水電解質電池は、正極体と、負極体と、固体電解質層(SE層)とを備えており、さらに、正極体は正極集電体と正極活物質層とを備え、負極体は負極集電体と負極活物質層とを備える。そして、正極体と負極体との間でLiイオンのやり取りをすることで電池として機能する。以下、この非水電解質電池の各構成を詳細に説明する。本例では、本発明の電極体は正極体に利用している。   Hereinafter, embodiments of the electrode body for a nonaqueous electrolyte battery of the present invention will be described. The electrode body of the present invention can be used as a positive electrode body or a negative electrode body of a nonaqueous electrolyte battery (lithium ion battery). The nonaqueous electrolyte battery includes a positive electrode body, a negative electrode body, and a solid electrolyte layer (SE layer). The positive electrode body further includes a positive electrode current collector and a positive electrode active material layer, and the negative electrode body is a negative electrode. A current collector and a negative electrode active material layer are provided. And it functions as a battery by exchanging Li ion between a positive electrode body and a negative electrode body. Hereinafter, each configuration of the nonaqueous electrolyte battery will be described in detail. In this example, the electrode body of the present invention is used as a positive electrode body.

[正極体]
(正極集電体)
正極集電体となる基板は、導電材料のみから構成されていてもよいし、絶縁基板上に導電材料の膜を形成したもので構成されていてもよい。後者の場合、導電材料が集電体として機能する。導電材料としては、AlやNi、これらの合金、ステンレスから選択される1種が好適に利用できる。
[Positive electrode body]
(Positive electrode current collector)
The substrate serving as the positive electrode current collector may be composed of only a conductive material, or may be composed of a conductive material film formed on an insulating substrate. In the latter case, the conductive material functions as a current collector. As the conductive material, one selected from Al, Ni, alloys thereof, and stainless steel can be suitably used.

(正極活物質層)
正極活物質層は、正極活物質粒子と硫化物系固体電解質粒子とバインダーとを含む混合粉末を加圧成形することで得られる層である。正極活物質粒子は、電池反応の主体となる正極活物質で構成されている。正極活物質としては、層状岩塩型の結晶構造を有する物質、例えば、Liαβ(1−X)(αはCo,Ni,Mnから選択される1種、βはFe,Al,Ti,Cr,Zn,Mo,Bi,Co,Ni,Mnから選択される1種、α≠β、Xは0.5以上)で表わされる物質を挙げることができる。その具体例としては、LiCoOやLiNiO,LiMnO,LiNi0.5Mn0.5,LiCo0.5Fe0.5,LiCo0.5Al0.5,LiNi1/3Mn1/3Co1/3、LiNi0.8Co0.15Al0.05等を挙げることができる。その他、正極活物質として、スピネル型の結晶構造を有する物質(例えば、LiMn等)や、オリビン型の結晶構造を有する物質(例えば、LiFePO(0<X<1))を用いることもできる。この正極活物質粒子の好ましい平均粒径は、0.1〜20μmである。
(Positive electrode active material layer)
The positive electrode active material layer is a layer obtained by pressure forming a mixed powder containing positive electrode active material particles, sulfide-based solid electrolyte particles, and a binder. The positive electrode active material particles are composed of a positive electrode active material that is a main component of the battery reaction. As the positive electrode active material, a material having a layered rock salt type crystal structure, for example, Liα X β (1-X) O 2 (α is one selected from Co, Ni, Mn, β is Fe, Al, Ti , Cr, Zn, Mo, Bi, Co, Ni, and Mn, α ≠ β, and X is 0.5 or more). Specific examples thereof include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.5 Mn 0.5 O 2 , LiCo 0.5 Fe 0.5 O 2 , LiCo 0.5 Al 0.5 O 2 , LiNi 1. / 3 Mn 1/3 Co 1/3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 and the like. In addition, as a positive electrode active material, a substance having a spinel crystal structure (for example, LiMn 2 O 4 or the like) or a substance having an olivine crystal structure (for example, Li X FePO 4 (0 <X <1)) is used. It can also be used. A preferable average particle diameter of the positive electrode active material particles is 0.1 to 20 μm.

硫化物系固体電解質粒子は、イオン伝導性の高い硫化物系固体電解質で構成されており、正極活物質層内でイオンの伝導を媒介するために必要である。硫化物系固体電解質としては、LiS−P系、LiS−SiS系、LiS−B系等が挙げられ、更にPやLiPOが添加されてもよい。この硫化物系固体電解質粒子の好ましい平均粒径は、0.1〜10μmである。 The sulfide-based solid electrolyte particles are composed of a sulfide-based solid electrolyte having high ion conductivity, and are necessary for mediating ion conduction in the positive electrode active material layer. Examples of the sulfide-based solid electrolyte include Li 2 S—P 2 S 5 system, Li 2 S—SiS 2 system, Li 2 S—B 2 S 3 system, and further P 2 O 5 and Li 3 PO 4. May be added. A preferable average particle diameter of the sulfide-based solid electrolyte particles is 0.1 to 10 μm.

