JPS6114086B2 - - Google Patents
Info
- Publication number
- JPS6114086B2 JPS6114086B2 JP55024633A JP2463380A JPS6114086B2 JP S6114086 B2 JPS6114086 B2 JP S6114086B2 JP 55024633 A JP55024633 A JP 55024633A JP 2463380 A JP2463380 A JP 2463380A JP S6114086 B2 JPS6114086 B2 JP S6114086B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- glass
- movement
- heating zone
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011521 glass Substances 0.000 claims description 48
- 238000010438 heat treatment Methods 0.000 claims description 38
- 239000000758 substrate Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- 238000007496 glass forming Methods 0.000 claims description 4
- 230000001464 adherent effect Effects 0.000 claims 1
- 239000000835 fiber Substances 0.000 description 18
- 239000007789 gas Substances 0.000 description 12
- 229910003902 SiCl 4 Inorganic materials 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000003365 glass fiber Substances 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000006121 base glass Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009388 chemical precipitation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
- C03B37/01884—Means for supporting, rotating and translating tubes or rods being formed, e.g. lathes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Glass Melting And Manufacturing (AREA)
- Surface Treatment Of Glass (AREA)
Description
【発明の詳細な説明】
この発明は、回転する基体の表面にガラス形成
材料又はガラスを含む材料を付着させ、基体に局
部的の加熱区域を作り、これを基体の特定区間を
通して移動させることにより層を被着したガラス
体を作る方法に関するものである。この種のガラ
ス体は例えば光波伝送ガラスフアイバの製作の素
材として使用される。
材料又はガラスを含む材料を付着させ、基体に局
部的の加熱区域を作り、これを基体の特定区間を
通して移動させることにより層を被着したガラス
体を作る方法に関するものである。この種のガラ
ス体は例えば光波伝送ガラスフアイバの製作の素
材として使用される。
この種の方法の一つはCVD法と呼ばれている
気相からの化学析出による方法である。この場合
ガラス基体としてガラス管が使用され、これを回
転させながらガス流をその内部に流し、ガラス管
の小区間を加熱装置で加熱し、化学反応によりガ
ラス形成材料をガラス管内面に析出させてガラス
被着層とする。その際加熱装置は管の長さの方向
にゆつくり移動させ、管の加熱帯域が管を通して
移動するようにする。
気相からの化学析出による方法である。この場合
ガラス基体としてガラス管が使用され、これを回
転させながらガス流をその内部に流し、ガラス管
の小区間を加熱装置で加熱し、化学反応によりガ
ラス形成材料をガラス管内面に析出させてガラス
被着層とする。その際加熱装置は管の長さの方向
にゆつくり移動させ、管の加熱帯域が管を通して
移動するようにする。
内面に層をつけた管は、まず棒に成形しこの棒
の一端を加熱して引き抜くことにより、ガラスフ
アイバとすることができる。このフアイバは階段
形屈折率分布を持つ。しかしこのようにして作ら
れたフアイバは復極性、複屈折性あるいは光学活
性を示すことが確められている。
の一端を加熱して引き抜くことにより、ガラスフ
アイバとすることができる。このフアイバは階段
形屈折率分布を持つ。しかしこのようにして作ら
