JPH0547943B2 - - Google Patents

Info

Publication number
JPH0547943B2
JPH0547943B2 JP58176412A JP17641283A JPH0547943B2 JP H0547943 B2 JPH0547943 B2 JP H0547943B2 JP 58176412 A JP58176412 A JP 58176412A JP 17641283 A JP17641283 A JP 17641283A JP H0547943 B2 JPH0547943 B2 JP H0547943B2
Authority
JP
Japan
Prior art keywords
thin film
positive electrode
lithium
battery
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58176412A
Other languages
Japanese (ja)
Other versions
JPS6068558A (en
Inventor
Fumyoshi Kirino
Yukio Ito
Keiichi Kanebori
Katsumi Myauchi
Tetsuichi Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58176412A priority Critical patent/JPS6068558A/en
Publication of JPS6068558A publication Critical patent/JPS6068558A/en
Publication of JPH0547943B2 publication Critical patent/JPH0547943B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はリチウム電池にかかわり、特に、超薄
型化に好適な全固体薄膜リチウム電池に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a lithium battery, and particularly to an all-solid-state thin film lithium battery suitable for ultra-thin design.

〔発明の背景〕[Background of the invention]

近年のエレクトロニクス機器の小型化、低消費
電力化には著しいものがある。このような情況下
で、小型で安定かつ高信頼性を有する電池に対す
るニーズが強まつてきている。この中で特にリチ
ウム電池は、高エネルギ密度、高起電力を有す
る。新しい電池として注目されている。リチウム
電池の構成は、金属リチウム負極、リチウムイオ
ン導電性電解質、そして正極活物質とからなる。
リチウム電池は、正極活物質に二酸化マンガンや
弗化黒鉛等を用いた一次電池として既に実用化さ
れている。そして現在では、次の研究課題とし
て、リチウム電池の二次電池化が検討されてい
る。リチウム電池の二次電池化に成功すると、電
池を半永久的に使用することが可能となる。さら
に、一次電池と比べて充電できるためあまり大き
な放電容量を必要とせず、電池の小型化が可能に
なる等の特長がある。
BACKGROUND ART In recent years, electronic devices have become significantly smaller and have lower power consumption. Under these circumstances, there is an increasing need for small, stable, and highly reliable batteries. Among these, lithium batteries in particular have high energy density and high electromotive force. It is attracting attention as a new battery. A lithium battery consists of a metallic lithium negative electrode, a lithium ion conductive electrolyte, and a positive active material.
Lithium batteries have already been put into practical use as primary batteries that use manganese dioxide, graphite fluoride, or the like as positive electrode active materials. Currently, the next research topic is the conversion of lithium batteries into secondary batteries. If a lithium battery is successfully converted into a secondary battery, it will be possible to use the battery semi-permanently. Furthermore, since they can be charged more easily than primary batteries, they do not require a very large discharge capacity, making it possible to miniaturize the battery.

リチウム二次電池の特性は、()電池の電
圧・電流特性、()正極中でのリチウムイオン
の化学拡散係数、()電池の放電容量、()充
放電の繰り返し特性、等で表わされる。これらの
特性は、正極の特性に依存するところが大きく、
その選択は非常に重要である。現在までに、リチ
ウム二次電池の正極材料に関する報告は数多くあ
るが、電池としての特性には一長一短があり、正
極材料の探索がなお続けられている。今日までに
報告されている材料の中で、拡散係数が大きく充
放電の可逆性に優れたものに、二硫化チタン
(TiS2)がある。しかしながら、この二硫化チタ
ンは、二次元層状構造を有し、リチウムイオンの
拡散に対して異方性が存在する。そこで、このよ
うな化合物を薄膜化する場合には、リチウムイオ
ンの拡散の大きな方向に結晶を配向させる必要が
ある。しかし、一般に配向膜を作成することは技
術的に困難であり、さらに、電池の放電容量増加
のために正極膜厚を増する場合、一層困難になる
ことが予想される。そこで、リチウムイオンの拡
散に対して異方性が存在せず、大きな拡散係数を
有し、しかも充放電の繰り返し特性に優れた材料
を見いだすことは、リチウム二次電池の実用化に
向けて、非常に重要な課題である。本発明では、
前述の課題を解決するため、三次元網目構造を有
する正極材料に着目し、タングステン酸化物を取
り上げた。
The characteristics of a lithium secondary battery are expressed by () voltage and current characteristics of the battery, () chemical diffusion coefficient of lithium ions in the positive electrode, () discharge capacity of the battery, () repeatability of charging and discharging, etc. These characteristics largely depend on the characteristics of the positive electrode.
The choice is very important. To date, there have been many reports on positive electrode materials for lithium secondary batteries, but they have advantages and disadvantages in their characteristics as batteries, and the search for positive electrode materials is still continuing. Among the materials reported to date, titanium disulfide (TiS 2 ) has a large diffusion coefficient and excellent charge/discharge reversibility. However, this titanium disulfide has a two-dimensional layered structure and has anisotropy with respect to the diffusion of lithium ions. Therefore, when forming such a compound into a thin film, it is necessary to orient the crystals in the direction in which lithium ions diffuse more. However, it is generally technically difficult to create an alignment film, and it is expected that this will become even more difficult when increasing the thickness of the positive electrode film in order to increase the discharge capacity of the battery. Therefore, finding a material that has no anisotropy with respect to lithium ion diffusion, has a large diffusion coefficient, and has excellent charge/discharge repeatability is an important step toward the practical application of lithium secondary batteries. This is a very important issue. In the present invention,
In order to solve the above-mentioned problems, we focused on positive electrode materials with a three-dimensional network structure and selected tungsten oxide.

