JPS6114211B2 - - Google Patents
Info
- Publication number
- JPS6114211B2 JPS6114211B2 JP56096886A JP9688681A JPS6114211B2 JP S6114211 B2 JPS6114211 B2 JP S6114211B2 JP 56096886 A JP56096886 A JP 56096886A JP 9688681 A JP9688681 A JP 9688681A JP S6114211 B2 JPS6114211 B2 JP S6114211B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- sus
- sample
- rust resistance
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012778 molding material Substances 0.000 claims description 15
- 238000000137 annealing Methods 0.000 claims description 14
- 229910001220 stainless steel Inorganic materials 0.000 claims description 11
- 239000010935 stainless steel Substances 0.000 claims description 7
- 238000005098 hot rolling Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 description 34
- 239000010959 steel Substances 0.000 description 34
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 23
- 239000000463 material Substances 0.000 description 16
- 230000007797 corrosion Effects 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 9
- 238000005097 cold rolling Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- -1 0.75% Si up to 1.0% Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 235000002639 sodium chloride Nutrition 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 230000003796 beauty Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
この発明は成形性、表面性状性、および耐銹性
の優れた自動車用モール材の製造方法に関するも
のである。
自動車用モール材即ち窓枠やボデイー周りの装
飾材は通常ロールフオーミング、あるいはプレス
成形によつて所定形状に加工される。上記モール
材はその目的上、高度の美観が要求され、また使
用中における耐銹性が必要である。さらに加工性
について述べれば、強い引張曲げ加工のように材
料の伸びが要求されることが多い。また加工後の
表面性状については特にローピングや肌荒のない
ことが必要であり、さらに耐銹性としては例えば
路面凍結防止材として散布される食塩、岩塩に起
因する赤銹の発生に対する耐銹性あるいは工業地
帯における亜硫酸ガスに対する耐銹性を有するこ
とが要求される。従来自動車用モール材として使
用されるのはSUS―304,SUS―430,SUS―434
のようなステンレス鋼が主体であり、SUS―304
は耐銹性および成形性はSUS―430に比べて著し
く優れているが非常に高価である。一方、SUS―
430は成形性表面性状性および耐銹性が十分でな
く、自動車用モール材としては問題がある。
またSUS―434はSUS―430に1%のMoを添加
したものであるため耐銹性はSUS―430より優れ
ているが、1%のMo添加のため伸びが低下し成
形性が劣化すると共に表面にローピングが発生し
易く、表面性状も劣化する。その上Moは極めて
高価であり価格変動も激しく自動車用モール材と
しては推奨しがたい。
本発明者等はフエライト系ステンレス鋼にMo
を添加しないで少くともSUS―434と同等の耐食
性を有しかつ成形性および表面性状を改善し安定
して安価に供給できる自動車用モール材の開発を
目的として、試作検討した結果、フエライト系ス
テンレス鋼にNbとCuを複合添加し、Cを低減す
ることによつて、軟質で成形性、表面性状性に優
れしかもSUS―434と同等の耐銹性を有するステ
ンレス鋼を見い出した。本発明はこのステンレス
鋼を素材として後述する特殊な熱処理をほどこす
ことによつて自動車用モール材として最適な材料
とするものである。即ち本発明の自動車用モール
材はその成分において、0.05%までのC,0.75%
までのSi,1.0%までのMn,14〜18%のCr,0.3
〜0.8のCu,C量の8倍以上1.2%までのNb,残
部不可避の不純物を除いて実質上Feからなるス
テンレス鋼を熱間圧延後900〜1050℃に加熱冷却
