JPS61141019A - Liquid temperature controller - Google Patents
Liquid temperature controllerInfo
- Publication number
- JPS61141019A JPS61141019A JP59262885A JP26288584A JPS61141019A JP S61141019 A JPS61141019 A JP S61141019A JP 59262885 A JP59262885 A JP 59262885A JP 26288584 A JP26288584 A JP 26288584A JP S61141019 A JPS61141019 A JP S61141019A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- water tank
- temperature
- tank
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/1919—Control of temperature characterised by the use of electric means characterised by the type of controller
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- External Artificial Organs (AREA)
- Control Of Temperature (AREA)
Abstract
Description
【発明の詳細な説明】
■発明の背景
(1)技術分野
本発明は熱媒体となる液体の液温を制御する液体温度ル
J御装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION ■Background of the Invention (1) Technical Field The present invention relates to a liquid temperature control device for controlling the temperature of a liquid serving as a heat medium.
(2)先行技術およびその問題点
従来1人工心肺回路内の熱交換器に任意の温度の液体を
供給し、間接的に血液温度を制御すること−を目的とす
る8媒体液体制御装置の主流は水冷却または冷凍機内蔵
の冷水槽とヒータ内蔵の温水槽の二種のタンクを有し、
送水回路の接続をいずれかに切換えることにより、冷却
、もしくは加熱を行うものであるが、冷水槽に昇温能力
、温水槽の降温能力がないため、温度設定の誤りや、再
冷却時、再冷却後の加温時などで必要以上に冷水温度が
低い場合、あるいは温水温度が高い場合でも冷水温度を
高くしたり温水温度を低くしたりする4ことができない
という点が問題である。また、一槽のタンクに冷却器、
とヒータ・を内蔵し、昇温、降温を任意の温度で自由に
行うことが出来るものもあるが、冷却から加温、加温か
ら冷却への切換に時間、がかかるという欠点を有してい
た。(2) Prior art and its problems Conventionally, 1. The mainstream of 8-medium liquid control devices whose purpose is to indirectly control blood temperature by supplying liquid at an arbitrary temperature to a heat exchanger in an artificial heart-lung circuit. has two types of tanks: a cold water tank with a built-in water cooling or refrigerator, and a hot water tank with a built-in heater.
Cooling or heating is performed by switching the connection of the water supply circuit, but since the cold water tank does not have the ability to raise the temperature and the hot water tank does not have the ability to lower the temperature, errors may occur due to incorrect temperature settings, re-cooling, or re-cooling. The problem is that when the cold water temperature is lower than necessary, such as during heating after cooling, or when the hot water temperature is high, it is not possible to increase the cold water temperature or lower the hot water temperature. In addition, one tank has a cooler,
Some devices have a built-in heater and can freely raise or lower the temperature at any desired temperature, but they have the disadvantage that it takes time to switch from cooling to heating and from heating to cooling. Ta.
■0発明の目的
本発明は上記先行技術の問題点を解決するためになされ
たもので、液体の温度を任意に設定でき、すみやかに、
また繰り返し昇温、降温を行なうことができる液体温度
制御装置を提供することを目的とする。■0 Purpose of the Invention The present invention was made to solve the problems of the prior art described above.
Another object of the present invention is to provide a liquid temperature control device that can repeatedly raise and lower the temperature.
上記の目的を達成する本発明の液体温度制御装置は、液
体を冷却する水槽を有する冷却手段と。A liquid temperature control device of the present invention that achieves the above object includes a cooling means having a water tank for cooling the liquid.
液体を加熱する水槽を有する加熱手段と、液体を前記冷
却手段及び加熱手段に選択供給する液体供給制御手段と
を備え、冷却手段の水槽およびAn8手段の水槽は、そ
の一方の液体収容容積がその他方の液体収容容積より大
きく、かつ一方の収容容積が大きな槽から他方の収容容
積が小さな槽へのみ液体が流通可能に連結されるととも
に、小さな櫂は液体を送出する送液手段を備えており、
液体供給制御手段は前把手さな槽から送出される液体の
温度を所定の温度とするよう液体の液温上昇制御時には
力■熱手段の水槽に供給し、液温降下制御時には冷却手
段の水槽に供給することを特徴とする液体温度制S装置
によって達成される。A heating means having a water tank for heating a liquid, and a liquid supply control means for selectively supplying the liquid to the cooling means and the heating means, wherein the water tank of the cooling means and the water tank of the An8 means have a liquid storage capacity of one of them and the other. The small paddle is equipped with a liquid sending means for sending out the liquid, and the small paddle is connected so that the liquid can flow only from one tank with a large storage capacity to the other tank with a small storage capacity. ,
The liquid supply control means supplies force to the water tank of the heating means when controlling the temperature rise of the liquid so that the temperature of the liquid sent out from the small tank of the front handle is at a predetermined temperature, and when controlling the liquid temperature drop to the water tank of the cooling means. This is achieved by a liquid temperature control S device that is characterized by supplying .