れたフアイバは復極性、複屈折性あるいは光学活
性を示すことが確められている。
実際の応用に対しては復極性でも、複屈折性で
も、あるいは光学活性でもないフアイバが望まれ
ている。例えば上記の方法によつて作ることがで
きる単一モードガラスフアイバは、もし基体モー
ドの互に直角方向の二つの偏光状態の間に伝送の
遅れを作らずそれによつて情報伝送容量を低下さ
せることがなければ、短い光パルスによる光通信
に好適である。別の応用方向においては、例えば
送り出された光が特定の偏光を示すことが要求さ
れる。これは例えばフアイバオプテイツク回転測
定のような干渉計測定およびフアイバオプテイツ
ク電流測定のようなマグネツトオプテイツク法の
場合である。
も、あるいは光学活性でもないフアイバが望まれ
ている。例えば上記の方法によつて作ることがで
きる単一モードガラスフアイバは、もし基体モー
ドの互に直角方向の二つの偏光状態の間に伝送の
遅れを作らずそれによつて情報伝送容量を低下さ
せることがなければ、短い光パルスによる光通信
に好適である。別の応用方向においては、例えば
送り出された光が特定の偏光を示すことが要求さ
れる。これは例えばフアイバオプテイツク回転測
定のような干渉計測定およびフアイバオプテイツ
ク電流測定のようなマグネツトオプテイツク法の
場合である。
現実のガラスフアイバが望ましくない特性を持
つ理由の一つは、フアイバコアの非円筒対称性あ
るいは材料の異方性である。
つ理由の一つは、フアイバコアの非円筒対称性あ
るいは材料の異方性である。
円筒対称性を高めるため、ガラス管の押しつぶ
し成形に際して未成形管部分の内部に高いガス圧
を作りこれを保持することは、ドイツ連邦共和国
特許出願公開第2625010号公報により公知であ
る。このようにして円筒対称性を高めたフアイバ
は確かに複屈折性が対称性の低いフアイバよりも
減少しているが、いくらかの複屈折が残り、また
光活性はそのまま存続する。その原因は層材料の
異方性にあるとこの発明の発明者は推定した。
し成形に際して未成形管部分の内部に高いガス圧
を作りこれを保持することは、ドイツ連邦共和国
特許出願公開第2625010号公報により公知であ
る。このようにして円筒対称性を高めたフアイバ
は確かに複屈折性が対称性の低いフアイバよりも
減少しているが、いくらかの複屈折が残り、また
光活性はそのまま存続する。その原因は層材料の
異方性にあるとこの発明の発明者は推定した。
この発明の目的は、冒頭に挙げた製法を改良し
て層材料の異方性が充分打消されるようにするこ
とである。
て層材料の異方性が充分打消されるようにするこ
とである。
この目的はこの発明によれば、加熱区域の移動
方向に相対的な基体の回転方向を交替させるか、
加熱区域の前回の移動の開始時においての基体の
回転位置とは異つた回転位置において新しい加熱
区域移動を開始させるか、あるいはこれらの二つ
の操作を併用することによつて達成される。
方向に相対的な基体の回転方向を交替させるか、
加熱区域の前回の移動の開始時においての基体の
回転位置とは異つた回転位置において新しい加熱
区域移動を開始させるか、あるいはこれらの二つ
の操作を併用することによつて達成される。
この発明の基礎となる考えは、作られたガラス
層が非対称性を示す場合はそれに対して逆向きの
非対称性を持つガラス層を続いて作れば、これら
のガラス層部分の非対称性が互に打ち消し合うで
あろうということである。
層が非対称性を示す場合はそれに対して逆向きの
非対称性を持つガラス層を続いて作れば、これら
のガラス層部分の非対称性が互に打ち消し合うで
あろうということである。
回転方向の交替は一つの加熱区域移動サイクル
が終る毎に新しいサイクルが開始する前に行なう
のが効果的である。
が終る毎に新しいサイクルが開始する前に行なう
のが効果的である。
その際引続いて行われる二つの回転方向交替に
おいて新しい加熱区域移動サイクルを一回はその
前の移動サイクルの開始時と同じ基体回転位置に
おいて開始させ、次の回ではそれとは異つた別の
回転位置において開始させるのが有利である。
おいて新しい加熱区域移動サイクルを一回はその
前の移動サイクルの開始時と同じ基体回転位置に
おいて開始させ、次の回ではそれとは異つた別の
回転位置において開始させるのが有利である。
更にこの異つた別の回転位置としてその前の移
動サイクルの開始時の回転位置から180゜回転し
た位置を採用することが推奨される。
動サイクルの開始時の回転位置から180゜回転し
た位置を採用することが推奨される。
上に述べた非対称性の打消しに対しては多くの
場合、加熱区域の移動方向に相対的な基本回転方
向はそのまま保持し、新しい移動サイクルを前回
の移動サイクルの開始時に基体がとつた回転位置
に対して180゜回転した位置において開始させら
れば充分である。
場合、加熱区域の移動方向に相対的な基本回転方
向はそのまま保持し、新しい移動サイクルを前回
の移動サイクルの開始時に基体がとつた回転位置
に対して180゜回転した位置において開始させら
れば充分である。
この発明を三つの実施例について更に詳細に説
明する。これらの実施例はその順に層被着管、層
被着棒および層被着円板の製作に関するものであ