した後、冷間圧延し、さらに850〜1050℃で光輝
焼鈍したことを特徴とするフエライト系ステンレ
ス鋼である。各成分の限定理由を以下に記述す
る。
Cは鋼の耐銹性に大きな影響を与える不純物元
素であり可能なかぎり低減することが望ましい。
一方加工性の点に関してもCが多いと耐力・硬さ
等を上昇せしめしかも伸びを少くし成形性全般を
劣化するため低い方が望ましい。しかも量産で安
価に製造することを前提とした場合、Cは0.05%
以下が望ましい。
Siは製鋼反応上脱酸元素として不可避なもので
あるが、0.75%を越えると材質の硬化をもたらす
ため0.75%までと限定した。
MnはSiと同様、製鋼反応上脱酸元素として不
可避なものであるが、含有量が多いと耐銹性が劣
化するので1.0%以下に限定した。
Crはフエライト系ステンレス鋼の成分中で耐
銹性を付与する元素として最も重要な元素である
が、14%以下では十分な効果が出ない。しかし多
量に含有させると経済性が悪いと共に材料の脆化
をもたらす原因となり、しかも耐銹性の点からは
18%でも十分な効果があるので上限は18%までに
限定した。
Nbは不純物元素としてのCを固定化し、耐銹
性と耐ローピング性の両面から重要な元素であ
る。Nb量の下限をC量の8倍と限定したのは、
この量以下では良好な耐銹性と耐ローピング性と
を賦与するのに十分でないためであり、上限を
1.2%と限定したのは、1.2%を越えると鋼の清浄
性を著しく阻害しモール製品表面品質を低下する
と共に経済的にもコスト高と成るため1.2%まで
と限定した。
Cuは0.3%以下および0.8以上であると耐力・硬
さが上昇し伸びを減じ、しかも耐ローピング性を
劣化させるため0.3〜0.8%までに限定した。
次に熱処理条件の限定理由を述べる。
熱間圧延後の加熱温度を900〜1050℃と限定し
たのは900℃以下では十分な再結晶組織が得られ
ず、耐ローピング性が劣化する。一方1050℃を越
えると結晶粒が著しく粗大化し、製品加工後著し
く肌荒れを生じ、かつ伸びを劣化させる原因とな
る。又冷間圧延後の光輝焼鈍温度を850〜1050℃
としたのは850℃以下では硬質で伸びが劣化し、
一方1050℃以上になると熱延板焼鈍と同様、結晶
粒粗大化による肌荒れが生ずるためであり、光輝
焼鈍するのは、本モール用途のようにその装飾性
から高度の美観および表面性状が要求されるため
には通常の冷間圧延と大気焼鈍および酸洗法の組
み合せでは適切な鋼板の表面性状が得られない事
と、さらに後で述べる耐銹性の点からもこの光輝
焼鈍が望ましいからである。
次にこの発明の実施例について説明する。
下記第1表に示す各成分の鋼を第2表に示す製
造条件で冷延鋼板となし、この各鋼板について自
動車用モール材として適しているか否かにつき判
定する為、機械的性質と成形後の表面性状の評価
および各種耐銹性について調査を行つた。なお、
第1表において比較鋼9はSUS―430に相当し、
同10はSUS―434にそれぞれ相当する成分組成を
もつものである。
The present invention relates to a method for manufacturing a molding material for automobiles that has excellent moldability, surface texture, and rust resistance. Automotive molding materials, ie, decorative materials around window frames and bodies, are usually processed into a predetermined shape by roll forming or press molding. Due to its purpose, the above-mentioned molding material is required to have a high degree of aesthetic appearance, and is also required to have rust resistance during use. Furthermore, regarding workability, elongation of the material is often required, such as in strong tensile bending processing. In addition, the surface quality after processing must be free from roping and roughness, and the rust resistance is, for example, against the occurrence of red rust caused by table salt and rock salt, which are sprayed as anti-freezing agents on road surfaces. Alternatively, it is required to have rust resistance against sulfur dioxide gas in industrial areas. SUS-304, SUS-430, and SUS-434 are conventionally used as molding materials for automobiles.