正極活物質層における正極活物質粒子及び硫化物系固体電解質粒子の各混合割合は、適宜選択できる。但し、正極活物質層全体に対する正極活物質粒子の割合が少なくなると、電池容量の低下を招く虞がある。一方、正極活物質層全体に対する正極活物質粒子の割合が多くなり過ぎると、相対的に硫化物系固体電解質粒子の割合が少なくなり、正極活物質層内でのイオンの伝導を媒介し難くなり内部抵抗の増加を招く虞がある。そのため、正極活物質層における正極活物質粒子及び硫化物系固体電解質粒子の好ましい混合比は、体積比で80:20〜40:60であり、より好ましくは、体積比で70:30〜60:40である。   Each mixing ratio of the positive electrode active material particles and the sulfide-based solid electrolyte particles in the positive electrode active material layer can be appropriately selected. However, if the ratio of the positive electrode active material particles to the entire positive electrode active material layer is reduced, the battery capacity may be reduced. On the other hand, if the ratio of the positive electrode active material particles to the entire positive electrode active material layer is too large, the ratio of the sulfide-based solid electrolyte particles is relatively small, and it is difficult to mediate ion conduction in the positive electrode active material layer. There is a risk of increasing internal resistance. Therefore, the preferable mixing ratio of the positive electrode active material particles and the sulfide-based solid electrolyte particles in the positive electrode active material layer is 80:20 to 40:60 by volume ratio, more preferably 70:30 to 60: by volume ratio. 40.

バインダーは、ポリテトラフルオロエチレン(PTFE)とポリフッ化ビニリデン(PVDF)との共重合体で構成されており、後述するように正極活物質層を熱間プレス成形するために必要である。PTFEとPVDFとの共重合体を形成する重合法としては、従来公知の種々の重合方法を採用することができる。この重合方法としては、例えば、乳化重合法、懸濁重合法、塊状重合法、溶液重合法等が挙げられる。重合には、従来公知の種々の重合開始剤、重合触媒等を使用することができる。また重合法に応じて溶媒、分散媒、分散安定剤、乳化剤等の種々の添加剤を使用することもできる。PTFEとPVDFとの共重合体において、共重合体中のPTFEの重合割合が少なくなると、耐熱性の低下を招く虞があり、一方、共重合体中のPTFEの重合割合が多くなり過ぎると、相対的にPVDFの重合割合が少なくなり、分散性の低下を招く虞がある。そのため、PTFEとPVDFとの共重合比は、10:90〜40:60であることが好ましく、25:75〜35:65であることがより好ましい。上記共重合比のバインダーは、分散性と耐熱性に優れ、かつ硫化物系と反応しないので、正極活物質層内でバインダーが凝集することを防止し、内部抵抗を低減することができ、かつ正極活物質層を熱間プレスする際の温度の制約が少なく、正極活物質層を支障なく熱間プレス成形することが可能である。この共重合比は、上記重合方法において、PTFEとPVDFとの粉末を混合する際の混合比によって決まる。PTFEとPVDFとが共重合された共重合体の粒子の好ましい平均粒径は、10〜100μmである。   The binder is composed of a copolymer of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), and is necessary for hot press-molding the positive electrode active material layer as described later. As a polymerization method for forming a copolymer of PTFE and PVDF, various conventionally known polymerization methods can be employed. Examples of this polymerization method include an emulsion polymerization method, a suspension polymerization method, a bulk polymerization method, and a solution polymerization method. For polymerization, various conventionally known polymerization initiators, polymerization catalysts, and the like can be used. Various additives such as a solvent, a dispersion medium, a dispersion stabilizer, and an emulsifier can be used depending on the polymerization method. In the copolymer of PTFE and PVDF, when the polymerization rate of PTFE in the copolymer is decreased, there is a risk of causing a decrease in heat resistance, while on the other hand, when the polymerization rate of PTFE in the copolymer is excessively increased, There is a possibility that the polymerization ratio of PVDF is relatively reduced and the dispersibility is lowered. Therefore, the copolymerization ratio of PTFE and PVDF is preferably 10:90 to 40:60, and more preferably 25:75 to 35:65. The binder of the above copolymerization ratio is excellent in dispersibility and heat resistance, and does not react with the sulfide system, thus preventing the binder from aggregating in the positive electrode active material layer, reducing internal resistance, and There are few temperature restrictions when hot-pressing the positive electrode active material layer, and it is possible to hot press-mold the positive electrode active material layer without hindrance. This copolymerization ratio is determined by the mixing ratio when the PTFE and PVDF powders are mixed in the polymerization method. A preferable average particle size of the copolymer particles obtained by copolymerizing PTFE and PVDF is 10 to 100 μm.

上記バインダーは、正極活物質層全体に対する割合が多くなると、相対的に正極活物質及び硫化物系固体電解質の割合が少なくなり、正極活物質層内において内部抵抗を招く虞がある。一方、正極活物質層全体に対するバインダーの割合が少な過ぎると、正極活物質層を熱間プレス成形する際に、割れや亀裂が生じ、強度の低下を招く虞がある。そのため、正極活物質層全体に対するバインダーの混合割合は、3〜15vol%であることが好ましい。   When the ratio of the binder to the whole positive electrode active material layer increases, the ratio of the positive electrode active material and the sulfide-based solid electrolyte relatively decreases, which may cause internal resistance in the positive electrode active material layer. On the other hand, when the ratio of the binder with respect to the whole positive electrode active material layer is too small, there is a possibility that cracking or cracking may occur when the positive electrode active material layer is hot press-molded, leading to a decrease in strength. Therefore, it is preferable that the mixing ratio of the binder with respect to the whole positive electrode active material layer is 3 to 15 vol%.