現在までに、タングステン酸化物の中で三酸化
タングステンは、リチウム電池用正極材料あるい
はエレクトロクロミツク表示素子用材料として、
数多く検討されてきた。この中で特に、リチウム
二次電池用正極材料としての三酸化タングステン
は、一般に放電容量が大きく、充放電の繰り返し
特性に優れた有望な材料であることが知られてい
る。さらに、最近では、三酸化タングステンを薄
膜化し、その電気化学的特性についても検討され
ている。三酸化タングステンを薄膜化するについ
ては、次のような問題点がある。まず、第1に、
リチウム電池を超薄型化する場合、電池構成材料
を圧粉法や焼結法で作成するには限界があり、別
の手法による薄膜化の検討が必要である。現在用
いられている薄膜化の手法は、真空蒸着法あるい
はスパツタ法である。しかしながら、真空蒸着法
は、タングステンと酸素の組成比を精密にかつ再
現性よく変えることが困難である。また、スパツ
タ法による三酸化タングステン薄膜の作成は、主
に金属タングステンをターゲツト材として用い、
酸素含有雰囲気中で行われているが、この手法
も、タングステンと酸素の組成比を精密にコント
ロールすることが困難である。第2に、三酸化タ
ングステンは、この物質自身電子導電率が小さ
く、正極材料としては用いるにはグラフアイト等
の導電性材料を添加しなければならない。しか
し、導電性材料の添加は、電池の放電容量の低下
をきたす欠点があり、特に正極薄膜材料として用
いるには、このような材料の添加は非常に不利に
なる。第3に、正極材料に要求される重要な特性
として、リチウムイオンの化学拡散係数が大きい
こと、および充放電の繰り返し特性に優れている
ことである。現在までに報告されている三酸化タ
ングステン薄膜におけるリチウムイオンの拡散係
数として最も大きな値は、4×10-7m2/s
(MINO GREEN and K.S.KANG,Thin Solid
Film 50,145(1978)である。しかし、三酸化
タングステンを薄膜リチウム電池用正極材料とし
て用いるには、拡散係数の値をさらに1〜2桁程
度向上させることが必要となる。さらに、この材
料を二次電池用正極材料として用いるには、充放
電に伴うリチウムイオンの出入りの可逆性の改善
が要求される。
To date, among tungsten oxides, tungsten trioxide has been used as a positive electrode material for lithium batteries or as a material for electrochromic display elements.
It has been considered many times. Among these, tungsten trioxide as a positive electrode material for lithium secondary batteries is known to be a promising material that generally has a large discharge capacity and excellent repeatability of charging and discharging. Furthermore, recently, tungsten trioxide has been made into a thin film and its electrochemical properties are also being studied. There are the following problems when making tungsten trioxide into a thin film. First of all,
When making lithium batteries ultra-thin, there are limits to how battery constituent materials can be made using powder compaction or sintering methods, and it is necessary to consider other methods to make the battery thinner. The thinning method currently used is a vacuum evaporation method or a sputtering method. However, with the vacuum evaporation method, it is difficult to change the composition ratio of tungsten and oxygen precisely and with good reproducibility. In addition, the creation of tungsten trioxide thin films by the sputtering method mainly uses metallic tungsten as the target material.
Although this method is performed in an oxygen-containing atmosphere, it is difficult to precisely control the composition ratio of tungsten and oxygen. Second, tungsten trioxide itself has low electronic conductivity, and to be used as a positive electrode material, a conductive material such as graphite must be added. However, the addition of a conductive material has the disadvantage of reducing the discharge capacity of the battery, and the addition of such a material is extremely disadvantageous, especially when used as a positive electrode thin film material. Thirdly, important properties required of a positive electrode material are a large chemical diffusion coefficient for lithium ions and excellent repeatability of charging and discharging. The largest value of the diffusion coefficient of lithium ions in a tungsten trioxide thin film reported to date is 4×10 -7 m 2 /s.
(MINO GREEN and KSKANG,Thin Solid
Film 50 , 145 (1978). However, in order to use tungsten trioxide as a positive electrode material for thin-film lithium batteries, it is necessary to further improve the value of the diffusion coefficient by about one to two orders of magnitude. Furthermore, in order to use this material as a positive electrode material for secondary batteries, it is required to improve the reversibility of lithium ion inflow and outflow during charging and discharging.

以上述べたように、従来の薄膜製造法で作成し
た三酸化タングステン薄膜には欠点があるととも
に、これをリチウム電池の正極薄膜材料として用
いるには解決しなければならない問題があつた。
As described above, the tungsten trioxide thin film produced by the conventional thin film manufacturing method has drawbacks, and there are also problems that must be solved in order to use it as a positive electrode thin film material for lithium batteries.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、薄膜リチウム電池、特に薄膜
リチウム二次電池のための、リチウムイオンの拡
散に対して異方性が存在せずかつ拡散係数が大き
く、充放電に伴うリチウムイオンの出入りの可逆
性に優れ、放電容量の大きなリチウム電池用正極
を提供することにある。
An object of the present invention is to provide a thin film lithium battery, particularly a thin film lithium secondary battery, which has no anisotropy in the diffusion of lithium ions, has a large diffusion coefficient, and has a reversible flow of lithium ions in and out during charging and discharging. An object of the present invention is to provide a positive electrode for a lithium battery that has excellent properties and a large discharge capacity.

〔発明の概要〕[Summary of the invention]

本発明は、正極を、WO3-〓(0<δ1)なる
組成の酸化タングステン、または遷移金属酸化物
(例えば三酸化モリブデン、五酸化バナジウムな
ど)を含むWO3-〓(0<δ1)なる組成の酸化
タングステンを主体とする物質からなる酸化タン
グステン薄膜とすることが、その要点である。
In the present invention, the positive electrode is made of tungsten oxide having a composition of WO 3- 〓 (0 < δ1) or WO 3- 〓 (0 < δ1) containing a transition metal oxide (for example, molybdenum trioxide, vanadium pentoxide, etc.). The key point is to form a tungsten oxide thin film made of a substance whose composition is primarily tungsten oxide.

現在報告されている正極材料のうち、一次元鎖
状あるいは二次元層状構造を有する材料は、リチ
ウムイオンの拡散に対して異方性を有する。これ
らの材料をリチウム電池の正極材料として用いる
と、その異方性のため薄膜形成時に結晶の傾向を
考慮する必要があり、これは薄膜作成を著しく困
難にする。そこで、正極材料として、リチウムイ
オンの拡散に対して異方性が存在しない三次元網
目構造を有する化合物に着目し、その中で三酸化
タングステンを採り上げた。この材料は、三次元
構造を有する化合物の中で、放電容量が大きく、
充放電の繰り返しに伴う可逆性も良好で、しかも
リチウムイオンの化学拡散係数は4×10-17m2
sと比較的大きく、リチウム電池用正極材料とし
て有望であると考えられる。しかしながら、この
材料を正極材料に用いるためには、さらに次の問
題を解決しなければならない。すなわち、()
放電容量の増加、()リチウムイオンの拡散係
数の向上、()充放電に伴うリチウムイオンの
出入りの可逆性の向上、()導電性添加剤を加
えずに電子導電率を上げること、等である。これ
らの問題の解決のため本発明で採り上げた対策に
ついて、以下詳述する。
Among currently reported positive electrode materials, materials having a one-dimensional chain or two-dimensional layered structure have anisotropy with respect to lithium ion diffusion. When these materials are used as cathode materials for lithium batteries, their anisotropy makes it necessary to take into account the tendency of crystals when forming thin films, which makes thin film formation extremely difficult. Therefore, we focused on compounds with a three-dimensional network structure that exhibits no anisotropy with respect to lithium ion diffusion as positive electrode materials, and selected tungsten trioxide among them. This material has a large discharge capacity among compounds with a three-dimensional structure,
It also has good reversibility with repeated charging and discharging, and the chemical diffusion coefficient of lithium ions is 4×10 -17 m 2 /
s, which is relatively large, and is considered to be promising as a positive electrode material for lithium batteries. However, in order to use this material as a positive electrode material, the following problem must be solved. That is, ()
Increasing discharge capacity, () improving the diffusion coefficient of lithium ions, () improving the reversibility of lithium ions in and out during charging and discharging, () increasing electronic conductivity without adding conductive additives, etc. be. The measures adopted in the present invention to solve these problems will be described in detail below.