Mainly made of stainless steel such as SUS-304
Although it has significantly better rust resistance and formability than SUS-430, it is very expensive. On the other hand, SUS―
430 has insufficient moldability and rust resistance, and is problematic as a molding material for automobiles. Also, since SUS-434 is made by adding 1% Mo to SUS-430, its rust resistance is superior to SUS-430, but the addition of 1% Mo reduces elongation and deteriorates formability. Roping tends to occur on the surface and the surface quality deteriorates. Furthermore, Mo is extremely expensive and subject to rapid price fluctuations, making it difficult to recommend it as a molding material for automobiles. The present inventors have discovered that Mo is applied to ferritic stainless steel.
With the aim of developing a molding material for automobiles that has at least the same corrosion resistance as SUS-434 without the addition of ferrite, has improved formability and surface properties, and can be supplied stably and inexpensively, we have developed a ferritic stainless steel. By adding a combination of Nb and Cu to steel and reducing C, we have discovered a stainless steel that is soft, has excellent formability and surface texture, and has rust resistance equivalent to SUS-434. The present invention uses this stainless steel as a raw material and subjects it to a special heat treatment described later to make it an optimal material for automotive molding material. That is, the automotive molding material of the present invention contains up to 0.05% C, 0.75%
Si up to 1.0%, Mn up to 1.0%, Cr up to 14-18%, 0.3
~0.8 Cu, up to 1.2% Nb 8 times the amount of C and up to 1.2% Nb, and the balance essentially consists of Fe except for unavoidable impurities. After hot rolling, the stainless steel is heated and cooled to 900 to 1050°C, and then cold rolled. It is a ferritic stainless steel characterized by being brightly annealed at 850-1050℃. The reasons for limiting each component are described below. C is an impurity element that greatly affects the rust resistance of steel, and it is desirable to reduce it as much as possible.
On the other hand, in terms of processability, a low C content is preferable since a large amount of C increases yield strength, hardness, etc., and also reduces elongation and deteriorates overall formability. Moreover, assuming that it is mass-produced at low cost, C is 0.05%.
The following are desirable. Si is an inevitable element as a deoxidizing element in steelmaking reactions, but if it exceeds 0.75%, it will harden the material, so it was limited to 0.75%. Like Si, Mn is an unavoidable deoxidizing element in the steelmaking reaction, but if the content is too large, the rust resistance will deteriorate, so it was limited to 1.0% or less. Cr is the most important element among the components of ferritic stainless steel that imparts rust resistance, but if it is less than 14%, it will not be sufficiently effective. However, if it is contained in a large amount, it is not economical and causes embrittlement of the material, and it is also bad in terms of rust resistance.
The upper limit was limited to 18% because even 18% had a sufficient effect. Nb fixes C as an impurity element and is an important element from both rust resistance and roping resistance. The reason why the lower limit of Nb content was set to 8 times the C content was because
This is because below this amount it is not sufficient to provide good rust resistance and roping resistance.
The reason why the content was limited to 1.2% was because if it exceeds 1.2%, the cleanliness of the steel will be significantly impaired, the surface quality of the molding product will deteriorate, and the cost will be high economically. Cu content is limited to 0.3 to 0.8% because if it is less than 0.3% or more than 0.8%, the yield strength and hardness will increase and elongation will be reduced, and the roping resistance will deteriorate. Next, the reason for limiting the heat treatment conditions will be described. The reason why the heating temperature after hot rolling is limited to 900 to 1050°C is that if it is below 900°C, a sufficient recrystallized structure cannot be obtained and the roping resistance deteriorates. On the other hand, if the temperature exceeds 1050°C, the crystal grains will become extremely coarse, resulting in extremely rough skin after product processing and deterioration in elongation. In addition, the bright annealing temperature after cold rolling is 850 to 1050℃.
This is because below 850℃, it becomes hard and elongation deteriorates.