る。
明する。これらの実施例はその順に層被着管、層
被着棒および層被着円板の製作に関するものであ
る。
実施例1:
外径20mm、内径17mmの管の長さ約1mをガラス
旋盤に水平にとりつける。管の一端は回転式のガ
スダクトに結合し純酸素を1100Nml/minの割合
で管に移す。管の加熱には二つの可搬式のガス分
離導入爆鳴気バーナーを使用する。このバーナー
は水平面内で互に180゜ずらして設けられた二つ
の約50mm×100mmのノズル体を持つている。バー
ナーは旋盤の両チヤツクの間を管に沿つて毎分15
cmの速さで移動させ局部的の加熱区域を作る。加
熱区域は最高温度を1900〓に保持しチヤツク間を
管の長さ方向に移動させる。移動区間の終端に達
して一回の移動が終るとバーナーは管を加熱する
ことなく移動区間の他端にある起点に戻す。次の
移動サイクルの開始前に毎秒約1回転の割合で回
転している管の回転方きを反転させ、管が所定の
回転位置に達したときバーナーを新に起動させ
る。このサイクルを二回繰り返した後所定の回転
位置から180゜だけ回転した位置において加熱を
開始する。
旋盤に水平にとりつける。管の一端は回転式のガ
スダクトに結合し純酸素を1100Nml/minの割合
で管に移す。管の加熱には二つの可搬式のガス分
離導入爆鳴気バーナーを使用する。このバーナー
は水平面内で互に180゜ずらして設けられた二つ
の約50mm×100mmのノズル体を持つている。バー
ナーは旋盤の両チヤツクの間を管に沿つて毎分15
cmの速さで移動させ局部的の加熱区域を作る。加
熱区域は最高温度を1900〓に保持しチヤツク間を
管の長さ方向に移動させる。移動区間の終端に達
して一回の移動が終るとバーナーは管を加熱する
ことなく移動区間の他端にある起点に戻す。次の
移動サイクルの開始前に毎秒約1回転の割合で回
転している管の回転方きを反転させ、管が所定の
回転位置に達したときバーナーを新に起動させ
る。このサイクルを二回繰り返した後所定の回転
位置から180゜だけ回転した位置において加熱を
開始する。
何回かの予備加熱サイクルの終了後に左側から
管に流入する酸素にクラツドガラス層の合成用と
して90Nml/minのSiCl4と9Nml/minのBCl3ガス
を混入する。コアガラスの製造に対してはBCl3
の供給を断ちSiCl4供給量を半減する。バーナー
によつて作られた加熱区域では塩化物が最初粉末
酸化物に変えられてガラス形成材料となり、これ
が管の内壁に沈積して戻つて来た加熱区域により
溶融して数μm厚さの透明ガラス層になる。クラ
ツドガラスに対してはSiO2−B2O3ガラスから成
る同様なガラス層を50層溶融し、コアガラスに対
してはSiO2ガラスの層を溶融する。
管に流入する酸素にクラツドガラス層の合成用と
して90Nml/minのSiCl4と9Nml/minのBCl3ガス
を混入する。コアガラスの製造に対してはBCl3
の供給を断ちSiCl4供給量を半減する。バーナー
によつて作られた加熱区域では塩化物が最初粉末
酸化物に変えられてガラス形成材料となり、これ
が管の内壁に沈積して戻つて来た加熱区域により
溶融して数μm厚さの透明ガラス層になる。クラ
ツドガラスに対してはSiO2−B2O3ガラスから成
る同様なガラス層を50層溶融し、コアガラスに対
してはSiO2ガラスの層を溶融する。
このようにして作られた内面に層をつけた管を
前記のドイツ連邦共和国特許出願公開第2625010
号公報に記載されている成形法により棒に成形し
それからコア直径5μm、全直径65μmのフアイ
バに引き抜く。このフアイバは屈折率差4n≒
0.003、コアの屈折率n≒1.46であつて、波長633
μmの光に対して単一モード特性を示すことは測
定によつて確められた。
前記のドイツ連邦共和国特許出願公開第2625010
号公報に記載されている成形法により棒に成形し
それからコア直径5μm、全直径65μmのフアイ
バに引き抜く。このフアイバは屈折率差4n≒
0.003、コアの屈折率n≒1.46であつて、波長633
μmの光に対して単一モード特性を示すことは測
定によつて確められた。
偏光光学測定用として長さ20mのフアイバを90
゜で交る巻面を持つ角ばつた巻枠に巻きつける。
この巻枠では巻きつけによつて生ずる湾曲に基く
複屈折が補償され打消される。この角ばつた巻枠
に巻かれたフアイバでは互に垂直に偏光した
HE11モード状態の間に0.03゜/mの位相差が認
められた。これによつてこのフアイバは極めて僅
かの形態に無関係の複屈折を示す。
゜で交る巻面を持つ角ばつた巻枠に巻きつける。
この巻枠では巻きつけによつて生ずる湾曲に基く
複屈折が補償され打消される。この角ばつた巻枠
に巻かれたフアイバでは互に垂直に偏光した
HE11モード状態の間に0.03゜/mの位相差が認
められた。これによつてこのフアイバは極めて僅
かの形態に無関係の複屈折を示す。
これに反して従来の製造方法で製造したフアイ
バはこの発明方法によつて得られる位相差よりも
大きな位相差(例えば、5゜/m〜70゜/m)を
示す。
バはこの発明方法によつて得られる位相差よりも
大きな位相差(例えば、5゜/m〜70゜/m)を
示す。