まず、リチウムイオンの拡散係数を向上させる
ため、正極作成時に薄膜を非晶質化することでリ
チウムイオンの移動できるチヤネルの大きさおよ
び数を増すことを試みた。また、電子導電率を上
げるために、正極薄膜中に酸素欠陥を生成させる
ことをもくろんだ。ここで、できる酸素欠損型化
合物は、放電容量の増加および充放電に伴うリチ
ウムイオンの出入りの可逆性の向上を期待できる
ものである。そこで、薄膜の作成は、ターゲツト
に三酸化タングステンWO3(遷移金属酸化物を含
む場合については後記する)を用い、水素含有の
還元雰囲気中で、スパツタ法により行つた。ここ
で、薄膜作成を還元雰囲気中で行つたのは、薄膜
中に酸素欠陥を作成することが容易だからであ
る。すなわち、通常、酸素欠損型の化合物の
WO3-〓で表わされる不定比化合物を合成するに
は、金属タングステンW、タングステン酸アンモ
ニウムNH4WO4、タングステン酸H2WO4、およ
び三酸化タングステンWO3の混合物を石英管中
に真空封入したものを900℃で24〜48時間反応さ
せて作るが、こうして合成した原料を蒸発源に用
いて真空蒸着法あるいはスパツタ法により薄膜化
しても、元のタングステンと酸素の組成比を保つ
ことは困難であり、さらに、原料の合成から電池
による評価まで多大の時間と労力を要するという
欠点がある。そこで、薄膜中の酸素欠損量を容易
にかつ再現性よくコントロールできる手法とし
て、WO3をターゲツトに用い、還元雰囲気中で
スパツタする方法を用いたものである。なお、正
極の作成方法として、スパツタ法以外に、イオン
プレーテイング法、真空蒸着法、あるいはCVD
法によつて作成してもよい。
First, in order to improve the diffusion coefficient of lithium ions, we attempted to increase the size and number of channels through which lithium ions can move by making the thin film amorphous when creating the positive electrode. They also planned to generate oxygen defects in the positive electrode thin film in order to increase electronic conductivity. The resulting oxygen-deficient compound can be expected to increase discharge capacity and improve the reversibility of lithium ions in and out during charging and discharging. Therefore, the thin film was formed by sputtering in a hydrogen-containing reducing atmosphere using tungsten trioxide WO 3 (the case containing a transition metal oxide will be described later) as a target. Here, the thin film was formed in a reducing atmosphere because it is easy to create oxygen defects in the thin film. In other words, normally oxygen-deficient compounds
To synthesize the non-stoichiometric compound represented by WO 3- , a mixture of metallic tungsten W, ammonium tungstate NH 4 WO 4 , tungstate H 2 WO 4 , and tungsten trioxide WO 3 is vacuum sealed in a quartz tube. It is made by reacting the tungsten and oxygen at 900℃ for 24 to 48 hours, but even if the raw material synthesized in this way is used as an evaporation source and made into a thin film by vacuum evaporation or sputtering, the original composition ratio of tungsten and oxygen cannot be maintained. It is difficult, and furthermore, it requires a great deal of time and effort from synthesis of raw materials to evaluation using batteries. Therefore, as a method to easily control the amount of oxygen vacancies in the thin film with good reproducibility, a method of sputtering in a reducing atmosphere using WO 3 as a target was used. In addition to the sputtering method, ion plating method, vacuum evaporation method, or CVD method can be used to create the positive electrode.
It may be created by law.

上記の薄膜作成において、酸素欠損量のコント
ロールは、ターゲツトに印加する高周波の出力、
および放電ガス中の含有水素量を変化させること
により行つた。また、作成した正極の評価は、リ
チウム電池を作成して行つた。すなわち、まずガ
ラス製基板上にスパツタ法により正極薄膜を形成
した。次に、作成した正極薄膜について、X線回
折法による結晶性の評価、および電子導電率の測
定を行つた。その結果、放電ガス中の含有水素量
一定の場合、高周波出力の上昇とともに結晶化が
進み、電子導電率も上昇した。また、高周波出力
一定の場合、水素ガス量を増加させてゆくと、電
子導電率は上昇するが、結晶性の変化はX線的に
は見られず、すべて非晶質であつた。この薄膜評
価の後に、上記正極薄膜上にスパツタ法により固
体電解質薄膜を形成し、最後にリチウム負極を真
空蒸着法により形成し、リチウム電池を作成し
た。電池の評価は、まず、()電池の電圧・電
流特性、()正極中におけるリチウムイオンの
化学拡散係数、について行つた。その結果、本発
明により作成した正極薄膜は、いずれも既知の材
料の中で最も良い電池特性を有する二硫化チタン
と同等あるいはそれに近い電圧・電流特性および
拡散係数(10-16〜10-15m2/s)を有していた。
また、傾向として、非晶質薄膜の方が結晶質薄膜
よりわずかに大きかつた。また、より強い還元性
雰囲気中で作成したタングステン酸化物薄膜、
WO3-〓においてδ>1のものでは、電池の起電
力、放電容量とも小さく、電池には不向きであつ
た。次に、電池の評価として、充放電の繰り返し
によるリチウムイオンの出入りの可逆性について
検討した。すなわち、電池を一定電流により、あ
る一定電位間で充電・放電を繰り返し、そのとき
の充電または放電に要する時間を測定した。その
結果、放電容量0.15mA/cm2を有し、充放電の繰
り返しに伴う劣化の小さい薄膜リチウム二次電池
が得られることがわかつた。
In the production of the above thin film, the amount of oxygen vacancies is controlled by the high frequency output applied to the target.
and by changing the amount of hydrogen contained in the discharge gas. In addition, evaluation of the produced positive electrode was performed by producing a lithium battery. That is, first, a positive electrode thin film was formed on a glass substrate by a sputtering method. Next, the produced positive electrode thin film was evaluated for crystallinity by X-ray diffraction and measured for electronic conductivity. As a result, when the amount of hydrogen contained in the discharge gas was constant, crystallization progressed as the high frequency output increased, and the electronic conductivity also increased. Further, when the high frequency output was constant, as the amount of hydrogen gas was increased, the electronic conductivity increased, but no change in crystallinity was observed by X-rays, and all were amorphous. After this thin film evaluation, a solid electrolyte thin film was formed on the positive electrode thin film by a sputtering method, and finally a lithium negative electrode was formed by a vacuum evaporation method to create a lithium battery. The battery was first evaluated on () the voltage and current characteristics of the battery, and () the chemical diffusion coefficient of lithium ions in the positive electrode. As a result, the positive electrode thin film created according to the present invention has voltage/current characteristics and diffusion coefficient (10 -16 to 10 -15 m 2 /s).
Additionally, as a tendency, the amorphous thin film was slightly larger than the crystalline thin film. In addition, tungsten oxide thin films created in a stronger reducing atmosphere,
When δ>1 in WO 3- , both the electromotive force and discharge capacity of the battery were small, and it was unsuitable for use as a battery. Next, to evaluate the battery, we examined the reversibility of lithium ion inflow and outflow through repeated charging and discharging. That is, the battery was repeatedly charged and discharged between certain potentials with a constant current, and the time required for charging or discharging at that time was measured. As a result, it was found that a thin-film lithium secondary battery with a discharge capacity of 0.15 mA/cm 2 and less deterioration due to repeated charging and discharging could be obtained.