On the other hand, if the temperature exceeds 1050℃, similar to hot-rolled sheet annealing, roughness will occur due to grain coarsening, and bright annealing is used when a high degree of aesthetic appearance and surface quality are required due to its decorative properties, such as in this molding application. This is because the combination of normal cold rolling, air annealing, and pickling methods cannot provide the appropriate surface quality of the steel sheet, and bright annealing is desirable from the viewpoint of rust resistance, which will be discussed later. be. Next, embodiments of the invention will be described. Steel with each component shown in Table 1 below was made into cold rolled steel sheets under the manufacturing conditions shown in Table 2, and in order to determine whether each steel sheet is suitable as a molding material for automobiles, the mechanical properties and after forming were determined. The evaluation of the surface properties and various types of rust resistance were investigated. In addition,
In Table 1, comparative steel 9 corresponds to SUS-430,
10 has a composition corresponding to SUS-434.
【表】【table】
【表】
下記第3表に上記試験材の機械的性質と加工後
の表面性状を示す。Nb/Cが8以上である本発明
鋼3は熱延および冷延後の焼鈍条件を900〜1050
℃及び850〜1050℃の間で適正に選択することに
より、条件に示すごとく、加工成形後に、表面
のローピング、肌荒れなどを発生せず、しかも
0.2%耐力・硬さが低く、伸び値の大きな、加工
性にすぐれた材料が得られる。これに対し同じ成
分組成を有しても、本発明方法から外れる方法、
即ち熱延、冷延後の焼鈍が850℃以下である条件
の場合は十分な再結晶組織が得られず、耐力、
硬さは上昇し、伸びも劣化するため成形性が不十
分であり、しかも加工成形後のローピングが発生
し易くなる。また冷延後の焼鈍温度が1050℃を越
える条件の場合、伸びが著しく減少しかつ結晶
粒粗大化のため加工成形後の表面に肌荒れを生じ
美観を著しく損う。また本発明による適正な焼鈍
を行つても、Cu量が本発明範囲をはずれている
試料6は第5表―Aに示したように本発明鋼に比
べ耐食性は劣化している。また、Nb/C比が本発
明範囲をはずれる試料7も第5表―Aにみられる
ように本発明鋼に比べ耐食性は劣る。比較鋼とし
て示したSUS―430相当鋼の試料9およびSUS―
434相当鋼の試料10では、本発明鋼3における条
件による鋼の材料特性と比較して硬質であり、
しかも加工後表面にローピングが発生する。[Table] Table 3 below shows the mechanical properties and surface properties of the above test materials after processing. Invention steel 3 with Nb/C of 8 or more has annealing conditions of 900 to 1050 after hot rolling and cold rolling.
℃ and between 850 and 1050℃, as shown in the conditions, surface roping, roughness, etc. will not occur after processing and molding, and
0.2% A material with low yield strength and hardness, high elongation value, and excellent workability can be obtained. On the other hand, methods that deviate from the method of the present invention even if they have the same component composition,
In other words, if the annealing temperature after hot rolling or cold rolling is 850°C or lower, a sufficient recrystallized structure cannot be obtained, and the yield strength and
The hardness increases and the elongation deteriorates, resulting in insufficient formability, and moreover, roping tends to occur after processing and forming. Furthermore, if the annealing temperature after cold rolling exceeds 1050°C, the elongation will be significantly reduced and the crystal grains will become coarser, resulting in roughness on the surface after processing and forming, which will significantly impair the aesthetic appearance. Further, even if proper annealing according to the present invention is performed, the corrosion resistance of Sample 6, in which the amount of Cu is outside the range of the present invention, is lower than that of the steel according to the present invention, as shown in Table 5-A. Furthermore, as shown in Table 5-A, Sample 7, in which the Nb/C ratio is outside the range of the present invention, is inferior in corrosion resistance compared to the steel of the present invention. Sample 9 of SUS-430 equivalent steel shown as comparison steel and SUS-
Sample 10 of steel equivalent to 434 is hard compared to the material properties of steel under the conditions of Invention Steel 3,
Moreover, roping occurs on the surface after processing.