後の二つの実施例を説明する前にこの発明に導
いた考察と事実とを説明する。これらは後の実施
例にも該当するものである。
いた考察と事実とを説明する。これらは後の実施
例にも該当するものである。
管の成形時にガス圧を高めることだけによつて
棒に成形された丸いフアイバを偏光光学的に調べ
ると、複屈折は非対称フアイバに比べて明確に低
減しているがいくらかの残留複屈折が残り、光学
活性はそのまま存在する。観測された位相差は管
の回転速度と加熱区域の移動速度に関係すること
が見出された。管の回転中加熱区域はその移動速
度と管の回転速度の比によつて定まるピツチだけ
動く。ピツチ長のフアイバ原体の容積と等しい容
積のフアイバ部分で位相差はしばしば360゜に達
する。そのため複屈折はヘリツクス状の加熱と析
出との結果であると考えられた。
棒に成形された丸いフアイバを偏光光学的に調べ
ると、複屈折は非対称フアイバに比べて明確に低
減しているがいくらかの残留複屈折が残り、光学
活性はそのまま存在する。観測された位相差は管
の回転速度と加熱区域の移動速度に関係すること
が見出された。管の回転中加熱区域はその移動速
度と管の回転速度の比によつて定まるピツチだけ
動く。ピツチ長のフアイバ原体の容積と等しい容
積のフアイバ部分で位相差はしばしば360゜に達
する。そのため複屈折はヘリツクス状の加熱と析
出との結果であると考えられた。
場合につては非対称加熱の影響がコアの形状に
も表われヘリツクス形となる。このヘリツクスの
ピツチは管に相対的の加熱区域の移動速度と回転
速度の比に対応する。内面に層をつけた管を冷却
すると付着したガラス層が熱膨脹の差異に基いて
亀裂を生じ易い。この亀裂もヘリツクス形とな
る。このことからこの製法は管内にヘリツクス形
応力を生じさせるものとすることができる。これ
は不均一なドーピングの結果であると見られる。
も表われヘリツクス形となる。このヘリツクスの
ピツチは管に相対的の加熱区域の移動速度と回転
速度の比に対応する。内面に層をつけた管を冷却
すると付着したガラス層が熱膨脹の差異に基いて
亀裂を生じ易い。この亀裂もヘリツクス形とな
る。このことからこの製法は管内にヘリツクス形
応力を生じさせるものとすることができる。これ
は不均一なドーピングの結果であると見られる。
これら問題を解決する手段として個々の層の非
対称性をそれぞれに続く層の逆向きの非対称性に
よつて打消すことが考えられた。これはこの発明
による回転方向の交替又は開始時回転位置の変更
によつて実現される。
対称性をそれぞれに続く層の逆向きの非対称性に
よつて打消すことが考えられた。これはこの発明
による回転方向の交替又は開始時回転位置の変更
によつて実現される。
この原理は既に述べたようにガラス管に限定さ
れるものではなく、回転するガラス体の表面にガ
ラス層を設ける総ての場合に有効に応用すること
ができる。これに対して次の二つの実施例が挙げ
られる。
れるものではなく、回転するガラス体の表面にガ
ラス層を設ける総ての場合に有効に応用すること
ができる。これに対して次の二つの実施例が挙げ
られる。
実施例2:
ガラス層を円筒棒の外側面に設ける場合にはガ
ラス層全体の厚さは任意の値にすることができ
る。太さ10mmの石英ガラス棒をガラス旋盤にとり
つける。ガラス粉末の析出には可搬式のガラスバ
ーナーを使用し、これをガラス旋盤の両チヤツク
間の棒長に沿つて毎分20cmの速さで動かす。燃焼
混合ガスには約70Nml/minのSiCl4ガス流を加え
焔内で反応させてSiO2として多孔質乃至粉末性
の層として棒の側面に付着させる。第一のバーナ
ーからの棒の長さ方向にずらして第二のバーナー
を一緒に動かし棒に作つた約1900゜乃至2000〓の
加熱区域を両チヤツク間で移動させる。前進する
加熱区域内で析出した粉末は溶融して厚さ約5μ
mのガラス様の層となる。所定の長さ区間を移動
するとその終点からバーナーは粉末の析出とガラ
スの溶融を行なうことなく元の出発点に戻る。こ
こで棒の回転方向を逆にし、棒が前回のバーナー
移動の開始時の棒のの回転位置からある角度回転
した位置に達したときバーナーを新に起動させ
る。所定の層厚さに達した後クラツドガラス層を
作るためSiCl4に約50Nml/minのBCl3ガス流を加
える。析出したガラスはB2O3を含み純SiO2より
も低い屈折率を示す。層の形成が終つた時基体ガ
ラスを取除く必要がないようにするため上に述べ
た方法で作つた棒を使用しこれを複数個引伸して
市販の石英ガラスから成る細い心線が含まれてい
るようにする。この方法は複屈折性の低いガラス
フアイバ用のガラス棒の製作に適している。
ラス層全体の厚さは任意の値にすることができ
る。太さ10mmの石英ガラス棒をガラス旋盤にとり
つける。ガラス粉末の析出には可搬式のガラスバ
ーナーを使用し、これをガラス旋盤の両チヤツク
間の棒長に沿つて毎分20cmの速さで動かす。燃焼
混合ガスには約70Nml/minのSiCl4ガス流を加え
焔内で反応させてSiO2として多孔質乃至粉末性
の層として棒の側面に付着させる。第一のバーナ
ーからの棒の長さ方向にずらして第二のバーナー
を一緒に動かし棒に作つた約1900゜乃至2000〓の