以上の検討から、三酸化タングステンをターゲ
ツトに用い、還元性雰囲気中でスパツタして得ら
れた薄膜を正極活物質を用いることにより、電池
の電圧・電流特性、正極中でのリチウムイオンの
拡散係数、放電容量、および充放電の繰り返しに
伴うリチウムイオンの出入りの可逆性を大きく改
善することができることが確認された。上記の正
極薄膜はWO3-〓なる組成を有し、このδの値は、
X線回折方による結晶性の評価の結果(非晶質の
場合は、類似の条件で作成した結晶質の薄膜につ
いての値から求めた推定値)から、0<δ1の
範囲であつた。
From the above studies, we found that by using tungsten trioxide as a target and a thin film obtained by sputtering in a reducing atmosphere as a positive electrode active material, we can improve the voltage and current characteristics of the battery, and improve the diffusion coefficient of lithium ions in the positive electrode. It was confirmed that the discharge capacity and the reversibility of lithium ion inflow and outflow accompanying repeated charging and discharging can be greatly improved. The above positive electrode thin film has a composition of WO 3- 〓, and the value of δ is:
From the results of evaluation of crystallinity by X-ray diffraction (in the case of amorphous, estimated values obtained from values for crystalline thin films prepared under similar conditions), it was in the range of 0<δ1.

酸化タングステンに遷移金属酸化物を加えたも
のを原料として、石英管に減圧封入し、それを熱
処理することにより、その結晶構造を変化させ、
リチウムイオンが拡散しやすい形のチヤネルを作
り、それによつて拡散係数を改善できることが知
られている。本発明においても、正極作成時に、
三酸化タングステン中に遷移金属酸化物、例えば
三酸化モリブデン、五酸化バナジウム、五酸化ニ
オブを含むターゲツトを用いスパツタ法にて作成
した正極を使つた電池も、電圧・電流特性、正極
中でリチウムイオンの拡散係数、放電容量、充放
電の繰り返しに伴うリチウムイオンの出入りの可
逆性等、三酸化タングステンの場合とほぼ同じ特
性が得られた。
The raw material is tungsten oxide with a transition metal oxide added to it, sealed in a quartz tube under reduced pressure, and heat treated to change its crystal structure.
It is known that it is possible to create channels in which lithium ions can easily diffuse, thereby improving the diffusion coefficient. Also in the present invention, when creating the positive electrode,
Batteries using positive electrodes made by sputtering using targets containing transition metal oxides such as molybdenum trioxide, vanadium pentoxide, and niobium pentoxide in tungsten trioxide also have voltage and current characteristics, and lithium ions in the positive electrode. Almost the same properties as tungsten trioxide were obtained, including the diffusion coefficient of , discharge capacity, and reversibility of lithium ion inflow and outflow with repeated charging and discharging.

〔発明の実施例〕[Embodiments of the invention]

本発明による薄膜リチウム電池の実施例を、薄
膜正極が酸化タングステンのみのものを実施例1
〜14、遷移金属酸化物を含むものを実施例15〜20
として、以下詳説にする。
Example 1 of a thin film lithium battery according to the present invention is a thin film positive electrode composed of only tungsten oxide.
~14, Examples 15 to 20 containing transition metal oxides
This will be explained in detail below.

実施例 1〜8: 第1図に薄膜リチウム電池全体の構成を示す。
すなわち、ガラス製の基板1上に、それぞれが固
体の正極薄膜2、リチウムイオン導電性の固体電
解質薄膜3、リチウム負極薄膜4の順序に順次積
層した構造を有し、リード線5を設けたものであ
る。
Examples 1 to 8: FIG. 1 shows the overall structure of a thin film lithium battery.
That is, it has a structure in which a solid positive electrode thin film 2, a lithium ion conductive solid electrolyte thin film 3, and a lithium negative electrode thin film 4 are laminated in this order on a glass substrate 1, and a lead wire 5 is provided. It is.