【表】
上表における加工成型後の表面性状の“ローピ
ング”とはJIS5号引張試験片により20%引張加工
を与えた後試験片表面を目視にて確認したもので
あり、又“肌荒れ”とはエリクセンテストにより
加工面の肌荒れ状況を目視にて確認したものであ
る。
以上の説明から、明らかな如く、適正なNb/C
を有する本発明鋼は熱延および冷延後の焼鈍条件
を、本発明の方法により前者は900〜1050℃、後
者は850〜1050℃の間で選択することにより軟質
でかつ成形性が良く、しかも加工後の表面にロー
ピングや肌荒れの発生しない自動車用モールとし
て最適な鋼板の製造が可能となつた。
次に自動車用モール材としての耐銹性の評価結
果について述べる。下記第4表に示される様に、
本発明鋼を含む各試験材につき、全面#600の研
磨を行つたものと、光輝焼鈍のままの表面のもの
に関して孔食電位を測定する試験を試みた。これ
により、本発明鋼の試料3は比較鋼であるSUS―
430相当鋼の試料9とSUS―434相当鋼の試料10と
比較し、研磨肌、光輝焼鈍した肌とも高い孔食電
位を示し、耐孔食性が改善されている。また本発
明鋼試料3の耐孔食性は光輝焼鈍を行うことによ
り、さらにその効果が発揮され、SUS―430相当
鋼の試料9およびSUS―434相当鋼の試料10の光
輝焼鈍材と比較し、ほぼ3倍に近い程の高い孔食
電位が得られる。
以上の説明から明らかな如く、本発明鋼は、自
動車用モール材として通例適用されている光輝焼
鈍との組み合わせにより、塩素イオンによる耐孔
食性の点からも著しい効果を発揮する。[Table] "Roping" in the surface texture after processing and molding in the table above refers to visually checking the surface of the test piece after applying 20% tensile processing using a JIS No. 5 tensile test piece. The roughness of the machined surface was visually confirmed using the Erichsen test. From the above explanation, it is clear that appropriate Nb/C
By selecting the annealing conditions after hot rolling and cold rolling according to the method of the present invention between 900 and 1050°C for the former and 850 and 1050°C for the latter, the steel of the present invention has good softness and formability. Moreover, it has become possible to manufacture a steel sheet that is ideal for automotive moldings and does not cause roping or roughness on the surface after processing. Next, we will discuss the evaluation results of rust resistance as a molding material for automobiles. As shown in Table 4 below,
A test was conducted to measure the pitting corrosion potential of each test material containing the steel of the present invention, with respect to one whose entire surface was polished to #600 and one whose surface was brightly annealed. As a result, Sample 3 of the steel of the present invention was compared with SUS-
Compared with Sample 9 of 430-equivalent steel and Sample 10 of SUS-434-equivalent steel, both the polished skin and the bright annealed skin showed a high pitting corrosion potential, and the pitting corrosion resistance was improved. In addition, the pitting corrosion resistance of the steel sample 3 of the present invention is further enhanced by bright annealing, and compared with the bright annealed materials of sample 9 of SUS-430 equivalent steel and sample 10 of SUS-434 equivalent steel, A pitting corrosion potential nearly three times higher can be obtained. As is clear from the above description, the steel of the present invention exhibits remarkable effects in terms of resistance to pitting corrosion caused by chlorine ions when combined with bright annealing, which is commonly applied as a molding material for automobiles.