正極活物質層は、正極活物質粒子と硫化物系固体電解質粒子とバインダーとの混合粉末の他、必要に応じて導電助剤を含有してもよい。導電助剤としては、例えば、アセチレンブラック(AB)やケッチェンブラック(KB)といったカーボンブラック等が挙げられる。   The positive electrode active material layer may contain a conductive additive, if necessary, in addition to the mixed powder of the positive electrode active material particles, the sulfide-based solid electrolyte particles, and the binder. Examples of the conductive assistant include carbon black such as acetylene black (AB) and ketjen black (KB).

正極体の形成方法として、熱間プレス成形する方法が挙げられる。まず、正極活物質層の構成材料(正極活物質、硫化物系固体電解質、PTFEとPVDFとの共重合体を含む)をボールミル等で混合して正極合材を作製する。次に、正極集電体を金型に配置し、その上から上記正極合材を充填した後、これをプレス圧力300〜800MPa、プレス温度100〜220℃で熱間プレス成形する。その他、正極活物質層を加圧成形後、正極集電体を貼り合わせて正極体を形成してもよい。   As a method of forming the positive electrode body, a method of hot press molding can be mentioned. First, a constituent material for the positive electrode active material layer (including a positive electrode active material, a sulfide-based solid electrolyte, and a copolymer of PTFE and PVDF) is mixed with a ball mill or the like to prepare a positive electrode mixture. Next, after placing the positive electrode current collector in a mold and filling the positive electrode mixture from above, it is hot press-molded at a press pressure of 300 to 800 MPa and a press temperature of 100 to 220 ° C. In addition, after the positive electrode active material layer is pressure-molded, the positive electrode current collector may be bonded to form a positive electrode body.

[負極体]
(負極集電体)
負極集電体となる基板は、導電材料のみから構成されていてもよいし、絶縁基板上に導電材料の膜を形成したもので構成されていてもよい。後者の場合、導電材料が集電体として機能する。導電材料としては、例えば、Cu,Ni,Fe,Cr及びこれらの合金(例えば、ステンレス等)から選択される1種が好適に利用できる。
[Negative electrode body]
(Negative electrode current collector)
The substrate serving as the negative electrode current collector may be composed of only a conductive material, or may be composed of a conductive material film formed on an insulating substrate. In the latter case, the conductive material functions as a current collector. As the conductive material, for example, one selected from Cu, Ni, Fe, Cr and alloys thereof (for example, stainless steel) can be suitably used.

(負極活物質層)
負極活物質層は、電池反応の主体となる負極活物質で構成されている。負極活物質としては、金属Li(Li金属単体)又はLi合金(Li金属と添加元素からなる合金)の他、C,Si,Ge,Sn,Al,Li合金、またはLiTi12等のLiを含む酸化物を利用することができる。
(Negative electrode active material layer)
The negative electrode active material layer is composed of a negative electrode active material that is a main component of the battery reaction. As the negative electrode active material, in addition to metal Li (single Li metal) or Li alloy (alloy composed of Li metal and an additive element), C, Si, Ge, Sn, Al, Li alloy, Li 4 Ti 5 O 12 or the like An oxide containing Li can be used.

上記負極活物質層は、粉末状の負極活物質粒子からなる粉末成形体とするとき、この活物質層内でイオンの伝導を媒介し、イオン伝導性を改善する固体電解質粒子を含有していてもよい。固体電解質粒子としては、LiS−P等の硫化物系を好適に利用することができる。その他、必要に応じて導電助剤やバインダーを含有してもよい。 When the negative electrode active material layer is a powder molded body made of powdered negative electrode active material particles, the negative electrode active material layer contains solid electrolyte particles that mediate ion conduction and improve ion conductivity in the active material layer. Also good. As solid electrolyte particles, sulfide systems such as Li 2 S—P 2 S 5 can be suitably used. In addition, you may contain a conductive support agent and a binder as needed.

負極体の形成は、負極活物質層を粉末状の負極活物質粒子からなる粉末成形体とする場合、正極体と同様の方法を用いて形成することができる。その他、負極活物質層を成膜する場合、その金属箔を後述の固体電解質層の上に重ねて、プレスあるいは電気化学的手法により固体電解質層に密着させ、形成してもよい。   The negative electrode body can be formed using the same method as that for the positive electrode body when the negative electrode active material layer is a powder molded body made of powdered negative electrode active material particles. In addition, when forming a negative electrode active material layer, the metal foil may be formed on a solid electrolyte layer described later and adhered to the solid electrolyte layer by pressing or an electrochemical technique.