加熱区域を両チヤツク間で移動させる。前進する
加熱区域内で析出した粉末は溶融して厚さ約5μ
mのガラス様の層となる。所定の長さ区間を移動
するとその終点からバーナーは粉末の析出とガラ
スの溶融を行なうことなく元の出発点に戻る。こ
こで棒の回転方向を逆にし、棒が前回のバーナー
移動の開始時の棒のの回転位置からある角度回転
した位置に達したときバーナーを新に起動させ
る。所定の層厚さに達した後クラツドガラス層を
作るためSiCl4に約50Nml/minのBCl3ガス流を加
える。析出したガラスはB2O3を含み純SiO2より
も低い屈折率を示す。層の形成が終つた時基体ガ
ラスを取除く必要がないようにするため上に述べ
た方法で作つた棒を使用しこれを複数個引伸して
市販の石英ガラスから成る細い心線が含まれてい
るようにする。この方法は複屈折性の低いガラス
フアイバ用のガラス棒の製作に適している。
実施例3:
回転する円板上にガス相からガラスを析出させ
て扁平な円筒体を作る。この実施例は任意の長さ
のガラス棒の製作に適しているがそのためには円
筒形石英ガラス板の平坦な背面に石英ガラス棒を
融着しこの棒を旋盤のチヤツクで保持して軸の回
りに回転させる。ガラス板の前面にSiCl4を混合
したガスの燃焼焔を吹きつけ多孔質乃至粉末状の
SiO2を沈積させる。可動スライドを使用してバ
ーナーを円板軸に垂直に円板表面に沿つて移動さ
せる。一様に沈積させるためバーナーの滞留時間
を円板の中心部でその周縁部より短くする。バー
ナーが出発点の反対側の円板縁に達したとき
SiCl4の供給を断ち、バーナーを運動方向を逆に
する。バーナーの復帰運動中その温度を上昇させ
て円板内に局部的の加熱区域を作りこれを円板の
直径全体に亘つて移動させSiO2層を溶融して透
明ガラス層とする。バーナーが出発点に戻つた後
円板を逆向きに回転させ、前のサイクルの開始時
の回転位置からある角度回転した位置に達した時
新しい析出・溶融サイクルを開始させる。バーナ
ーに400Nml/minのSiCl4ガス量を供給すると直
径6cmの円板上に約0.4cm/hの速度で層が成長
する。このようにして作られた棒を公知の方法で
引抜いて作つたガラスフアイバは極めて低い複屈
折性を示す。
て扁平な円筒体を作る。この実施例は任意の長さ
のガラス棒の製作に適しているがそのためには円
筒形石英ガラス板の平坦な背面に石英ガラス棒を
融着しこの棒を旋盤のチヤツクで保持して軸の回
りに回転させる。ガラス板の前面にSiCl4を混合
したガスの燃焼焔を吹きつけ多孔質乃至粉末状の
SiO2を沈積させる。可動スライドを使用してバ
ーナーを円板軸に垂直に円板表面に沿つて移動さ
せる。一様に沈積させるためバーナーの滞留時間
を円板の中心部でその周縁部より短くする。バー
ナーが出発点の反対側の円板縁に達したとき
SiCl4の供給を断ち、バーナーを運動方向を逆に
する。バーナーの復帰運動中その温度を上昇させ
て円板内に局部的の加熱区域を作りこれを円板の
直径全体に亘つて移動させSiO2層を溶融して透
明ガラス層とする。バーナーが出発点に戻つた後
円板を逆向きに回転させ、前のサイクルの開始時
の回転位置からある角度回転した位置に達した時
新しい析出・溶融サイクルを開始させる。バーナ
ーに400Nml/minのSiCl4ガス量を供給すると直
径6cmの円板上に約0.4cm/hの速度で層が成長
する。このようにして作られた棒を公知の方法で
引抜いて作つたガラスフアイバは極めて低い複屈
折性を示す。
次にこの発明を図面に基づいて説明する。
図面はこの発明を実施するための装置の概略斜
視図を示し、ガラス管1は加熱区域を作るバーナ
ー3の炎30によつて局部的に加熱され、バーナ
ー3は前記ガラス管1の軸方向10に向つて移動
できるようにされている。一般的には管1はその
端部でガラス旋盤(不図示)の中へ締付けられて
いて、管1はその長手軸2を中心として回転可能
にされ、その際回転方向は自由に選択して交替す
ることができるようにされている。簡略化するた
めに図面では管の末端側の支持は省略し、管1の
駆動は概略して電気モータ5で示した。電気モー
タ5の駆動軸51にはゴムローラ6が取り付けら
れ、ゴムローラ6は管1の外周に係合して、ゴム
ローラの回転により管1が相対する回転方向に随
伴回転するようにされている。回転方向を入れ替
えるために双投スイツチ7が設けられており、こ
れで駆動モータ5の回転方向が選択的に入れ替え
ることができるようにされて、管1はまずある方
向に回転し次に別の方向に回転することができ
る。
視図を示し、ガラス管1は加熱区域を作るバーナ
ー3の炎30によつて局部的に加熱され、バーナ
ー3は前記ガラス管1の軸方向10に向つて移動
できるようにされている。一般的には管1はその
端部でガラス旋盤(不図示)の中へ締付けられて
いて、管1はその長手軸2を中心として回転可能
にされ、その際回転方向は自由に選択して交替す
ることができるようにされている。簡略化するた
めに図面では管の末端側の支持は省略し、管1の
駆動は概略して電気モータ5で示した。電気モー
タ5の駆動軸51にはゴムローラ6が取り付けら
れ、ゴムローラ6は管1の外周に係合して、ゴム
ローラの回転により管1が相対する回転方向に随
