JPS61142428A - Light collimator - Google Patents

Light collimator

Info

Publication number
JPS61142428A
JPS61142428A JP26442484A JP26442484A JPS61142428A JP S61142428 A JPS61142428 A JP S61142428A JP 26442484 A JP26442484 A JP 26442484A JP 26442484 A JP26442484 A JP 26442484A JP S61142428 A JPS61142428 A JP S61142428A
Authority
JP
Japan
Prior art keywords
light
incident
holes
hole
radiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26442484A
Other languages
Japanese (ja)
Inventor
Kazuya Okamoto
和也 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26442484A priority Critical patent/JPS61142428A/en
Publication of JPS61142428A publication Critical patent/JPS61142428A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0411Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using focussing or collimating elements, i.e. lenses or mirrors; Aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/06Restricting the angle of incident light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To introduce only the light radiated at the right angle to incident light to a light detecting system, by applying a black matting treatment on the entire surface of metal or non-metal stable to light and heat while has many through holes aligned in one direction. CONSTITUTION:A polarizing plate 4 is turned properly to make an exciting light polarized in the direction (z) to irradiate a sample through a slit 3. Each fluorescent molecule emits fluorescence over all solid angles. But the light incident slantly to the through holes of a light collimator 1 is absorbed by the blackened surface in the hole while being reflected repeatedly without the holes and eventually, only the light incident to the through hole in parallel can be passed thereby enabling the introduction of the light alone radiated in the direction of (x) axis to the light detecting system.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、一方向へ進む光だけを選択的に通過させる
光コリメータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an optical collimator that selectively passes only light traveling in one direction.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、直線偏光した光を試料セル中の蛍光分子に照射し
、放射された蛍光の偏光度を測定する場合、ただ単に蛍
光集光系の直前あるいはその間に偏光光学素子をそう人
することによって測定していた。しかし、蛍光の正確な
偏光度を調べるiこは1つ1つの蛍光分子に対して励起
光と直角方向で測らなければならず、前記のような偏光
光学素子の配置では、直角方向以外からの混入が生じ、
正確な偏光度の測定ができない。
Conventionally, when linearly polarized light is irradiated onto fluorescent molecules in a sample cell and the degree of polarization of the emitted fluorescence is measured, measurement is done simply by placing a polarizing optical element just before or between the fluorescence focusing system. Was. However, in order to determine the exact degree of polarization of fluorescence, it is necessary to measure each fluorescent molecule in a direction perpendicular to the excitation light. Contamination occurs,
It is not possible to measure the degree of polarization accurately.

そこで第2図のような測定系が考えられた。これでは直
角方向以外からの混入も少なく、多重散乱の影響も少な
い。しかし、第2図の測定系では入射光量がスリット幅
で限られており、効率的でない。
Therefore, a measurement system as shown in Figure 2 was devised. With this, there is little contamination from directions other than the perpendicular direction, and the influence of multiple scattering is also small. However, the measurement system shown in FIG. 2 is not efficient because the amount of incident light is limited by the slit width.

〔発明の目的〕[Purpose of the invention]

この発明は上述した従来装置の欠点を改良したもので試
料セルから入射光に対して直角な方向に放射された光だ
けを光検出系に導くことのできる光コリメータを提供す
ることを目的とする。
The present invention improves the drawbacks of the conventional devices described above, and aims to provide an optical collimator that can guide only light emitted from a sample cell in a direction perpendicular to the incident light to a photodetection system. .

〔発明の概要〕[Summary of the invention]

上記目的を達成するための光コリメータは次のような特
徴を持つ。
The optical collimator for achieving the above purpose has the following features.

全体形状は試料セルへの入射光線径路や光検出系の構成
により様々であるが、材質は光や熱に安定な金属、ある
いは非金属で、一方向に整列した貫通孔を多数有し、そ
の全表面には黒色つや消し処理がなされている。あるい
は表面が黒色つや消し処理された前記材質の管を多数束
ねたものである。
The overall shape varies depending on the path of the incident light beam to the sample cell and the configuration of the photodetection system, but the material is a metal or nonmetal that is stable to light and heat, and has many through holes aligned in one direction. All surfaces are treated with a black matte finish. Alternatively, a large number of tubes made of the above-mentioned material whose surfaces are treated with a black matte finish are bundled together.