また、冷却手段の水槽の液体収容容積は加熱手段の水槽
の液体収容容積より大きく、加熱手段の水槽は送液手段
を備えている液体温度制御装置によって達成される。Further, the liquid storage capacity of the water tank of the cooling means is larger than the liquid storage capacity of the water tank of the heating means, and the water tank of the heating means is achieved by a liquid temperature control device equipped with a liquid feeding means.
また更に、加熱手段の水槽の液体収容容積は冷却手段の
水槽の液体収容容積より大きく、冷却手段の水槽は送液
手段を備えている液体温度制御装置によρて達成される
。Furthermore, the liquid storage capacity of the water tank of the heating means is larger than the liquid storage capacity of the water tank of the cooling means, and the water tank of the cooling means is achieved by a liquid temperature control device equipped with a liquid feeding means.
また、加熱手段は発熱源を備え、冷却手段は吸8源を備
え、各液槽温度を前記発熱源及び吸熱源能力ffjJ御
する液体温度制御装置によって達成される。Further, the heating means is provided with a heat generation source, the cooling means is provided with a heat absorption source, and the temperature of each liquid tank is achieved by a liquid temperature control device that controls the heat generation source and heat absorption source capacities ffjJ.
また、冷却手段の水槽と加熱手段の水槽の液体収容容積
の比は2〜6倍である液体温度制御!l装置により達成
される。In addition, the ratio of the liquid storage capacity of the water tank of the cooling means and the water tank of the heating means is 2 to 6 times the liquid temperature control! 1 device.
■1発明の詳細な説明
以下、図面を参照して本発明の一実施例を詳細に説明す
る。(1) Detailed Description of the Invention Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.
L第1芙施例」
第1図は本発明に係る一実施例の構成図であり1図中1
00は木叉施例の液体温度制御装置であり、200は人
工心肺回路内に設けられた熱交換器であり、両者間は送
液パイプ133、吸液パイプ134により接続されてい
る。液体温度制御装置100内において、101は本実
施例全体の制御を司どる制m装置であり、制御装置10
1には送液温度設定部101 a、冷却水槽温度設定部
101bがあり、それぞれ加熱手段の水4fillO及
び冷却手段の水41!120内の液温を任意に設定する
ことができる。102は熱交換器200に所定温度の液
体を送るための送液ポンプ、110は加熱手段の水槽で
あり、内部に送液温度検出センナ(以下SRと称す)1
11及び加熱ヒータ(I Kw、 0.5Kw各1本内
蔵)112が配設されている。また120は冷却手段の
水槽であり、内部に冷水温度検出センサ(以下Scと称
す)、121及び冷凍機122よりの吸熱用蒸発コイル
122aが配設されている。また131及び132は電
磁弁である。Embodiment 1" Figure 1 is a block diagram of an embodiment according to the present invention.
00 is a liquid temperature control device made of wood, and 200 is a heat exchanger provided in the artificial heart-lung circuit, both of which are connected by a liquid sending pipe 133 and a liquid suction pipe 134. In the liquid temperature control device 100, reference numeral 101 denotes a control device that controls the entirety of this embodiment, and the control device 10
1 includes a liquid feeding temperature setting section 101a and a cooling water tank temperature setting section 101b, which can arbitrarily set the temperature of the liquid in the water 4fillO of the heating means and the water 41!120 of the cooling means, respectively. 102 is a liquid sending pump for sending liquid at a predetermined temperature to the heat exchanger 200, 110 is a water tank as a heating means, and a liquid sending temperature detection sensor (hereinafter referred to as SR) 1 is installed inside.
11 and a heater (one built-in each of I Kw and 0.5 Kw) 112 are provided. Reference numeral 120 denotes a water tank as a cooling means, in which a cold water temperature detection sensor (hereinafter referred to as Sc), 121, and an evaporator coil 122a for absorbing heat from a refrigerator 122 are arranged. Further, 131 and 132 are electromagnetic valves.
L記構成において加温水槽110は内容積約2見であり
、加温水槽110と一枚の隔−壁をもって隔てられる冷
却水槽120は内容積約8見であり、また冷凍機122
は称呼出力600Wの密閉型小型冷凍機である。In the L configuration, the heating water tank 110 has an internal volume of about 2 cm, the cooling water tank 120 separated from the heating water tank 110 by a partition wall has an internal volume of about 8 cm, and the refrigerator 122 has an internal volume of about 8 cm.
is a small hermetic refrigerator with a nominal output of 600W.