伴回転するようにされている。回転方向を入れ替
えるために双投スイツチ7が設けられており、こ
れで駆動モータ5の回転方向が選択的に入れ替え
ることができるようにされて、管1はまずある方
向に回転し次に別の方向に回転することができ
る。
その回転位置から管がある回転方向に置かれる
管1の回転位置を確認するために、管1の左端部
にマーク4が付されている。
管1の回転位置を確認するために、管1の左端部
にマーク4が付されている。
反応ガスが矢印8の方向に管内を導入される。
バーナー3により長手軸方向10に管1の加熱区
域移動が開始する毎にマーク4を付した管1の端
部にバーナー3がくる。最初の加熱区域移動の際
管1は例えば矢印11の方向に回転し、マーク4
は例えば長手軸2を垂直に切る線41にくる。移
動するバーナー3がローラー6の近辺にある管1
の端部に達すると、バーナー3は消され、マーク
4を付した管端部の出発位置に戻される。その出
発位置からバーナーを点火して次の加熱区域移動
が始まる。この次の加熱区域移動の開始前には、
最初の移動の際線41上にきたマーク4を付した
管1の回転位置は線42上の回転位置に移動され
る。図示する線42は線41とで角度αを形成
し、その角度は例えば180゜とすることができ
る。このように管1の回転位置をずらして次のバ
ーナー3による加熱区域移動を開始する。この加
熱区域移動の際管1は矢印11の方向ではなくこ
れと反対方向である矢印12の方向に回転され
る。
バーナー3により長手軸方向10に管1の加熱区
域移動が開始する毎にマーク4を付した管1の端
部にバーナー3がくる。最初の加熱区域移動の際
管1は例えば矢印11の方向に回転し、マーク4
は例えば長手軸2を垂直に切る線41にくる。移
動するバーナー3がローラー6の近辺にある管1
の端部に達すると、バーナー3は消され、マーク
4を付した管端部の出発位置に戻される。その出
発位置からバーナーを点火して次の加熱区域移動
が始まる。この次の加熱区域移動の開始前には、
最初の移動の際線41上にきたマーク4を付した
管1の回転位置は線42上の回転位置に移動され
る。図示する線42は線41とで角度αを形成
し、その角度は例えば180゜とすることができ
る。このように管1の回転位置をずらして次のバ
ーナー3による加熱区域移動を開始する。この加
熱区域移動の際管1は矢印11の方向ではなくこ
れと反対方向である矢印12の方向に回転され
る。
バーナー3がマーク4を付した管1の端部の出
発位置からスタートする前ごとに、管1の回転位
置を交替しそして交替した回転方向で加熱区域移
動を開始する。
発位置からスタートする前ごとに、管1の回転位
置を交替しそして交替した回転方向で加熱区域移
動を開始する。
回転方向の交替だけ又は回転位置の交替だけで
もそれぞれ複屈折性の減少をもたらす。しかしこ
の両手段を併用するとさらに有利である。
もそれぞれ複屈折性の減少をもたらす。しかしこ
の両手段を併用するとさらに有利である。
図はこの発明を実施するための装置の概略斜視
図である。 1……ガラス管、3……バーナー。
図である。 1……ガラス管、3……バーナー。
Claims (1)
- 【特許請求の範囲】 1 回転する基体表面にガラス形成材料又はガラ
スを含む材料を付着させ、基体の特定区間を通し
て繰り返し移動させて基体に局部的な加熱区域を
作り、基体表面に付着した材料層をガラス層に変
えることにより被着層付ガラス体を製造する方法
おいて、基体の局部的加熱区域が基体の特定区間
を移動する方向に相対的な基体の回転方向を交替
させる操作と加熱区域の前回の移動の開始時にお
いての基体の回転位置とは異つた回転位置におい
て新しい加熱区域移動を開始させる操作とを併用
することを特徴とする被着層付ガラス体の製造方
法。 2 基体の回転方向を一回の加熱区域の移動が終
わる毎に新しい移動が開始する前に交替させるこ
とを特徴とする特許請求の範囲第1項記載の方
法。 3 引続いて行われる二回の回転方向交替におい
て新しい加熱区域移動を一回はその前の移動の開
始時においての基体回転位置と同じ回転位置にお
いて開始させ、次は別の回転位置において開始さ
せることを特徴とする特許請求の範囲第1項記載
の方法。 4 後の移動の開始時の基体回転位置を前の移動
の開始時の基体回転位置に対して180゜回転させ
ることを特徴とする特許請求の範囲第3項記載の
方法。 5 加熱区域の移動方向に相対的な基体の回転方
向を不変に保持し、新しい加熱区域移動をその前
の移動の開始時においての基体回転位置に対して
180゜回転した位置において開始させることを特
徴とする特許請求の範囲第1項記載の方法。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19792907833 DE2907833A1 (de) | 1979-02-28 | 1979-02-28 | Verfahren zur herstellung von beschichteten glaskoerpern |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55121921A JPS55121921A (en) | 1980-09-19 |