〔発明の効果〕〔Effect of the invention〕

本発明の元コリメータの貫通孔に斜めに入射した光は、
孔内で反射を繰り返すうちに黒色処理された孔内表面に
吸収され、結局1貫通孔に平行に入射した光のみが通過
し、光検出r#lこより検出される。
The light incident obliquely into the through hole of the original collimator of the present invention is
As it is repeatedly reflected within the hole, it is absorbed by the black-treated inner surface of the hole, and in the end, only the light incident parallel to one through hole passes through and is detected by the photodetector r#l.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して、この発明の詳細な説明する。第1
図は、この発明に係る元コリメータを用いて蛍光の偏光
を測定するための一実施例である。
The present invention will be described in detail below with reference to the drawings. 1st
The figure shows an example of measuring fluorescence polarization using the original collimator according to the present invention.

2のセル内には、蛍光分子を含む液体試料が入っている
。6は、光源からの光が蛍光分子を励起するのに適した
波長に分光されたもので、レンズあるいは鏡によりy軸
方向に平行な光線になっている。4,7はフィルム偏光
板で、4はX軸方向と2軸方向、7はy軸方向と2軸方
向、のそれぞれの方向に直線偏光した光だけを通過せし
める。
A liquid sample containing fluorescent molecules is contained in cell No. 2. Reference numeral 6 indicates light from a light source that has been separated into wavelengths suitable for exciting fluorescent molecules, and is turned into light rays parallel to the y-axis direction by a lens or mirror. 4 and 7 are film polarizing plates, and 4 allows only light linearly polarized in the X-axis and biaxial directions, and 7 to pass only linearly polarized light in the y-axis and biaxial directions.

7を通過した蛍光は、分光器に入り、蛍光極大波長の光
だけが光検出器、例えば光電子増倍管に入射する。出力
は、光電子増倍管を使用した場合電圧、あるいは光子計
数値として取り出される。
The fluorescence that has passed through 7 enters a spectroscope, and only the light with the maximum fluorescence wavelength enters a photodetector, such as a photomultiplier tube. The output is taken out as a voltage or a photon count when a photomultiplier tube is used.

実際の蛍光偏光度測定の手順を次に示す。The actual procedure for measuring the degree of fluorescence polarization is shown below.

まず偏光板4を適当に回転して2方向に偏光した励起光
をスリット3を通して試料に照射する。1つ1つの蛍光
分、子は全立体角に蛍光を放つが1本発明の光コリメー
タ1によりX軸方向に放射された光だけが光検出系に導
かれる。偏光板7を回転し、2方向に偏光した光成分を
検出し出力Vとする。次にy方向に偏光した光成分を検
出するため90@回転させたときの出力をHとする。こ
のとき蛍光偏光度Pは次式によりて決定できる。
First, the polarizing plate 4 is appropriately rotated to irradiate the sample with excitation light polarized in two directions through the slit 3. Although each fluorescent component emits fluorescence over the entire solid angle, only the light emitted in the X-axis direction by the optical collimator 1 of the present invention is guided to the photodetection system. The polarizing plate 7 is rotated, and light components polarized in two directions are detected and output V. Next, in order to detect the light component polarized in the y direction, the output when rotated by 90@ is assumed to be H. At this time, the degree of fluorescence polarization P can be determined by the following equation.

蛍光検出側の光学系の偏光特性が問題となる場合は1次
のような補正を行なう。偏光板4を適当に回転し、x@
力方向偏光した励起光を試料に照射する。7を回転し2
方向に偏光した光成分の出力により次に90°回転させ
、y方向に偏光した光成分の出力をに、とする。入よ、
klにより蛍光偏光度Pは次式のように補正される。
If the polarization characteristics of the optical system on the fluorescence detection side pose a problem, a first-order correction is performed. Rotate the polarizing plate 4 appropriately and x@
The sample is irradiated with excitation light polarized in the force direction. Rotate 7 and 2
The output of the light component polarized in the y direction is then rotated by 90 degrees, and the output of the light component polarized in the y direction is given as . Come in,
The degree of fluorescence polarization P is corrected by kl as shown in the following equation.

〔発明の他の実施例〕[Other embodiments of the invention]

入射光lこ直角な方向に放射される元に限らず。 It is not limited to sources emitted in a direction perpendicular to the incident light.