送液ポンプ102の吸込口は加温水槽110にjliM
、されており、送液ポンプ102より送液バイブ133
を介して熱交換器200に送られた液体は吸液パイプ1
34より本実施例装置に変換される。この吸液バイブ1
34は電磁弁VH131を介して加温水槽110に、も
しくは電磁弁Vc132を介して冷却水4(jl120
に接続されており、熱交換器200よりの液体はこのい
ずれかの槽に送られることになる。冷却水槽は所定量(
実施例では81)の液体を常時収容しており、給水パイ
プより液体の供給を受けると、除刺の液体は隔壁を越え
て加温水槽に流入(オーバーフロー)す゛るよう連結さ
れている。The suction port of the liquid pump 102 is connected to the heating water tank 110.
, and the liquid sending vibrator 133 is sent from the liquid sending pump 102.
The liquid sent to the heat exchanger 200 via the liquid suction pipe 1
34, it is converted into the device of this embodiment. This liquid-absorbing vibe 1
34 is the cooling water 4 (jl120
The liquid from the heat exchanger 200 will be sent to either of these tanks. The cooling water tank has a predetermined amount (
In the embodiment, the liquid 81) is always stored, and when the liquid is supplied from the water supply pipe, the pricking liquid is connected so that it flows (overflows) over the partition wall into the heating water tank.
制m装置101による温度WRM′1制御を第2図のフ
ローチャートを参照して以下に説明する。The temperature WRM'1 control by the m control device 101 will be explained below with reference to the flowchart of FIG.
まj、sxで加温水槽110内のS、 l 11より送
液温度Tsを読込み、続<S2でこの送液温度Tsと制
御装、1101内の送液温度設定つまみVOR(101
a)によって与えられる目標温度Ts とを比較し、
送液温度Tsが設定温度Ts’より1℃以上高いか否か
を調べ、1℃以上高くない場合にi嘘S3に進み、電磁
弁VH131を開き、ffl<S4で電磁、FpVc1
32e閉じる。このため液体は加温水槽110→送液ポ
ンプ102→送液パイプ133→熱交換器200→送液
パイプ134→電磁弁VH131→加温水槽110とい
う一巡回路を形成することになる。Read the liquid feeding temperature Ts from S, l11 in the heating water tank 110 with maj, sx, and then set this liquid feeding temperature Ts and the liquid feeding temperature setting knob VOR (101
a) Compare the target temperature Ts given by
Check whether the liquid feeding temperature Ts is higher than the set temperature Ts' by 1°C or more, and if it is not higher than the set temperature Ts', proceed to step S3, open the solenoid valve VH131, and if ffl<S4, the solenoid, FpVc1
32e Close. Therefore, the liquid forms a circular circuit of the heating water tank 110 → liquid sending pump 102 → liquid sending pipe 133 → heat exchanger 200 → liquid sending pipe 134 → solenoid valve VH 131 → heating water tank 110.
そして続<55にて、送液温度Tsが設定温度Ts
より 0.2℃以上低いか否かを調べ、0.2℃以上低
い場合にはS6でヒータ112を比例帯幅0.2℃周期
約3秒の時間分割比例制御を行なわせる。S5で0.2
℃以上低くない場合にはヒータ112をオフする0以上
の制御により加温水槽110内の液温TSを設定温度T
s’の±0.2℃以内に安定させることができる。そし
てS6゜S7共に312に進む。Then, at <55, the liquid feeding temperature Ts changes to the set temperature Ts.
It is checked whether the temperature is lower by 0.2°C or more, and if the temperature is lower by 0.2°C or more, the heater 112 is controlled in step S6 by time-division proportional control with a proportional band width of 0.2°C and a cycle of about 3 seconds. 0.2 in S5
If the temperature is not lower than ℃, the heater 112 is turned off.
It can be stabilized within ±0.2°C of s'. Then, both S6 and S7 proceed to 312.
L述のS2で送液温度Tsが設定温度TS より1”0
以上高い場合にはSlOに進み、電磁弁Vc132を開
き、Sllで電磁弁VH131を閉じる。このため液体
は加温水槽110→送液パイプ133→熱交換器200
→吸液パイプ134→電&1ffV c l 32−”
冷却水fi120→(オーバーフロー)→加温水槽11
0に戻るという一巡回路が形成される。そしてSllよ
り前述のS7に進む。In S2 described in L, the liquid sending temperature Ts is 1”0 lower than the set temperature TS.