[固体電解質層]
固体電解質層(SE層)は、固体電解質で構成されており、イオン伝導性の高い硫化物系固体電解質で構成されていることが好ましい。硫化物固体電解質としては、LiS−P系、LiS−SiS系、LiS−B系等が挙げられ、更にPやLiPOが添加されてもよい。上記正極活物質層の構成物質である硫化物系固体電解質粒子と同じ材質であってもよい。その他、LiPON等の酸化物系固体電解質で構成してもよい。
[Solid electrolyte layer]
The solid electrolyte layer (SE layer) is composed of a solid electrolyte, and is preferably composed of a sulfide-based solid electrolyte with high ion conductivity. Examples of the sulfide solid electrolyte include Li 2 S—P 2 S 5 system, Li 2 S—SiS 2 system, Li 2 S—B 2 S 3 system, and further P 2 O 5 and Li 3 PO 4. It may be added. The same material as the sulfide-based solid electrolyte particles that are constituent materials of the positive electrode active material layer may be used. In addition, you may comprise with oxide type solid electrolytes, such as LiPON.

[その他]
(中間層)
上記正極活物質層とSE層の材質によっては、正極活物質層とSE層との間に中間層を有していてもよい。中間層は、正極活物質に酸化物、SE層に固体状の硫化物系を用いた場合に必要となるものであって、正極活物質層とSE層との間の高抵抗化を抑制する層である。SE層に含まれる硫化物系固体電解質と、正極活物質層に含まれる酸化物系の正極活物質とが反応して、高抵抗層が形成されることがある。中間層を設けることで、この高抵抗層の形成を抑制し、充放電に伴う電池の放電容量の低下を抑制できる。中間層に用いる材料としては、非晶質のLiイオン伝導性酸化物、例えば、LiNbOやLiTaO等を利用できる。特にLiNbOは、正極活物質層とSE層との界面近傍の高抵抗化を効果的に抑制できる。
[Others]
(Middle layer)
Depending on the material of the positive electrode active material layer and the SE layer, an intermediate layer may be provided between the positive electrode active material layer and the SE layer. The intermediate layer is required when an oxide is used for the positive electrode active material and a solid sulfide system is used for the SE layer, and suppresses an increase in resistance between the positive electrode active material layer and the SE layer. Is a layer. The sulfide-based solid electrolyte contained in the SE layer and the oxide-based positive electrode active material contained in the positive electrode active material layer may react to form a high resistance layer. By providing the intermediate layer, the formation of the high resistance layer can be suppressed, and the decrease in the discharge capacity of the battery due to charge / discharge can be suppressed. As a material used for the intermediate layer, an amorphous Li ion conductive oxide such as LiNbO 3 or LiTaO 3 can be used. In particular, LiNbO 3 can effectively suppress an increase in resistance near the interface between the positive electrode active material layer and the SE layer.

(界面層)
界面層は、上記負極活物質層とSE層との接合を確保する役割を果たす層である。界面層の材料としては、周期律表第14族元素(特に、Si)を利用することができる。界面層を実質的にSiで構成すると、放電特性に優れた電池とすることができる。
(Interface layer)
The interface layer is a layer that plays a role of ensuring the bonding between the negative electrode active material layer and the SE layer. As a material for the interface layer, a group 14 element (particularly, Si) of the periodic table can be used. When the interface layer is substantially composed of Si, a battery having excellent discharge characteristics can be obtained.

〔試験例〕
本発明の非水電解質電池(リチウムイオン電池)を作製し、その電池性能を評価した。
[Test example]
A non-aqueous electrolyte battery (lithium ion battery) of the present invention was produced and its battery performance was evaluated.

[実施例の非水電解質電池]
LiCoOの粉末(体積分布中心粒径D50=10μm)とLiS−P系固体電解質の粉末(D50=5μm)とバインダー(D50=40μm)とアセチレンブラック(D50=10μm)とを、体積比で44:47:6:3の割合で、50rpmで4時間かけてボールミルで混合して正極合材を作製した。バインダーには、PTFEとPVDFとの共重合体を用いた。このPTFEとPVDFとの共重合比は30:70である。正極集電体となるAl箔(厚さ20μm)を金型に配置し、その上に正極合材を充填し、これをプレス圧力360MPa、プレス温度200℃にて10分熱間プレス成形する。そうすることで、正極集電体(Al箔)の上に正極活物質層(LiCoO+LiS−P系固体電解質の成形体)が形成された正極体(30mm×40mm)が形成される。この正極体における正極活物質層の厚さは60μmであった。
[Nonaqueous Electrolyte Battery of Example]
LiCoO 2 powder (volume distribution center particle diameter D50 = 10 μm), Li 2 S—P 2 S 5 based solid electrolyte powder (D50 = 5 μm), binder (D50 = 40 μm), and acetylene black (D50 = 10 μm). The positive electrode mixture was prepared by mixing with a ball mill at a volume ratio of 44: 47: 6: 3 at 50 rpm for 4 hours. As the binder, a copolymer of PTFE and PVDF was used. The copolymerization ratio of PTFE and PVDF is 30:70. An Al foil (thickness 20 μm) serving as a positive electrode current collector is placed in a mold, and a positive electrode mixture is filled thereon, and this is hot-pressed for 10 minutes at a press pressure of 360 MPa and a press temperature of 200 ° C. By doing so, a positive electrode body (30 mm × 40 mm) in which a positive electrode active material layer (formed body of LiCoO 2 + Li 2 S—P 2 S 5 solid electrolyte) was formed on the positive electrode current collector (Al foil). It is formed. The thickness of the positive electrode active material layer in this positive electrode body was 60 μm.