本実施例では、電池の作成は次のようにして行
つた。すなわち、まず、両面を鏡面研摩した石英
製の基板1上に、スパツタ法により正極薄膜2を
作成した。スパツタの条件は、ターゲツト材とし
て純度99.9%の三酸化タングステンを用い、放電
ガスには後記する比率で配合したArとH2を使用
し、放電ガス圧は3×10-2Torrである。この条
件で、市販のRFスパツタ装置を用いてスパツタ
した。スパツタ中は、基板を水冷した。ここで、
タングステンと酸素の比のコントロールは、放電
ガス中の水素含有量を変化させることにより、あ
るいは高周波出力を変えることにより行つた。ま
ず、放電ガスに90%Ar−10%H2を用い、高周波
出力2.5,3.8,5.0,6.4,7.6W/cm2でスパツタを
行い、正極薄膜を作成した(実施例1〜5)。次
に、高周波出力を2.5W/cm2一定とし、放電ガス
中の水素含有率を変化させてスパツタを行つた。
すなわち、放電ガスに95%Ar−5%H2、90%Ar
−10%H2、70%Ar−30%H2の3種を用いた
(H25%、H230%の場合をそれぞれ実施例6、
7。H210%は前記実施例1)。作成した正極薄膜
については、X線回折法を用いて、結晶性の検討
を行つた。その後に、上記正極薄膜上に、0.6Li4
SiO4−0.4Li3PO4固体電解質薄膜3(厚さ3.5μm)
をスパツタ法により形成し、最後に、金属リチウ
ム負極薄膜4(厚さ4μm)を真空蒸着法により
形成して、薄膜リチウム電池を作成した。
In this example, the battery was created as follows. That is, first, a positive electrode thin film 2 was formed by sputtering on a quartz substrate 1 whose both sides were mirror-polished. The sputtering conditions were as follows: tungsten trioxide with a purity of 99.9% was used as the target material, Ar and H 2 mixed in the ratio described later were used as the discharge gas, and the discharge gas pressure was 3×10 −2 Torr. Sputtering was performed under these conditions using a commercially available RF sputtering device. During sputtering, the substrate was cooled with water. here,
The ratio of tungsten to oxygen was controlled by changing the hydrogen content in the discharge gas or by changing the high frequency output. First, using 90% Ar-10% H 2 as a discharge gas, sputtering was performed at high frequency outputs of 2.5, 3.8, 5.0, 6.4, and 7.6 W/cm 2 to create positive electrode thin films (Examples 1 to 5). Next, sputtering was performed while keeping the high frequency output constant at 2.5 W/cm 2 and varying the hydrogen content in the discharge gas.
That is, the discharge gas contains 95% Ar-5% H 2 and 90% Ar.
-10% H2 , 70%Ar-30% H2 (Example 6 and 5% H2 and 30% H2 , respectively) were used.
7. H 2 10% is the same as in Example 1). The crystallinity of the produced positive electrode thin film was examined using an X-ray diffraction method. After that, 0.6Li 4 was applied on the positive electrode thin film.
SiO 4 −0.4Li 3 PO 4 solid electrolyte thin film 3 (thickness 3.5μm)
was formed by a sputtering method, and finally, a metal lithium negative electrode thin film 4 (thickness: 4 μm) was formed by a vacuum evaporation method to create a thin film lithium battery.

作成した薄膜電池の評価は、次のようにして行
つた。まず、初期特性として、電池の電圧・電流
特性および正極中でのリチウムイオンの化学拡散
係数について測定を行つた。電圧・電流特性は短
絡電流(電池を短絡したときに流れる電流)によ
り表わした。そして最後に、充放電の繰り返し特
性について、次のようにして検討した。すなわ
ち、一定電流で電池を充放電し、そのときの充電
あるいは放電に要する時間を測定することにより
評価した。
The produced thin film battery was evaluated as follows. First, as initial characteristics, the voltage and current characteristics of the battery and the chemical diffusion coefficient of lithium ions in the positive electrode were measured. The voltage/current characteristics were expressed by short-circuit current (current that flows when the battery is short-circuited). Finally, the repeated charging and discharging characteristics were examined as follows. That is, evaluation was made by charging and discharging the battery with a constant current and measuring the time required for charging or discharging at that time.

電池の評価の結果とX線回折法による検討結果
をまとめて、第2図の図表に実施例1〜7として
示したが、以下詳細に説明する。まず、X線回折
法による正極薄膜の結晶性評価の結果、実施例1
〜3の低いスパツタ出力で作成した薄膜は非晶質
であるのに対して、高いスパツタ出力で作成した
もの(実施例4,5)は配向した結晶質の薄膜で
あつた。すなわち、実施例4のものは(110)に
配向したW20O58であり、実施例5のものは
(010)に配向したW18O49であつた。以上の結果
から、高周波出力を増加させると、薄膜中の酸素
欠損量が増加してゆくことがわかつた。また、放
電ガス中の水素含有量を変えてスパツタした結果
は、X線による検討から非晶質であることがわか
つた。
The results of the evaluation of the battery and the results of the study using the X-ray diffraction method are summarized and shown as Examples 1 to 7 in the chart of FIG. 2, and will be described in detail below. First, as a result of the crystallinity evaluation of the positive electrode thin film by X-ray diffraction method, Example 1
The thin films made with low sputtering powers of -3 were amorphous, whereas those made with high sputtering powers (Examples 4 and 5) were oriented crystalline thin films. That is, the material of Example 4 was W 20 O 58 oriented in (110), and the material in Example 5 was W 18 O 49 oriented in (010). From the above results, it was found that as the high frequency output was increased, the amount of oxygen vacancies in the thin film increased. Moreover, the results of sputtering with varying hydrogen content in the discharge gas were found to be amorphous by X-ray examination.