【表】
下記第5表―Aには、本発明鋼の試料3および
比較鋼として試料6,7、SUS―430相当鋼の試
料9、SUS―434相当鋼の試料10のそれぞれ光輝
焼鈍材に関し塩水噴霧試験および乾湿繰返し試験
を行つた結果を、第5表―Bには乾湿繰返し試験
の条件をそれぞれに示す。
これらの試験方法のうち特に乾湿繰返しテスト
は、自動車用モール材の実用的評価の重要な目安
となるものである。本発明鋼の試料3は塩水噴霧
試験、乾湿繰返し試験とも、他の比較鋼試料6,
7およびSUS―430の相当鋼試料9、SUS―434鋼
10に比較し、発銹に到るまでの時間、回数とも長
く、耐銹性が極めて優れている。
以上の様に塩素イオンを含む環境中での銹の発
生に対し、本発明鋼が従来のSUS―430、SUS―
434より優れていることが明らかである。[Table] Table 5-A below shows sample 3 of the invention steel, samples 6 and 7 as comparison steel, sample 9 of SUS-430 equivalent steel, and sample 10 of SUS-434 equivalent steel, respectively, regarding bright annealed materials. Table 5-B shows the results of the salt spray test and the dry/wet cyclic test, and the conditions for the dry/wet cyclic test. Among these test methods, the dry-wet cyclic test in particular serves as an important guideline for practical evaluation of automotive molding materials. Inventive steel sample 3 was tested in both the salt spray test and the dry-wet cyclic test, compared to other comparison steel sample 6.
7 and SUS-430 equivalent steel sample 9, SUS-434 steel
Compared to No. 10, the time and number of times until rusting occurs is longer, and the rust resistance is extremely excellent. As mentioned above, the steel of the present invention is effective against the occurrence of rust in environments containing chlorine ions.
It is clearly superior to 434.
【表】【table】
【表】
以上の各種評価に関する実施例から明らかな如
く、本発明によれば
SUS―434,SUS―430と較べ軟質で成形性に
すぐれかつ加工後の表面においてローピング、
肌荒れのないすぐれた表面性状の材料が得られ
る。
塩素イオンを含む環境中での耐銹性がSUS―
434と匹敵し、しかも光輝焼鈍との組み合わせ
によりさらに優れた耐銹性を有する材料が得ら
れる。
ステンレス鋼を構成する元素の中で、高価で
あり、しかも経済環境による変動要因によつて
需給の影響を受け易いMo,Niを含まないた
め、比較的経済的かつ供給の安定した材料が得
られる。
自動車用モール材として使用されるステンレス
鋼は苛酷な成形加工を受け加工後の表面美観
が重視され、自動車に装着され走行中の塩素イ
オンを含む環境中での耐銹性が要求され大量生
産を前提としてより安定した材料供給と経済性、
等々強く志向されるが、本発明によつて上記諸条
件を満足する最適な材料を得ることが可能となつ
た。[Table] As is clear from the various evaluation examples above, the present invention is softer and has better formability than SUS-434 and SUS-430, and has no roping or roping on the surface after processing.
A material with excellent surface properties without roughness can be obtained. SUS has rust resistance in environments containing chlorine ions.
A material with comparable rust resistance to 434, but even better when combined with bright annealing, can be obtained. Among the elements that make up stainless steel, it does not contain Mo or Ni, which are expensive and are easily affected by supply and demand due to fluctuations in the economic environment, making it a relatively economical and stable material. . Stainless steel, which is used as molding material for automobiles, undergoes severe forming processing, and the beauty of the surface after processing is important, and mass production is required because it is required to be rust resistant in the environment containing chlorine ions when it is mounted on a car and is running. The premise is more stable material supply and economic efficiency,
However, the present invention has made it possible to obtain an optimal material that satisfies the above conditions.
Claims (1)
のMn、14〜18%のCr、0.3〜0.8のCu、C量の8
倍以上1.2%までのNb、残部不可避の不純物を除
いて実質上Feからなるステンレス鋼を、熱間圧
延後900〜1050℃に加熱冷却した後冷間圧延し、
さらに850〜1050℃で光輝焼鈍することを特徴と
する自動車用モール材の製造方法。1 C up to 0.05%, Si up to 0.75%, Mn up to 1.0%, 14-18% Cr, 0.3-0.8 Cu, C amount of 8
Stainless steel consisting of Nb up to 1.2% and the remainder substantially Fe except for unavoidable impurities is heated and cooled to 900 to 1050°C after hot rolling, and then cold rolled.