If it is higher than that, proceed to SlO, open the solenoid valve Vc132, and close the solenoid valve VH131 at Sll. Therefore, the liquid is transferred from the heating water tank 110 to the liquid sending pipe 133 to the heat exchanger 200.
→Liquid suction pipe 134→Electric & 1ffV c l 32-”
Cooling water fi120 → (overflow) → heating water tank 11
A loop circuit returning to 0 is formed. Then, the process proceeds from Sll to the above-mentioned S7.
S6又はS7より512に進むと、制御装置101は冷
却水槽120内の5c121より冷却水槽温度Tcを読
込み、続<513で読込んだ冷却水411m度Tcと制
m装置100の冷却水槽液温設定つまみVOc (10
l b)にて設定された設定温度Tc’とを比較し、T
C>TC゛の場合には514で冷凍機122をオンし、
Tc>Tcでない場合には515に進み、冷凍機122
をオフする。これらの制御によりヒステリシス約0.2
℃の範囲で冷凍機122をオン/オフ制御することにな
る。尚、発熱源、および給勢源の制御はオン/オフに限
られず、インバータ等による1「力11jl a等での
1財力制御でもよい。When proceeding to 512 from S6 or S7, the control device 101 reads the cooling water tank temperature Tc from 5c121 in the cooling water tank 120, and sets the cooling water tank temperature Tc of 411 m degrees Tc read in the continuation <513 and the cooling water tank liquid temperature of the m control device 100. Knob VOc (10
l Compare the set temperature Tc' set in b), and
If C>TC゛, turn on the refrigerator 122 at 514,
If Tc>Tc, the process proceeds to 515 and the refrigerator 122
Turn off. These controls reduce the hysteresis to approximately 0.2
The refrigerator 122 is controlled to be turned on and off within a temperature range of .degree. Note that the control of the heat generation source and the power supply source is not limited to on/off, and may be controlled by one power such as by an inverter or the like.
そして314又は515の処理間T後再びSlに戻り、
温度制御を続行する。Then, after the processing interval T of 314 or 515, return to Sl again,
Continue temperature control.
以上のような制御システムにおいて、冷水温度をあらか
じめ予想し得る必要最低水温より、やや低めに維持して
おくことにより任意かつ迅速な送液温度の制御が実現で
きるのは明白である。即ち、加温時は従来の一槽式の場
合、内蔵する冷却コイル等の物理的大きさ等による制限
のため、通常水の全体積は101程度となるのに対し、
本実施例では加温の対象となる水は2文となり、同じ容
量のヒータを用いれば5倍の速度で加温することができ
る。2fLの水のみの加温速度は1500wのヒータを
用いると約10.7℃/分となり、5℃から40℃まで
加温するのに要する時間は約3分20秒である。また、
冷却時は目標送水温度よりも冷却水槽内の冷水温度が1
分低く保たれていれば、必要量だけ冷水が温水と混合す
ることによって即座に目標送水温度に達することになる
。In the control system as described above, it is clear that by maintaining the cold water temperature slightly lower than the required minimum water temperature that can be predicted in advance, arbitrary and rapid control of the liquid feeding temperature can be realized. That is, when heating, in the case of a conventional one-tank system, the total volume of normal water is about 101, due to limitations due to the physical size of the built-in cooling coil, etc.
In this embodiment, there are two pieces of water to be heated, and if a heater of the same capacity is used, the water can be heated five times faster. The heating rate for 2 fL of water alone is approximately 10.7° C./min using a 1500 W heater, and the time required to heat from 5° C. to 40° C. is approximately 3 minutes 20 seconds. Also,
During cooling, the cold water temperature in the cooling water tank is 1 higher than the target water supply temperature.
If the required amount of cold water is kept low, the target water supply temperature will be reached immediately by mixing the necessary amount of cold water with hot water.
また、送水ポンプの能力が151/分であるならば10
文の水は約45秒で一巡し、温水と冷水は完、全に混合
するため、この場合数十秒で目標送水温度に達し得るこ
とになる。冷水と温水の混合のみで目標送水温まで降温
させるためには、冷水の温度が十分低いことの他に冷却
水槽容積Vcが加温水槽容a V Hに対し充分大きい
ことも必要である。Also, if the capacity of the water pump is 151/min, 10
The water goes through one cycle in about 45 seconds, and the hot water and cold water are completely mixed, so in this case, the target water supply temperature can be reached in several tens of seconds. In order to lower the temperature to the target water supply temperature by only mixing cold water and hot water, it is necessary that not only the temperature of the cold water is sufficiently low, but also that the cooling water tank volume Vc is sufficiently large compared to the heating water tank volume aVH.