グラファイトの粉末(体積分布中心粒径D50=10μm)とLiS−P系固体電解質の粉末(D50=5μm)とバインダー(D50=40μm)とを、体積比で49:45:6の割合で、50rpmで4時間かけてボールミルで混合して負極合材を作製した。バインダーには、PTFEとPVDFとの共重合体を用いた。このPTFEとPVDFとの共重合比は30:70である。負極集電体となるステンレス箔(厚さ10μm)を金型に配置し、その上に負極合材を充填し、これをプレス圧力360MPa、プレス温度200℃にて10分熱間プレス成形する。そうすることで、負極集電体(ステンレス箔)の上に負極活物質層(グラファイト+LiS−P系固体電解質の成形体)が形成された負極体(30mm×40mm)が形成される。この負極体における負極活物質層の厚さは60μmであった。 Graphite powder (volume distribution center particle diameter D50 = 10 μm), Li 2 S—P 2 S 5 based solid electrolyte powder (D50 = 5 μm) and binder (D50 = 40 μm) in a volume ratio of 49: 45: 6 The negative electrode mixture was prepared by mixing with a ball mill at a rate of 50 rpm for 4 hours. As the binder, a copolymer of PTFE and PVDF was used. The copolymerization ratio of PTFE and PVDF is 30:70. A stainless steel foil (thickness 10 μm) serving as a negative electrode current collector is placed in a mold and filled with a negative electrode mixture, which is hot-pressed for 10 minutes at a press pressure of 360 MPa and a press temperature of 200 ° C. By doing so, a negative electrode body (30 mm × 40 mm) in which a negative electrode active material layer (graphite + Li 2 S—P 2 S 5 solid electrolyte formed body) was formed on the negative electrode current collector (stainless foil) was formed. Is done. The thickness of the negative electrode active material layer in this negative electrode body was 60 μm.

次に、正極体の正極活物質層の上、及び負極体の負極活物質層の上にそれぞれ、PLD(パルスレーザデポジション)法を用いてLiS‐P系固体電解質を成膜して、正極側固体電解質層(厚さ5μm)及び負極側固体電解質層(厚さ5μm)を形成した。このとき、負極活物質層と負極側固体電解質層との間に、Siからなる界面層(厚さ0.02μm)を形成した。 Next, a Li 2 SP—P 2 S 5 solid electrolyte is formed on the positive electrode active material layer of the positive electrode body and on the negative electrode active material layer of the negative electrode body using a PLD (pulse laser deposition) method, respectively. The positive electrode side solid electrolyte layer (thickness 5 μm) and the negative electrode side solid electrolyte layer (thickness 5 μm) were formed. At this time, an interface layer (thickness: 0.02 μm) made of Si was formed between the negative electrode active material layer and the negative electrode side solid electrolyte layer.

そして、正極体と負極体に形成した各固体電解質層同士が対向するように両電極体を積層し、その積層方向に16MPaの圧力で加圧し、190℃の温度で130分保持することで、上記各固体電解質層同士を融着し両電極体を接合し、リチウムイオン電池を作製した。   And by laminating both electrode bodies so that the solid electrolyte layers formed on the positive electrode body and the negative electrode body face each other, pressurizing with a pressure of 16 MPa in the laminating direction, and holding at a temperature of 190 ° C. for 130 minutes, The solid electrolyte layers were fused together, and both electrode bodies were joined to produce a lithium ion battery.

以上のようにして作製したリチウムイオン電池を試料No.1とした。   The lithium ion battery fabricated as described above was sample No. It was set to 1.

[比較例のリチウムイオン電池]
正極体及び負極体において、バインダーにPTFEのみの粉末を用いた点を除いては、試料No.1と同様にしてリチウムイオン電池を作製した。このリチウムイオン電池を試料No.2とした。
[Lithium ion battery of comparative example]
In the positive electrode body and the negative electrode body, sample No. 4 was used except that a powder of only PTFE was used as the binder. In the same manner as in Example 1, a lithium ion battery was produced. This lithium ion battery is referred to as Sample No. 2.

また、正極体及び負極体において、バインダーにPTFEとPVDFとを混合した粉末(共重合体でない粉末)を用いた点を除いては、試料No.1と同様にしてリチウムイオン電池を作製した。このリチウムイオン電池を試料No.3とした。   In addition, in the positive electrode body and the negative electrode body, sample No. 1 was used except that powder (non-copolymer powder) in which PTFE and PVDF were mixed in a binder was used. In the same manner as in Example 1, a lithium ion battery was produced. This lithium ion battery is referred to as Sample No. It was set to 3.