A method for producing an automotive molding material, further comprising bright annealing at 850 to 1050°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9688681A JPS57210955A (en) | 1981-06-23 | 1981-06-23 | Braid material for car |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9688681A JPS57210955A (en) | 1981-06-23 | 1981-06-23 | Braid material for car |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57210955A JPS57210955A (en) | 1982-12-24 |
JPS6114211B2 true JPS6114211B2 (en) | 1986-04-17 |
Family
ID=14176874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9688681A Granted JPS57210955A (en) | 1981-06-23 | 1981-06-23 | Braid material for car |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57210955A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60243225A (en) * | 1984-05-17 | 1985-12-03 | Nippon Mining Co Ltd | Manufacture of high strength stainless steel strip plate with improved surface roughness |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS556086A (en) * | 1978-06-12 | 1980-01-17 | Bendix Corp | Disc brake |
-
1981
- 1981-06-23 JP JP9688681A patent/JPS57210955A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS556086A (en) * | 1978-06-12 | 1980-01-17 | Bendix Corp | Disc brake |
Also Published As
Publication number | Publication date |
---|---|
JPS57210955A (en) | 1982-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1734143B1 (en) | Ferritic stainless steel sheet excellent in formability and method for production thereof | |
WO2015111403A1 (en) | Material for cold-rolled stainless steel sheet and method for producing same | |
JP6112273B1 (en) | Ferritic stainless hot-rolled steel sheet, hot-rolled annealed sheet, and methods for producing them | |
TW201531573A (en) | Ferritic stainless steel and method for producing same | |
JPH04168227A (en) | Production of austenitic stainless steel sheet or strip | |
JPH05279802A (en) | Stainless steel for spring excellent in fatigue characteristic in formed part as well as in spring characteristic and its production | |
US20060225820A1 (en) | Ferritic stainless steel sheet excellent in formability and method for production thereof | |
JP2016113670A (en) | Ferritic stainless steel and method for producing the same | |
CN107109581B (en) | High-strength, high-ductility ferritic stainless steel sheet and method for producing same | |
JP2001089815A (en) | Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance | |
JP4397772B2 (en) | Manufacturing method of ferritic stainless steel sheet with excellent workability | |
JPS6114211B2 (en) | ||
JPS5849628B2 (en) | Method for producing composite structure high-strength cold-rolled steel sheet with excellent deep drawability | |
JP2002030346A (en) | METHOD FOR PRODUCING Cr-CONTAINING HEAT AND CORROSION RESISTANT STEEL SHEET EXCELLENT IN FORMABILITY | |
JP2960194B2 (en) | Manufacturing method of ferritic stainless steel with excellent workability | |
JP2001089814A (en) | Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance | |
JPH10130734A (en) | Production of austenitic stainless steel sheet for roll forming | |
JP2001098327A (en) | Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance | |
JPH04280943A (en) | High strength cold rolled steel sheet excellent in deep drawability, chemical conversion treating property, secondary working brittleness resistance, and spot weldability and its production | |
JPH09263905A (en) | Soft austenitic stainless steel | |
JPH10204588A (en) | Ferritic stainless steel sheet excellent in workability and roping characteristic, and its manufacture | |
JPH09256065A (en) | Production of ferritic stainless steel thin sheet excellent in surface property | |
JP2001107149A (en) | Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance | |
JP4488785B2 (en) | Manufacturing method of ferritic stainless steel sheet with excellent deep drawability | |
JPH04285125A (en) | Production of cold rolled high tensile strength steel sheet for deep drawing |