表1は加温水槽容、[2M、温水温度40℃の時の混合
のみで到達し得る最低到達温を表中の各冷却水槽容積と
冷水温度に対して示したものである。Table 1 shows the lowest temperature that can be reached by mixing alone when the heating water tank volume is 2M and the hot water temperature is 40°C, for each cooling water tank volume and cold water temperature in the table.
表1
以上の説明より容易にわかるように、本実施例の2文の
加温水槽110.81の冷却水槽120の場合は冷水温
度を15℃に保つならば40℃の降温からでも45秒以
内に20℃まで送水温度を下げることができる。これに
対し、従来の一槽式の場合、冷凍機の能力を1100K
cal/ hrとすると10L;Lの水を40℃から2
0℃まで降温するのに要する時間は約l1分である。Table 1 As can be easily understood from the above explanation, in the case of the cooling water tank 120 of the heating water tank 110. The water temperature can be lowered to 20°C. On the other hand, in the case of the conventional single-tank type, the capacity of the refrigerator is 1100K.
Cal/hr = 10L; 2L of water from 40℃
The time required to lower the temperature to 0° C. is approximately 11 minutes.
本実施例における実験結果の−・例を第3図に示す。An example of the experimental results in this example is shown in FIG.
第3図に示したように本実施例によれば任意かつ迅速な
送液温度制御が実現される。(なお、この実験は熱交換
器200の血液側は無負荷状態となっている。)
上記実験結果においても明らかなように、本実施例にお
いては加温水槽のみを液体が循環する時、液体の送液回
路中での圧力損失に起因する発熱や、周囲からの吸熱に
よる水温上昇が無視できない程大きくなる場合がる。こ
の時、送水温度の電磁弁の切換点Ts+l”Cの所で冷
水の混入と停止を繰り返す準安定状態となり、±1℃程
度の温度変動を生じるが、この程度の温度変動はχ用上
全く問題がない、またTsがTs のごく近傍にある
時、たとえばTs −1<Ts<Ts ′+1の時に、
ポンプ循環に起因する発熱1周囲からの吸熱等による温
度上昇を打消す程度のごく少流量で冷却水槽内液体が加
温水槽へ流入するような機構をつ番す加えるならば、ヒ
ータによる精密な制御によりTsは常にTs’の±0.
2℃以内に保つことができるのは明らかである。このよ
うな機構としては次のようなものが考えられる。As shown in FIG. 3, according to this embodiment, arbitrary and rapid liquid feeding temperature control is realized. (In this experiment, the blood side of the heat exchanger 200 was in an unloaded state.) As is clear from the above experimental results, in this example, when the liquid circulates only through the heating water tank, the In some cases, heat generation due to pressure loss in the liquid delivery circuit and water temperature rise due to heat absorption from the surroundings become so large that they cannot be ignored. At this time, at the switching point Ts+l''C of the solenoid valve for the water supply temperature, a quasi-stable state occurs in which cold water repeatedly enters and stops, resulting in a temperature fluctuation of about ±1°C, but this degree of temperature fluctuation is completely unacceptable for χ. When there is no problem and Ts is very close to Ts, for example, when Ts -1<Ts<Ts'+1,
If we add a mechanism that allows the liquid in the cooling water tank to flow into the heating water tank at a very small flow rate that cancels out the temperature rise due to heat absorption from the surroundings, etc., the heat generation caused by pump circulation will be necessary. Through control, Ts is always within ±0.
It is clear that it can be kept within 2°C. The following may be considered as such a mechanism.
■Vc132として流量調節用ニードル弁を用い、Ts
>Ts ’ + 1で全開放。■Use a needle valve for flow rate adjustment as Vc132, and use Ts
> Fully open at Ts' + 1.
Ts −1(Ts<Ts’+1で少流量の部分開放、 Ts< Ts’−1で完全閉鎖とする。Ts -1 (partial opening with small flow rate when Ts<Ts'+1, It is completely closed when Ts< Ts'-1.
■Vc132に平列にごく少容量の電磁弁132Bによ
る バイパス回路を設け。■A bypass circuit is provided in parallel with Vc132 using a very small capacity solenoid valve 132B.
Ts ’−1<Ts<Ts ’+1の時に開放する。It is opened when Ts'-1<Ts<Ts'+1.