次に、これらの正極薄膜を用いて電池を作成
し、その特性を検討したが、以下これについて説
明する。まず、スパツタ出力と電池特性との関係
について検討した。すなわち、三酸化タングステ
ンを出発物質とし、放電ガス中の水素含有量を一
定として、高周波出力を上げてスパツタして正極
薄膜を作成し(実施例1〜4)、前述の手法で電
池化し、その特性の判定を行つた。その結果、電
池の電圧・電流特性および正極中でのリチウムイ
オンの化学拡散係数は、いずれも大きな変化は見
られなかつた。リチウムイオンの化学拡散係数は
10-15〜10-16m2/sを示し、既知の正極材料中最
も優れている二硫化チタン(拡散係数5×10-15
m2/s)とほぼ同じ値であつた。次に、高周波出
力として、先の検討のうちから最も大きな短絡電
流および拡散係数が得られた場合の値2.5W/cm2
を選択し、放電ガス中の水素含有量を変え(それ
ぞれ5%、10%、30%)て、正極薄膜を作成した
(実施例6,1,7)。つまり、放電ガス中の水素
含有量と電池特性との関係について検討した。そ
の結果、先の高周波出力を変えた場合と同様、電
池の電圧・電流特性および正極中のリチウムイオ
ンの化学拡散係数は、いずれも大きな変化は見ら
れず、これらの値は前述の二硫化チタンの値とほ
ぼ同等であつた。続いて、薄膜の結晶性が電池特
性に与える影響について検討してみた。まず、基
板加熱(300℃)した状態で高周波出力3.8W/cm2
でスパツタすることにより結晶化させた試料(実
施例8)と、基板を水冷した状態で同じ高周波出
力でスパツタして作成した非晶質の試料(実施例
2)とを比べてみた。両者には、電池の電圧・電
流特性および正極中のリチウムイオンの拡散係数
に大きな違いは見られず、どちらも二硫化チタン
の値とほぼ同じ値であつた。さらに、高周波出力
を変化させることにより三酸化タングステンの還
元状態、すなわち薄膜中の酸素欠損量を変えて結
晶質薄膜を作成(実施例1、4、5、8)し、電
池特性に与える影響について検討した。その結
果、結晶質薄膜においても、還元状態の違いによ
る電池特性の違いはほとんど見られなかつた。こ
こで、結晶質薄膜と非晶質薄膜との電池特性の違
いは、結晶質薄膜の方が短絡電流、拡散係数共に
小さいことであるが、他の材料より遥かに良好で
あつた。以上の検討から、三酸化タングステン
WO3を出発物質として、放電ガス中の水素含有
量一定の還元雰囲気中で高周波出力を変化させる
か、あるいは高周波出力一定で放電ガス中の水素
含有量を増加させてスパツタすることにより、タ
ングステン酸化物WO3-〓におけるδの値を、零か
ら徐々に上げて還元することができた。そして、
その薄膜特性について検討した結果、この組成範
囲では、短絡電流および正極中のリチウムイオン
の化学拡散係数は、還元が進むにつれて若干小さ
くなる傾向が見られるが、10-15〜10-16m2/sと
大きな値を示した。
Next, batteries were created using these positive electrode thin films and their characteristics were investigated, which will be explained below. First, we investigated the relationship between sputter output and battery characteristics. That is, using tungsten trioxide as a starting material, keeping the hydrogen content in the discharge gas constant, increasing the high frequency output and sputtering to create a positive electrode thin film (Examples 1 to 4), making it into a battery using the method described above, and Characteristics were determined. As a result, no major changes were observed in either the voltage/current characteristics of the battery or the chemical diffusion coefficient of lithium ions in the positive electrode. The chemical diffusion coefficient of lithium ion is
10 -15 to 10 -16 m 2 /s, and titanium disulfide (diffusion coefficient 5 × 10 -15
m 2 /s). Next, the high frequency output is 2.5W/cm 2 , which is the value when the largest short circuit current and diffusion coefficient are obtained from the previous study.
were selected, and positive electrode thin films were created by changing the hydrogen content in the discharge gas (5%, 10%, and 30%, respectively) (Examples 6, 1, and 7). In other words, the relationship between the hydrogen content in the discharge gas and battery characteristics was investigated. As a result, as in the case of changing the high-frequency output, there were no significant changes in the voltage/current characteristics of the battery or the chemical diffusion coefficient of lithium ions in the positive electrode, and these values were similar to those of the titanium disulfide mentioned above. The value was almost the same as that of . Next, we investigated the effect of thin film crystallinity on battery characteristics. First, the high frequency output is 3.8W/cm 2 with the substrate heated (300℃).
A comparison was made between a sample crystallized by sputtering (Example 8) and an amorphous sample (Example 2) created by sputtering the substrate with the same high frequency output while cooling the substrate with water. There were no major differences in the voltage/current characteristics of the batteries or the diffusion coefficients of lithium ions in the positive electrode between the two, and both values were approximately the same as those of titanium disulfide. Furthermore, by changing the high-frequency output, we created crystalline thin films by changing the reduction state of tungsten trioxide, that is, the amount of oxygen vacancies in the thin film (Examples 1, 4, 5, and 8), and investigated the effect on battery characteristics. investigated. As a result, even in the case of crystalline thin films, there were almost no differences in battery characteristics due to differences in reduction state. Here, the difference in battery characteristics between a crystalline thin film and an amorphous thin film is that the crystalline thin film has a smaller short circuit current and a smaller diffusion coefficient, but it is far better than other materials. From the above considerations, tungsten trioxide
Using WO 3 as a starting material, tungsten oxidation is performed by varying the high frequency output in a reducing atmosphere with a constant hydrogen content in the discharge gas, or by sputtering by increasing the hydrogen content in the discharge gas with a constant high frequency output. We were able to reduce the value of δ in the product WO 3- by gradually increasing it from zero. and,
As a result of examining its thin film properties, it was found that in this composition range, the short-circuit current and the chemical diffusion coefficient of lithium ions in the positive electrode tended to decrease slightly as reduction progressed ; It showed a large value of s.

次に、これらの正極薄膜を用いた薄膜リチウム
電池の、充放電に伴うリチウムイオンの出入りの
可逆性について検討した。その結果、充放電の繰
り返しに伴う劣化は、実施例のいずれの電池にお
いても小さく、約10回の繰り返しで10%であつ
た。その後も、充放電の繰り返しにより徐々に放
電容量の減少は見られるが、約100回以上では容
量の減少はまつたく見られず、良好な充放電が行
えることを確認した。さらに、この中で、実施例
1、2の電池は、放電容量も大きく、薄膜の膜厚
2.5μm、直径2mmで、2.5V1.5Vの繰り返しで、
約0.15mAh/cm2であつた。
Next, we investigated the reversibility of lithium ion inflow and outflow during charging and discharging of thin film lithium batteries using these positive electrode thin films. As a result, the deterioration caused by repeated charging and discharging was small in all of the batteries of Examples, and was 10% after approximately 10 repetitions. After that, the discharge capacity gradually decreased due to repeated charging and discharging, but no significant decrease in capacity was observed after approximately 100 cycles, confirming that good charging and discharging could be performed. Furthermore, among these, the batteries of Examples 1 and 2 have a large discharge capacity and a thin film thickness.
2.5μm, diameter 2mm, repeating 2.5V1.5V,
It was about 0.15mAh/ cm2 .

以上の検討から、スパツタ法により三酸化タン
グステンをターゲツトに用い、水素含有の還元雰
囲気中で作成した本発明による正極薄膜は、グラ
フアイトのような導電性添加物を加えることな
く、電圧・電流特性およびリチウムイオンの化学
拡散係数を大きく改善することが確認された。さ
らに、充放電の繰り返しに伴うリチウムイオンの
出入りの可逆性について検討した結果、これらは
良好な可逆性を有し、かつ0.15mAh/cm2という
大きな放電容量を有する薄膜リチウム二次電池を
得ることができた。
From the above studies, it was found that the positive electrode thin film of the present invention, which was created by the sputtering method using tungsten trioxide as a target in a hydrogen-containing reducing atmosphere, has voltage and current characteristics without adding conductive additives such as graphite. It was confirmed that the chemical diffusion coefficient of lithium ions was significantly improved. Furthermore, as a result of examining the reversibility of lithium ion inflow and outflow during repeated charging and discharging, we found that these thin-film lithium secondary batteries have good reversibility and a large discharge capacity of 0.15mAh/ cm2 . was completed.