[電池の評価]
試料No.1〜試料No.3のリチウムイオン電池について、各電極体(正極活物質層及び負極活物質層)の断面を走査型電子顕微鏡(SEM)により観察した。図1に各試料の正極体及び負極体のSEM写真(120倍)を示す。図1(1−1)は試料No.1の正極体、(1−2)は試料No.1の負極体を示し、両電極体とも、全体に亘って構成材料が均一に分散していることがわかる。図1(2−1)は試料No.2の正極体、(2−2)は試料No.2の負極体を示し、黒色の塊はバインダーの凝集によるもので、この塊が複数存在することがわかる。図1(3−1)は試料No.3の正極体、(3−2)は試料No.3の負極体を示し、バインダーの凝集による塊が、試料No.2に比べて粗大ではないが、複数存在することがわかる。
[Battery evaluation]
Sample No. 1 to Sample No. For the lithium ion battery of No. 3, the cross section of each electrode body (positive electrode active material layer and negative electrode active material layer) was observed with a scanning electron microscope (SEM). FIG. 1 shows SEM photographs (120 times) of the positive electrode body and the negative electrode body of each sample. 1 (1-1) shows sample No. No. 1 positive electrode body (1-2) is sample No. 1 shows a negative electrode body, and it can be seen that the constituent materials are uniformly dispersed throughout both electrode bodies. FIG. 1 (2-1) shows sample no. No. 2 positive electrode body, (2-2) is Sample No. 2 shows a negative electrode body, and the black lump is due to the aggregation of the binder, and it can be seen that a plurality of the lump are present. FIG. 1 (3-1) shows sample no. 3 and (3-2) are sample Nos. 3 and a lump due to the aggregation of the binder is shown in Sample No. Although it is not coarse compared with 2, it turns out that there exist multiple.

次に、各試料をコインセルに組み込み、各リチウムイオン電池の抵抗値を交流インピーダンス法により測定した。測定条件は、印加電圧5mV、測定周波数0.01〜100kHzである。この測定結果は、試料No.1では118Ω・cmであったのに対し、試料No.2では6200Ω・cm、試料No.3では1700Ω・cmと非常に大きい抵抗であった。 Next, each sample was incorporated in a coin cell, and the resistance value of each lithium ion battery was measured by an AC impedance method. The measurement conditions are an applied voltage of 5 mV and a measurement frequency of 0.01 to 100 kHz. The measurement results are shown in Sample No. 1 was 118 Ω · cm 2 , whereas sample no. 2 is 6200 Ω · cm 2 , sample No. In No. 3, the resistance was as very large as 1700 Ω · cm 2 .

また、各試料のリチウムイオン電池について、3.0〜4.2Vのカットオフ電圧で、0.2mA/cmの定電流にて、充放電を1サイクルとする充放電サイクル試験を実施し、充放電サイクル特性を調べた。この結果は、試料No.1ではAve210サイクル後も安定して動作するのに対して、試料No.2ではAve17サイクルで4.2Vまで充電できず、試料No.3ではAve125サイクルで4.2Vまで充電できない現象が確認できた。 Moreover, about the lithium ion battery of each sample, the charge / discharge cycle test which makes charging / discharging 1 cycle is carried out by the constant current of 0.2 mA / cm < 2 > with the cutoff voltage of 3.0-4.2V, The charge / discharge cycle characteristics were investigated. This result is shown in Sample No. 1 is stable even after Ave 210 cycles, while sample no. 2 could not be charged to 4.2 V in Ave 17 cycles. In Fig. 3, it was confirmed that the battery could not be charged up to 4.2 V in the Ave125 cycle.

以上の結果から、電極体において、正極活物質層及び負極活物質層内のバインダーにPTFEとPVDFとの共重合体を用いることで、バインダーが凝集することなく活物質層全体に均一に分散するので、内部抵抗を低減することができ、イオン伝導及び電子伝導のパスを十分に確保することができていると考えられる。   From the above results, in the electrode body, by using a copolymer of PTFE and PVDF as a binder in the positive electrode active material layer and the negative electrode active material layer, the binder is uniformly dispersed throughout the active material layer without aggregation. Therefore, it is considered that the internal resistance can be reduced, and sufficient paths for ion conduction and electron conduction can be secured.

なお、本発明は、本発明の要旨を逸脱しない範囲で適宜変更して実施することが可能であり、本発明の範囲は上述した構成に限定されるものではない。例えば、本発明の非水電解質電池用電極体は、正極体及び負極体の一方にのみ利用することができる。   The present invention can be implemented with appropriate modifications without departing from the scope of the present invention, and the scope of the present invention is not limited to the above-described configuration. For example, the nonaqueous electrolyte battery electrode body of the present invention can be used only for one of the positive electrode body and the negative electrode body.

本発明の非水電解質電池は、種々の電気機器の電源としての非水電解質電池に好適に利用可能である。   The nonaqueous electrolyte battery of the present invention can be suitably used as a nonaqueous electrolyte battery as a power source for various electric devices.

Claims (5)