特定の方向に放射される光を計測したい場合に用いるこ
とができる。また蛍光の測定だけでなく散乱光を測定す
る場合にも有用である。第3図は散乱光の角度依存性を
測定するための一実施例である。
It can be used when you want to measure light emitted in a specific direction. Moreover, it is useful not only for measuring fluorescence but also for measuring scattered light. FIG. 3 shows an example for measuring the angular dependence of scattered light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は蛍光偏光
を測定するために考えられた装置の一従来例を示す図、
第3図は、試料の散乱光の角度依存性を測定する装置の
一実施例である。 l・・・光コリメータ、2・・・試料セル、3・・・入
射スリット、4・・・フィルム偏光板、5・・・出射ス
リット。 6・・・入射光、7・・・放射光、8・・・回転板。
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a conventional example of a device designed for measuring fluorescence polarization,
FIG. 3 shows an example of an apparatus for measuring the angular dependence of scattered light of a sample. 1... Optical collimator, 2... Sample cell, 3... Incoming slit, 4... Film polarizing plate, 5... Outgoing slit. 6... Incident light, 7... Emitted light, 8... Rotating plate.

Claims (1)

【特許請求の範囲】[Claims] 蛍光物質を含む試料に特定の波長の光を入射し、この入
射光に直角な方向に放射される蛍光を測定する装置に装
着される光コリメータで、光や熱に安定な金属あるいは
非金属からなり、一方向に整列した多数の貫通孔を有し
、その全表面に黒色つや消し処理がなされていることを
特徴とする光コリメータ。
An optical collimator is attached to a device that measures the fluorescence emitted in a direction perpendicular to the incident light by injecting light of a specific wavelength into a sample containing a fluorescent substance. An optical collimator characterized in that it has a large number of through holes arranged in one direction, and its entire surface is treated with a black matte finish.
JP26442484A 1984-12-17 1984-12-17 Light collimator Pending JPS61142428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26442484A JPS61142428A (en) 1984-12-17 1984-12-17 Light collimator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26442484A JPS61142428A (en) 1984-12-17 1984-12-17 Light collimator

Publications (1)

Publication Number Publication Date
JPS61142428A true JPS61142428A (en) 1986-06-30

Family

ID=17402980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26442484A Pending JPS61142428A (en) 1984-12-17 1984-12-17 Light collimator

Country Status (1)

Country Link
JP (1) JPS61142428A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532476A (en) * 2007-06-29 2010-10-07 ラム リサーチ コーポレーション Arrangement method and apparatus for collecting highly focused light
US8619249B2 (en) 2007-10-26 2013-12-31 Koninklijke Philips N.V. Light angle selecting light detector device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532476A (en) * 2007-06-29 2010-10-07 ラム リサーチ コーポレーション Arrangement method and apparatus for collecting highly focused light
US8619249B2 (en) 2007-10-26 2013-12-31 Koninklijke Philips N.V. Light angle selecting light detector device

Similar Documents

Publication Publication Date Title
US3612689A (en) Suspended particle concentration determination using polarized light
US9448161B2 (en) Optical device, particularly a polarimeter, for detecting inhomogeneities in a sample
TWI384213B (en) Method and device for measuring optical anisotropy parameter
US4589776A (en) Method and apparatus for measuring optical properties of materials
TWI421486B (en) Apparatus and method for measuring an optical anisotropic parameter
CN101473212A (en) Focused-beam ellipsometer
US6268914B1 (en) Calibration Process For Birefringence Measurement System
KR930703594A (en) Simultaneous Multi-Angle / Multi-wavelength Elliptical Polarimeter and Measurement Method
JPS6483135A (en) Measuring apparatus of polarized infrared ray for thin film
US4653908A (en) Grazing incidence reflection spectrometer
GB1298658A (en) Photometer for measuring total radiant energy at selected angles
JPH0352575B2 (en)
US4166697A (en) Spectrophotometer employing magneto-optic effect
JPS61142428A (en) Light collimator
JPH10281876A (en) Polarizing imaging system
US2849912A (en) Optical arrangement for determining the ratio of two light fluxes
US3967902A (en) Method and apparatus for investigating the conformation of optically active molecules by measuring parameters associated with their luminescence
JPH07502344A (en) Reflection-free polarimetry system for small volume sample cells
US4003663A (en) Device for calibrating instrument that measures circular dichroism or circularly polarized luminescence
JPH06317518A (en) Dichroism dispersion meter
JPH11101739A (en) Ellipsometry apparatus
JPH04168347A (en) Method and apparatus for detecting parallax refractive index for liquid chromatography
JPS62289747A (en) Concentration analyzing device
US3630621A (en) Measurement of visibility through a fluid using polarized light
JPH05158084A (en) Measuring instrument for linear and nonlinear optical sensing rate