ここで、ポンプ・循環に起因する発熱1周囲からの吸熱
等のヒータ以外の作用により、液体が受取 ゛る熱量は
第3図の実験結果からも読み取れる通り、 20〜5
0 Kcal/ hr程度であり、50Kcal/hr
の熱量を打消すには約80cc1分で冷水が混入すれば
よいことは容易に計算できる(二種間の水温差が10℃
の場合)。Here, the amount of heat received by the liquid due to actions other than the heater, such as heat absorption from the surroundings, is 20 to 5, as can be seen from the experimental results in Figure 3.
It is about 0 Kcal/hr and 50 Kcal/hr
It can be easily calculated that approximately 80 cc of cold water needs to be mixed in per minute to cancel out the amount of heat (if the difference in water temperature between the two types is 10°C)
in the case of).
L第2実施例J 次に本発明に係る他の実施例の構成例を第4図に示す。L second embodiment J Next, a configuration example of another embodiment according to the present invention is shown in FIG.
第4図に示す液体温度制御rt置は第1図に示した液体
温度制御装置の変形例であり、加温水槽110゛と冷却
水槽120 を別構造とし1両液槽への液体の制御を
2ボート電磁弁Vc132と3ポ一ト電磁升である第1
図に示すVH131に対応するVH’131 の切換
により行なう例である。The liquid temperature control device shown in FIG. 4 is a modification of the liquid temperature control device shown in FIG. The first one is a two-boat solenoid valve Vc132 and a three-point solenoid valve.
This is an example in which switching is performed by switching VH'131 corresponding to VH131 shown in the figure.
ここで、冷却時は電磁弁Vc132を開、電磁弁VH’
131’を冷却水槽120 よりの液体が送液ポンプ
120に流入する様に制御し、液体が送液ポンプ102
→加温水槽110 →送液パイプ133→熱交換器2
00→吸液バイグ134→電19Vc132+冷却水槽
120 →電磁弁VH131→送液ポンプ102のよ
うに−・巡する回路を形成する。Here, during cooling, open the solenoid valve Vc132, and open the solenoid valve VH'
131' is controlled so that the liquid from the cooling water tank 120 flows into the liquid feeding pump 120, and the liquid flows into the liquid feeding pump 102.
→Heating water tank 110 →Liquid sending pipe 133 →Heat exchanger 2
00→Liquid suction pipe 134→Electricity 19Vc132+Cooling water tank 120→Solenoid valve VH131→Liquid sending pump 102 - forms a circuit that circulates.
また、加温時には送液ポンプ102→加温水槽11O゛
→送液パイプ133→熱交検器200→吸液パイプ13
4→電磁弁VH’131 →送液ポンプ102という
一巡回路となる。In addition, during heating, the liquid sending pump 102→heating water tank 11O゛→liquid sending pipe 133→heat exchanger 200→liquid suction pipe 13
4→Solenoid valve VH'131→Liquid pump 102, forming a single circuit.
以との構成とすることにより、上記第1図の実施例と全
く同様のa能を果せるのは明らかである。It is clear that by using the following configuration, it is possible to achieve exactly the same functionality as the embodiment shown in FIG. 1 above.
以上2例の実施例において、送液回路の切換は設定温度
と送液温度が比較され、目動的に切換るることになるが
、より簡便な実施方法として送液回路の切換のみを手動
で行う方法も本発明の効果を損なうことなく上の有効で
あることは明らかである。In the above two examples, the liquid feeding circuit is switched manually by comparing the set temperature and the liquid feeding temperature, but a simpler implementation method is to manually switch only the liquid feeding circuit. It is clear that the above methods are also effective without impairing the effects of the present invention.
尚、前述の実施例は冷却水槽が加熱水槽より大きな液体
収容容積で、加熱水槽に送液手段を備えたものについて
説明したが、加熱水槽を冷却水槽より大きな収容容積と
し、冷却水槽に送液手段を備えた場合も本発明の範囲に
含まれ、かつ上方有効である。In the above embodiment, the cooling water tank has a larger liquid storage capacity than the heating water tank, and the heating water tank is equipped with a liquid feeding means. A case in which a means is provided is also included within the scope of the present invention and is also effective.
冷却水槽に組込まれる冷却装置については、アンモニア
、フロンガス等の冷媒を使用したコンプレッサ式冷凍サ
イクルによるものが一般的であるが、電子冷却装置も十
分便用可能である。The cooling device incorporated in the cooling water tank is generally a compressor-type refrigeration cycle using a refrigerant such as ammonia or chlorofluorocarbon gas, but an electronic cooling device can also be used conveniently.
尚、加熱手段、冷却手段の櫂を水槽と称したが、本発明
の液体は水に限定されるものでなく、公知の液状熱媒体
であれば本発明の技術範囲に含まれる。Although the paddles of the heating means and the cooling means are referred to as water tanks, the liquid used in the present invention is not limited to water, and any known liquid heat medium is included within the technical scope of the present invention.