JPS6114086B2 true JPS6114086B2 (ja) | 1986-04-17 |
Family
ID=6064116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2463380A Granted JPS55121921A (en) | 1979-02-28 | 1980-02-28 | Manufacture of glass body with bondable layer |
Country Status (5)
Country | Link |
---|---|
US (1) | US4312653A (ja) |
JP (1) | JPS55121921A (ja) |
DE (1) | DE2907833A1 (ja) |
FR (1) | FR2450240A1 (ja) |
GB (1) | GB2043624B (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH069689U (ja) * | 1992-07-09 | 1994-02-08 | 株式会社ソフィア | パチンコ機の球受皿 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3206143A1 (de) * | 1982-02-20 | 1983-09-01 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Verfahren und anordnung zur herstellung einer vorform, aus der optische fasern ziehbar sind |
NL8302127A (nl) * | 1983-06-15 | 1985-01-02 | Philips Nv | Werkwijze en inrichting voor de vervaardiging van optische vezels. |
CA1242889A (en) * | 1983-07-16 | 1988-10-11 | Peter E.E. Geittner | Method of manufacturing optical fibres |
US5188648A (en) * | 1985-07-20 | 1993-02-23 | U.S. Philips Corp. | Method of manufacturing optical fibres |
FR2621909B1 (ja) * | 1987-10-16 | 1990-01-19 | Comp Generale Electricite | |
GB2286199B (en) * | 1994-01-27 | 1997-06-11 | Pirelli General Plc | A method of forming an optical fibre preform |
US5723172A (en) * | 1994-03-11 | 1998-03-03 | Dan Sherman | Method for forming a protective coating on glass |
US5665424A (en) * | 1994-03-11 | 1997-09-09 | Sherman; Dan | Method for making glass articles having a permanent protective coating |
US20040107734A1 (en) * | 2002-12-04 | 2004-06-10 | Paresh Kenkare | Systems and methods for fabricating optical fiber preforms |
US20040221617A1 (en) * | 2003-05-05 | 2004-11-11 | Fleming James William | Methods for modifying ovality of optical fiber preforms |
EP3088370B1 (de) * | 2015-04-28 | 2018-09-26 | Heraeus Quarzglas GmbH & Co. KG | Verfahren und vorrichtung zur herstellung eines rohres aus glas |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL6702109A (ja) * | 1967-02-11 | 1968-08-12 | ||
FR2328670A1 (fr) * | 1975-10-10 | 1977-05-20 | Regreny Andre | Procede de fabrication d'une preforme de fibre optique et appareil correspondant |