活物質層が集電体上に形成された非水電解質電池用電極体であって、
前記活物質層は、活物質の粉末と硫化物系固体電解質の粉末とバインダーとを含有し、
前記バインダーは、ポリテトラフルオロエチレンとポリフッ化ビニリデンとの共重合体であることを特徴とする非水電解質電池用電極体。
An electrode body for a non-aqueous electrolyte battery in which an active material layer is formed on a current collector,
The active material layer contains an active material powder, a sulfide-based solid electrolyte powder, and a binder,
The binder is a copolymer of polytetrafluoroethylene and polyvinylidene fluoride. An electrode body for a nonaqueous electrolyte battery, wherein the binder is a copolymer of polytetrafluoroethylene and polyvinylidene fluoride.
前記ポリテトラフルオロエチレンとポリフッ化ビニリデンとの共重合比が、10:90〜40:60であることを特徴とする請求項1に記載の非水電解質電池用電極体。   2. The electrode body for a nonaqueous electrolyte battery according to claim 1, wherein a copolymerization ratio of the polytetrafluoroethylene and the polyvinylidene fluoride is 10:90 to 40:60. 前記活物質の粉末と硫化物系固体電解質の粉末との混合比が、体積比で80:20〜40:60であることを特徴とする請求項1又は2に記載の非水電解質電池用電極体。   3. The electrode for a nonaqueous electrolyte battery according to claim 1, wherein a mixing ratio of the active material powder and the sulfide-based solid electrolyte powder is 80:20 to 40:60 in a volume ratio. body. 正極体と、負極体と、両電極体の間に配される固体電解質層とを備える非水電解質電池であって、
前記正極体及び負極体の少なくとも一方は、請求項1〜3のいずれか1項に記載の非水電解質電池用電極体であることを特徴とする非水電解質電池。
A non-aqueous electrolyte battery comprising a positive electrode body, a negative electrode body, and a solid electrolyte layer disposed between both electrode bodies,
At least one of the said positive electrode body and a negative electrode body is the electrode body for nonaqueous electrolyte batteries of any one of Claims 1-3, The nonaqueous electrolyte battery characterized by the above-mentioned.
前記固体電解質層が、硫化物系固体電解質を含有することを特徴とする請求項4に記載の非水電解質電池。   The non-aqueous electrolyte battery according to claim 4, wherein the solid electrolyte layer contains a sulfide-based solid electrolyte.
JP2011132626A 2011-04-05 2011-06-14 Electrode body for nonaqueous electrolyte battery and nonaqueous electrolyte battery Withdrawn JP2012227107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011132626A JP2012227107A (en) 2011-04-05 2011-06-14 Electrode body for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011083869 2011-04-05
JP2011083869 2011-04-05
JP2011132626A JP2012227107A (en) 2011-04-05 2011-06-14 Electrode body for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2012227107A true JP2012227107A (en) 2012-11-15

Family

ID=47277022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011132626A Withdrawn JP2012227107A (en) 2011-04-05 2011-06-14 Electrode body for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2012227107A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013196968A (en) * 2012-03-21 2013-09-30 Toyota Motor Corp Method of manufacturing positive electrode active material layer containing body
JP2014078400A (en) * 2012-10-10 2014-05-01 Toyota Motor Corp Slurry for sulfide-based solid battery negative electrode, sulfide-based solid battery negative electrode and manufacturing method thereof, and sulfide-based solid battery and manufacturing method thereof
JP2014137868A (en) * 2013-01-15 2014-07-28 Toyota Motor Corp All-solid-state battery and manufacturing method therefor
WO2015046312A1 (en) * 2013-09-25 2015-04-02 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for batteries, method for producing electrode sheet for batteries, all-solid-state secondary battery, and method for manufacturing all-solid-state secondary battery
WO2015045707A1 (en) * 2013-09-24 2015-04-02 ソニー株式会社 Negative electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
WO2015046314A1 (en) * 2013-09-25 2015-04-02 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
WO2015046313A1 (en) * 2013-09-25 2015-04-02 富士フイルム株式会社 Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition
JP2015195155A (en) * 2014-03-19 2015-11-05 出光興産株式会社 solid electrolyte and battery
JP2016157676A (en) * 2015-02-25 2016-09-01 トヨタ自動車株式会社 All-solid battery
JP2018515893A (en) * 2015-05-21 2018-06-14 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒルThe University Of North Carolina At Chapel Hill Hybrid solid single ion conducting electrolyte for alkaline batteries
WO2019074074A1 (en) 2017-10-12 2019-04-18 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid secondary battery, and production methods for solid electrolyte-containing sheet and all-solid secondary battery
CN111052460A (en) * 2017-09-04 2020-04-21 汉阳大学校产学协力团 Metal-sulfur battery positive electrode, method for manufacturing same, and metal-sulfur battery including same
JP2020119774A (en) * 2019-01-24 2020-08-06 トヨタ自動車株式会社 Negative electrode
JPWO2021039950A1 (en) * 2019-08-30 2021-03-04
WO2021125150A1 (en) * 2019-12-18 2021-06-24 ダイキン工業株式会社 Solid-secondary-battery slurry, method for forming solid-secondary-battery layer, and solid secondary battery
WO2021153376A1 (en) * 2020-01-31 2021-08-05 日本ゼオン株式会社 Binder particles for all-solid-state battery, composition for all-solid-state battery, functional layer for all-solid-state battery, and all-solid-state battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013196968A (en) * 2012-03-21 2013-09-30 Toyota Motor Corp Method of manufacturing positive electrode active material layer containing body
JP2014078400A (en) * 2012-10-10 2014-05-01 Toyota Motor Corp Slurry for sulfide-based solid battery negative electrode, sulfide-based solid battery negative electrode and manufacturing method thereof, and sulfide-based solid battery and manufacturing method thereof
JP2014137868A (en) * 2013-01-15 2014-07-28 Toyota Motor Corp All-solid-state battery and manufacturing method therefor
WO2015045707A1 (en) * 2013-09-24 2015-04-02 ソニー株式会社 Negative electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
US10654963B2 (en) 2013-09-25 2020-05-19 Fujifilm Corporation Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition
WO2015046313A1 (en) * 2013-09-25 2015-04-02 富士フイルム株式会社 Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition
WO2015046312A1 (en) * 2013-09-25 2015-04-02 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for batteries, method for producing electrode sheet for batteries, all-solid-state secondary battery, and method for manufacturing all-solid-state secondary battery
WO2015046314A1 (en) * 2013-09-25 2015-04-02 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
US11440986B2 (en) 2013-09-25 2022-09-13 Fujifilm Corporation Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte
JP2015195155A (en) * 2014-03-19 2015-11-05 出光興産株式会社 solid electrolyte and battery
JP2016157676A (en) * 2015-02-25 2016-09-01 トヨタ自動車株式会社 All-solid battery
JP2018515893A (en) * 2015-05-21 2018-06-14 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒルThe University Of North Carolina At Chapel Hill Hybrid solid single ion conducting electrolyte for alkaline batteries
US11367867B2 (en) 2017-09-04 2022-06-21 Industry-University Cooperation Foundation Hanyang University Positive electrode for metal-sulfur battery, manufacturing method therefor, and metal-sulfur battery comprising the same
CN111052460A (en) * 2017-09-04 2020-04-21 汉阳大学校产学协力团 Metal-sulfur battery positive electrode, method for manufacturing same, and metal-sulfur battery including same
EP3667776A4 (en) * 2017-09-04 2021-05-26 Industry - University Cooperation Foundation Hanyang University Positive electrode for metal-sulfur battery, manufacturing method therefor, and metal-sulfur battery comprising same
WO2019074074A1 (en) 2017-10-12 2019-04-18 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid secondary battery, and production methods for solid electrolyte-containing sheet and all-solid secondary battery
JP2020119774A (en) * 2019-01-24 2020-08-06 トヨタ自動車株式会社 Negative electrode
JP7067498B2 (en) 2019-01-24 2022-05-16 トヨタ自動車株式会社 Negative electrode
JPWO2021039950A1 (en) * 2019-08-30 2021-03-04
JP7263525B2 (en) 2019-08-30 2023-04-24 富士フイルム株式会社 Composition containing inorganic solid electrolyte, sheet for all-solid secondary battery, all-solid secondary battery, and method for producing sheet for all-solid secondary battery and all-solid secondary battery
WO2021125150A1 (en) * 2019-12-18 2021-06-24 ダイキン工業株式会社 Solid-secondary-battery slurry, method for forming solid-secondary-battery layer, and solid secondary battery
WO2021153376A1 (en) * 2020-01-31 2021-08-05 日本ゼオン株式会社 Binder particles for all-solid-state battery, composition for all-solid-state battery, functional layer for all-solid-state battery, and all-solid-state battery
CN114747049A (en) * 2020-01-31 2022-07-12 日本瑞翁株式会社 Binder particles for all-solid-state batteries, composition for all-solid-state batteries, functional layer for all-solid-state batteries, and all-solid-state battery
EP4098671A4 (en) * 2020-01-31 2024-02-28 Zeon Corp Binder particles for all-solid-state battery, composition for all-solid-state battery, functional layer for all-solid-state battery, and all-solid-state battery