■1発明の具体的効果
以上説明した様に本発明によれば、液体供給制御により
液体が大きな槽と小さな槽の両方を通過または小さな槽
のみを通過する様制御することにより迅速に、かつ繰り
返し液体温度を任意の温度に制御することができる。■1 Specific Effects of the Invention As explained above, according to the present invention, by controlling the liquid supply so that the liquid passes through both the large tank and the small tank or only the small tank, the liquid can be quickly and repeatedly The liquid temperature can be controlled to any desired temperature.
また、本発明の好適な実施例に従えば、加熱手段の水槽
の容量を冷却手段の水槽の容量よりも大きくすることに
より効率のよい液体温度制御が行なえる。Further, according to a preferred embodiment of the present invention, efficient liquid temperature control can be performed by making the capacity of the water tank of the heating means larger than the capacity of the water tank of the cooling means.
さらに、本発明の好適な実施例に従えば、冷却手段の水
槽の容量を発熱手段の水槽の容量より大Sくし、かつ冷
却手段の水槽が送液手段を備えることにより、ざらに効
率の良い液体温度の制御が行なえる。Furthermore, according to a preferred embodiment of the present invention, the capacity of the water tank of the cooling means is made larger than the capacity of the water tank of the heat generating means, and the water tank of the cooling means is provided with a liquid feeding means, thereby achieving a considerably more efficient Liquid temperature can be controlled.
また、加熱手段の水槽を発熱源を備えた液槽とし、冷却
手段の水槽を吸8手段を備えた一M!槽とじて発熱手段
及び吸熱手段のオン/オフ等による能力制御を打なうこ
とにより小型でかつ効率のよい液体温度制御装置を提供
することができる。In addition, the water tank for the heating means is a liquid tank equipped with a heat generation source, and the water tank for the cooling means is a 1M water tank equipped with a suction means. By controlling the capacity by turning on/off the heat generating means and the heat absorbing means while closing the tank, it is possible to provide a small and efficient liquid temperature control device.
またさらに本発明の他の好適な実施例に従えば、大きな
櫂の容積を小さな槽の容積の2〜6債以上とすることに
より、液体温度の上昇制御及び下降制御を極めて迅速に
、かつ効率よく行なうことができる。Still further, in accordance with another preferred embodiment of the present invention, the volume of the large paddle is 2 to 6 times larger than the volume of the small tank, thereby controlling the rise and fall of the liquid temperature very quickly and efficiently. can do well.
第1図は本発明に係る一実施例の構成図、第2図は本実
施例の温度制御フローチャート、i3図は未実施例にお
ける温度制御実験結果を示す図
第4図は本発明に係る他の実施例の構成図である。
図において、100,100 ・・・液体温度制御装
置、101・・・制御装置、101a・・・送液温度設
足部、101b・・・冷却水槽液温設定部、102・・
・送液ポンプ、110.110’・・・加温水槽、12
0.120 ・・・冷却水槽、122・・・冷凍機、
131.131 .132,150・・・電磁弁、15
1・・・ポンプ、200・・・熱交換器である。FIG. 1 is a configuration diagram of an embodiment according to the present invention, FIG. 2 is a temperature control flowchart of this embodiment, and FIG. It is a block diagram of an Example. In the figure, 100, 100...liquid temperature control device, 101...control device, 101a...liquid feeding temperature setting section, 101b...cooling water tank liquid temperature setting section, 102...
・Liquid pump, 110.110'...Heating water tank, 12
0.120... Cooling water tank, 122... Freezer,
131.131. 132,150... Solenoid valve, 15
1... Pump, 200... Heat exchanger.
Claims (5)
加熱する水槽を有する加熱手段と、液体を前記冷却手段
及び加熱手段に選択供給する液体供給制御手段とを備え
、前記冷却手段の水槽および加熱手段の水槽は、その一
方の液体収容容積がその他方の液体収容容積より大きく
、かつ一方の収容容積が大きな槽から他方の収容容積が
小さな槽へのみ液体が流通可能に連結されるとともに、
該小さな槽は液体を送出する送液手段を備えており、該
液体供給制御手段は前記小さな槽から送出される液体の
温度を所定の温度とするよう液体の液温上昇制御時には
前記加熱手段の水槽に供給し、液温降下制御時には前記
冷却手段の水槽に供給することを特徴とする液体温度制
御装置。(1) A cooling means having a water tank for cooling the liquid, a heating means having a water tank for heating the liquid, and a liquid supply control means for selectively supplying the liquid to the cooling means and the heating means, the water tank of the cooling means and the water tanks of the heating means, one of which has a larger liquid storage capacity than the other, and is connected so that liquid can flow only from one tank with a large storage capacity to the other tank with a small storage capacity. ,
The small tank is equipped with a liquid sending means for sending out the liquid, and the liquid supply control means controls the heating means when controlling the temperature rise of the liquid so that the temperature of the liquid sent from the small tank is at a predetermined temperature. A liquid temperature control device characterized in that the liquid temperature is supplied to a water tank, and the liquid temperature control device is supplied to the water tank of the cooling means during liquid temperature reduction control.