以上の各実施例において、δの値は、正極薄膜
が結晶質の場合は、X線回折法による結晶性の評
価の結果から求めた。また、非晶質の場合は、類
似の条件で作成した結晶質の薄膜のδの値を基に
した推定値で示した。いずれも、0<δ1の範
囲の値である。
In each of the above examples, when the positive electrode thin film is crystalline, the value of δ was determined from the results of crystallinity evaluation by X-ray diffraction. In addition, in the case of an amorphous film, an estimated value is shown based on the value of δ of a crystalline thin film prepared under similar conditions. All values are in the range of 0<δ1.

実施例 9〜14: 放電ガスとして、前述の実施例の場合よりも水
素含有率の高い50%Ar−50%H2を用い、高周波
出力を5.0,6.4,7.6W/cm2と変化させ、それぞれ
の高周波出力に対し基板水冷、基板300℃加の2
通りのスパツタ条件で正極薄膜を作成した。その
結果を、第2図の実施例9〜14として示す。その
結果、前述の実施例1〜8の場合と同様な傾向で
あり、拡散係数、短絡電流とも前の実施例と同等
の値であつた。
Examples 9 to 14: Using 50% Ar-50% H2 with a higher hydrogen content than in the previous example as the discharge gas, changing the high frequency output to 5.0, 6.4, 7.6 W/ cm2 , For each high frequency output, the substrate is water cooled and the substrate is heated to 300℃.
A positive electrode thin film was created under the same sputtering conditions. The results are shown as Examples 9 to 14 in FIG. As a result, the tendency was similar to that of Examples 1 to 8 described above, and both the diffusion coefficient and short circuit current were the same as those of the previous examples.

実施例 15〜20: 遷移金属酸化物を含む三酸化タングステン系の
正極薄膜を用いた実施例を説明する。すなわち、
三酸化タングステンに、三酸化モリブデン、五酸
化パナジウム、五酸化ニオブをペレツトとして添
加したものをターゲツト材として用い、高周波出
力2.5W/cm2、放電ガス圧3×10-2Torr、放電ガ
ス90%Ar−10%H2で、2時間スパツタして正極
薄膜を作成した。電池の作成方法および電池の評
価は、前述の三酸化タングステンの場合と同じ手
法により行つた。その結果を第3図の図表にまと
めて示す。その結果、特性的には遷移金属酸化物
の添加により電圧・電流特性、リチウムイオンの
拡散系数には大きな差は見られなかつた。一方、
放電容量は添加によつて0.08mAh/cm2とわずか
に小さくなるが、充放電の繰り返しに伴うリチウ
ムイオンの出入りの可逆性はわずかに改善され
た。
Examples 15 to 20: Examples using a tungsten trioxide-based positive electrode thin film containing a transition metal oxide will be described. That is,
Tungsten trioxide with molybdenum trioxide, panadium pentoxide, and niobium pentoxide added as pellets was used as the target material, high frequency output 2.5 W/cm 2 , discharge gas pressure 3 × 10 -2 Torr, discharge gas 90%. A positive electrode thin film was created by sputtering with Ar-10% H 2 for 2 hours. The method for manufacturing the battery and the evaluation of the battery were performed using the same method as in the case of tungsten trioxide described above. The results are summarized in the chart in Figure 3. As a result, no major differences in voltage/current characteristics or lithium ion diffusion coefficients were observed due to the addition of transition metal oxides. on the other hand,
Although the discharge capacity slightly decreased to 0.08 mAh/cm 2 due to the addition, the reversibility of lithium ion inflow and outflow during repeated charging and discharging was slightly improved.

以上の各実施例で説明したように、本発明によ
ると、薄膜リチウム電池用正極材料として、三次
元網目構造を有し、リチウムイオンの拡散に対し
て異方性が存在しない三酸化タングステンを出発
物質として選び、水素含有の還元雰囲気中でスパ
ツタ法により正極薄膜を作成した。そして、この
薄膜を用いることにより、正極中に電子導電性材
料を添加することなしに、電池の電圧・電流特性
およびリチウムイオンの拡散係数を大幅に改善す
ることができた。また、充放電の繰り返し特性
を、改善することができ、可逆性に優れたリチウ
ム二次電池を得た。さらに、放電容量は、2mm径
正極膜厚2.5μm放電深度70%で、0.15mAh/cm2
大きな値を得ることができた。そして、これらの
効果が顕著に現れる正極薄膜のタングステンを酸
表の組成範囲は、タングステン酸化物WO3-〓にお
けるδの値として0<δ1の範囲が有効である
ことがわかつた。
As explained in the above examples, according to the present invention, tungsten trioxide, which has a three-dimensional network structure and has no anisotropy with respect to lithium ion diffusion, is used as a positive electrode material for thin-film lithium batteries. A positive electrode thin film was created using the sputtering method in a hydrogen-containing reducing atmosphere. By using this thin film, it was possible to significantly improve the voltage/current characteristics and lithium ion diffusion coefficient of the battery without adding an electronically conductive material to the positive electrode. Furthermore, a lithium secondary battery was obtained in which the repeatability of charging and discharging could be improved and the lithium secondary battery had excellent reversibility. Further, the discharge capacity was as large as 0.15 mAh/cm 2 at a 2 mm diameter positive electrode film thickness of 2.5 μm and a discharge depth of 70%. It has been found that the effective composition range of the tungsten acid surface of the positive electrode thin film in which these effects are noticeable is a range of 0<δ1 as the value of δ in the tungsten oxide WO 3− .