Similar Documents

Publication Publication Date Title
JP2012227107A (en) Electrode body for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP6755736B2 (en) Electrode active material slurry, its manufacturing method, and an all-solid-state secondary battery containing the electrode active material slurry.
US11276846B2 (en) Method for manufacturing electrode for secondary battery and electrode manufactured thereby
JP5594379B2 (en) Secondary battery positive electrode, secondary battery positive electrode manufacturing method, and all-solid secondary battery
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
JP5072110B2 (en) Positive electrode material used for lithium battery
KR102564315B1 (en) Production method of electrode for all-solid-state batteries and production method of all-solid-state battery
JP2012099315A (en) Positive electrode for all-solid lithium battery and method for manufacturing the same, and all-solid lithium battery
CN109920976A (en) Anode closes the manufacturing method of material, positive electrode active material layer, all-solid-state battery and positive electrode active material layer
JP2012221749A (en) Nonaqueous electrolyte battery
JP2012243645A (en) Electrode and all-solid state nonaqueous electrolyte battery
JP2012164571A (en) Negative electrode body and lithium ion battery
KR20170003544A (en) Electrode, method of producing the same, battery, and electronic device
JP2012243644A (en) Electrode and all-solid state nonaqueous electrolyte battery
JP2021177448A (en) All-solid-state secondary battery
JP2021039876A (en) All-solid battery
JP2020145034A (en) Manufacturing method of positive electrode slurry, manufacturing method of positive electrode, manufacturing method of all-solid battery, positive electrode, and all-solid battery
KR20210133085A (en) All-solid-state secondary battery
CN111755741A (en) All-solid-state lithium secondary battery, method for producing same, method for using same, and method for charging same
WO2017217079A1 (en) All-solid battery
JP2021136239A (en) All-solid secondary battery
JP2012248454A (en) Positive electrode, and all-solid nonaqueous electrolyte battery
JP2016110714A (en) Lithium ion secondary battery, and method for manufacturing positive electrode active material for lithium ion secondary battery
CN110943255B (en) Method for manufacturing all-solid-state battery and all-solid-state battery
JP2013125636A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902