の液体収容容積より大きく、加熱手段の水槽は送液手段
を備えていることを特徴とする特許請求の範囲第1項に
記載の液体温度制御装置。(2) The liquid storage capacity of the water tank of the cooling means is larger than the liquid storage capacity of the water tank of the heating means, and the water tank of the heating means is provided with a liquid feeding means. Liquid temperature control device.
の液体収容容積より大きく、冷却手段の水槽は送液手段
を備えていることを特徴とする特許請求の範囲第1項に
記載の液体温度制御装置。(3) The liquid storage capacity of the water tank of the heating means is larger than the liquid storage capacity of the water tank of the cooling means, and the water tank of the cooling means is provided with a liquid feeding means. Liquid temperature control device.
え、各液槽温度を前記発熱源及び吸熱源能力制御するこ
とを特徴とする特許請求の範囲第1項ないし第3項のい
ずれかに記載の液体温度制御装置。(4) The heating means includes a heat generating source, the cooling means includes a heat absorbing source, and the temperature of each liquid tank is controlled by the capabilities of the heat generating source and the heat absorbing source. The liquid temperature control device according to any one of the above.
の比は2〜6倍であることを特徴とする特許請求の範囲
第1項〜第4項のいずれかに記載の液体温度制御装置。(5) Liquid temperature control according to any one of claims 1 to 4, characterized in that the ratio of liquid storage volumes of the water tank of the cooling means and the water tank of the heating means is 2 to 6 times. Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59262885A JPH067369B2 (en) | 1984-12-14 | 1984-12-14 | Liquid temperature controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59262885A JPH067369B2 (en) | 1984-12-14 | 1984-12-14 | Liquid temperature controller |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61141019A true JPS61141019A (en) | 1986-06-28 |
JPH067369B2 JPH067369B2 (en) | 1994-01-26 |
Family
ID=17381972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59262885A Expired - Lifetime JPH067369B2 (en) | 1984-12-14 | 1984-12-14 | Liquid temperature controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH067369B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52151405A (en) * | 1976-06-12 | 1977-12-15 | Kawasaki Heavy Ind Ltd | Method of controlling condensation temperature of condenser |
-
1984
- 1984-12-14 JP JP59262885A patent/JPH067369B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52151405A (en) * | 1976-06-12 | 1977-12-15 | Kawasaki Heavy Ind Ltd | Method of controlling condensation temperature of condenser |
Also Published As
Publication number | Publication date |
---|---|
JPH067369B2 (en) | 1994-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4104805B2 (en) | Heat pump water heater | |
KR100563180B1 (en) | Heat pump hot water supply device | |
KR20090122891A (en) | Constant temperature bath | |
JP2005345006A (en) | Heat pump type hot water heating device | |
JPS61141019A (en) | Liquid temperature controller | |
US20180163385A1 (en) | Electronic Toilet Switchable Between Cold Water and Hot Water and Method of Controlling the Same | |
JP2523042B2 (en) | Absorption cold water heater | |
JP3869798B2 (en) | Heat pump water heater / heater | |
JPS61161528A (en) | Fluid temperature controller | |
JP2006046877A (en) | Heat pump type hot water supply/heating system | |
JP2004361046A (en) | Heat pump hot water supply apparatus | |
JP2004205116A (en) | Cold/hot water generator and its control method | |
JP7025993B2 (en) | Hot water supply system | |
JP2881933B2 (en) | Water heater | |
JP2823272B2 (en) | Regenerator control unit for absorption chiller / heater | |
JP3706969B2 (en) | Water heater | |
JP2689663B2 (en) | Heating system | |
JP2002054845A (en) | Heat pump hot water heater apparatus | |
JPH0638880A (en) | Hot water storing container | |
JP2005345075A (en) | Hot water storage type water heater | |
JP2665638B2 (en) | Hot water storage container | |
JPH10332196A (en) | Hot water supplying device | |
JPS6315041A (en) | Heat-pump hot-water supply device | |
JPH06294547A (en) | Heat pump water heater | |
JP2724935B2 (en) | Hot water storage container |