また、本発明によるタングステン酸化物を用い
た正極薄膜は、リチウムイオンの拡散に対して異
法性が存在せず、二次元層状化合物の場合に見ら
れるようなリチウムイオンの拡散の大きな方向へ
結晶を配向させるという技術課題を解決すること
ができる。
In addition, the positive electrode thin film using tungsten oxide according to the present invention has no irregularity with respect to the diffusion of lithium ions, and crystals are directed in the direction of large diffusion of lithium ions as seen in the case of two-dimensional layered compounds. The technical problem of orienting can be solved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、リチウ
ムイオンの拡散に対して異方性が存在せずかつ拡
散係数が大きく、充放電に伴うリチウムイオンの
出入りの可逆性に優れ、放電容量の大きな薄膜リ
チウム二次電池用の正極が得られるので、薄膜リ
チウム二次電池の分野における効果は顕著であ
る。
As explained above, according to the present invention, there is no anisotropy in the diffusion of lithium ions, the diffusion coefficient is large, the reversibility of lithium ions in and out during charging and discharging is excellent, and the discharge capacity is large. Since a positive electrode for thin film lithium secondary batteries can be obtained, the effect in the field of thin film lithium secondary batteries is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は薄膜リチウム電池全体の構成を示す断
面図、第2図は正極に酸化タングステンを用いた
本発明の実施例のデータをまとめた図表、第3図
は正極に遷移金属酸化物を含む酸化タングステン
を主体とする物質を用いた本発明の実施例のデー
タをまとめた図表である。 符号の説明、1……基板、2……正極薄膜、3
……固体電解質薄膜、4……リチウム負極薄膜、
5……リード線。
Fig. 1 is a cross-sectional view showing the overall structure of a thin-film lithium battery, Fig. 2 is a chart summarizing data of an example of the present invention using tungsten oxide as the positive electrode, and Fig. 3 contains a transition metal oxide in the positive electrode. 1 is a chart summarizing data of an example of the present invention using a substance mainly composed of tungsten oxide. Explanation of symbols, 1...Substrate, 2...Positive electrode thin film, 3
...Solid electrolyte thin film, 4...Lithium negative electrode thin film,
5... Lead wire.

Claims (1)

【特許請求の範囲】 1 固体のリチウムを活物質とする負極薄膜と、
リチウムイオン導電性の固体電解質薄膜と、固体
の酸化タングステンを活物質とする正極薄膜より
なる薄膜リチウム電池において、前記正極薄膜
が、WO3-〓(0<δ1)なる組成の酸化タング
ステン、または遷移金属酸化物を含むWO3-〓(0
<δ1)なる組成の酸化タングステンを主体と
する物質からなることを特徴とする全固体薄膜リ
チウム電池。 2 上記正極薄膜が非晶質化していることを特徴
とする特許請求の範囲第1項記載の全固体薄膜リ
チウム電池。 3 上記遷移金属酸化物が三酸化モリブデン、五
酸化バナジウムまたは五酸化ニオブからなる群か
ら選ばれる少なくとも1の化合物であることを特
徴とする特許請求の範囲第1項記載の全固体薄膜
リチウム電池。
[Claims] 1. A negative electrode thin film containing solid lithium as an active material;
In a thin film lithium battery consisting of a lithium ion conductive solid electrolyte thin film and a positive electrode thin film using solid tungsten oxide as an active material, the positive electrode thin film is made of tungsten oxide having a composition of WO 3- 〓 (0 < δ1) or transition WO 3- 〓(0
An all-solid-state thin film lithium battery characterized by being made of a substance mainly composed of tungsten oxide with a composition <δ1). 2. The all-solid-state thin film lithium battery according to claim 1, wherein the positive electrode thin film is amorphous. 3. The all-solid-state thin film lithium battery according to claim 1, wherein the transition metal oxide is at least one compound selected from the group consisting of molybdenum trioxide, vanadium pentoxide, and niobium pentoxide.
JP58176412A 1983-09-26 1983-09-26 Thin film lithium battery Granted JPS6068558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58176412A JPS6068558A (en) 1983-09-26 1983-09-26 Thin film lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58176412A JPS6068558A (en) 1983-09-26 1983-09-26 Thin film lithium battery

Publications (2)

Publication Number Publication Date
JPS6068558A JPS6068558A (en) 1985-04-19
JPH0547943B2 true JPH0547943B2 (en) 1993-07-20

Family

ID=16013229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58176412A Granted JPS6068558A (en) 1983-09-26 1983-09-26 Thin film lithium battery

Country Status (1)

Country Link
JP (1) JPS6068558A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019468A (en) * 1988-10-27 1991-05-28 Brother Kogyo Kabushiki Kaisha Sheet type storage battery and printed wiring board containing the same
US5707556A (en) * 1995-12-21 1998-01-13 The Dow Chemical Company Tungsten oxide for reversible alkali metal intercalation reactions
US6916679B2 (en) 2002-08-09 2005-07-12 Infinite Power Solutions, Inc. Methods of and device for encapsulation and termination of electronic devices
US8535396B2 (en) 2002-08-09 2013-09-17 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
EP2229706B1 (en) 2008-01-11 2014-12-24 Infinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
US20110300432A1 (en) 2010-06-07 2011-12-08 Snyder Shawn W Rechargeable, High-Density Electrochemical Device

Also Published As

Publication number Publication date
JPS6068558A (en) 1985-04-19

Similar Documents

Publication Publication Date Title
Sakurai et al. V2O5-P2O5 glasses as cathode for lithium secondary battery
JP3917126B2 (en) Solid electrolyte and battery using the same
JP7027387B2 (en) Titanium dope niobate and batteries
WO2020045633A1 (en) Sulfide solid electrolyte and all-solid-state battery
KR100424637B1 (en) A thin film for lithium secondary battery and a method of preparing the same
Nishio et al. Low resistance at LiNi1/3Mn1/3Co1/3O2 and Li3PO4 interfaces
KR20040111488A (en) Positive-electrode active material for non-aqueous electrolyte secondary cell and process for preparing the same
TW202118128A (en) All-solid-state cell, positive electrode, and method for manufacturing all-solid-state cell
EP1675206B1 (en) Solid-state electrolyte and all solid-state battery using same electrolyte
TWI487679B (en) Crystallized glass and its manufacturing method
JP2006156284A (en) Lithium-ion conductor and secondary battery using it
JPH09249962A (en) Formation of oxide thin film and oxide thin film
JP2003531466A (en) Electrochemical device having ceramic particles in electrolyte layer
JPH0547943B2 (en)
JP3237394B2 (en) Electrochemical element
Nayak et al. Structural and electrochemical kinetics of Na–Fe–Mn–O thin-film cathode: a synergistic effect of deposition conditions
KR100495674B1 (en) A cathode thin film for all solid state battery, preparation method thereof, and lithium thin film battery using the same
TWI705952B (en) Doped titanium niobate and battery
US11031581B1 (en) Sputtering deposition of an anode material and cathode material from a single target source that are nanostructured and electrochemically coupled for manufacturing of lithium ion batteries
KR100487021B1 (en) Negative electrode for lithium secondary thin battery and manufacturing method thereof
US20240243271A1 (en) Doped titanium niobate and battery
KR100659049B1 (en) Inorganic solid electrolyte
US20220263120A1 (en) Solid electrolyte material, solid electrolyte including the same, all-solid secondary battery including the solid electrolyte, and method of preparing the solid electrolyte material
CN118099401B (en) Modified matrix composite material and preparation method and application thereof
JPS59224064A (en) Positive pole material for lithium cell