CA1090134A (en) * | 1976-03-22 | 1980-11-25 | Western Electric Company, Incorporated | Fabrication of optical fibers with improved cross sectional circularity |
DE2741854B2 (de) * | 1976-09-20 | 1981-03-19 | Hitachi, Ltd., Tokyo | Verfahren zur Herstellung optischer Fasern |
DE2907731A1 (de) * | 1979-02-28 | 1980-09-04 | Siemens Ag | Verfahren zur herstellung eines glasfaser-lichtwellenleiters |
-
1979
- 1979-02-28 DE DE19792907833 patent/DE2907833A1/de active Granted
-
1980
- 1980-02-06 US US06/119,017 patent/US4312653A/en not_active Expired - Lifetime
- 1980-02-21 FR FR8003827A patent/FR2450240A1/fr active Granted
- 1980-02-27 GB GB8006647A patent/GB2043624B/en not_active Expired
- 1980-02-28 JP JP2463380A patent/JPS55121921A/ja active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH069689U (ja) * | 1992-07-09 | 1994-02-08 | 株式会社ソフィア | パチンコ機の球受皿 |
Also Published As
Publication number | Publication date |
---|---|
GB2043624B (en) | 1983-02-23 |
FR2450240B1 (ja) | 1984-10-05 |
JPS55121921A (en) | 1980-09-19 |
DE2907833C2 (ja) | 1989-04-20 |
FR2450240A1 (fr) | 1980-09-26 |
US4312653A (en) | 1982-01-26 |
GB2043624A (en) | 1980-10-08 |
DE2907833A1 (de) | 1980-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4478489A (en) | Polarization retaining single-mode optical waveguide | |
US4249925A (en) | Method of manufacturing an optical fiber | |
US4184859A (en) | Method of fabricating an elliptical core single mode fiber | |
JPS6114086B2 (ja) | ||
US4217027A (en) | Optical fiber fabrication and resulting product | |
US4388098A (en) | Apparatus for producing multi-component glass fiber preform | |
US3971645A (en) | Method of making compound-glass optical waveguides fabricated by a metal evaporation technique | |
CA1050833A (en) | Optical fiber fabrication involving homogeneous reaction within a moving hot zone | |
US4909816A (en) | Optical fiber fabrication and resulting product | |
DK152631B (da) | Praeform, hvoraf der kan fremstilles et optisk filament med hoej baandbredde og indeksgradient, samt fremgangsmaade til dannelse af en saadan praeform. | |
JPH0341416B2 (ja) | ||
US4302232A (en) | Process for the production of a glass fiber light waveguide | |
US4932990A (en) | Methods of making optical fiber and products produced thereby | |
JP4359183B2 (ja) | 光ファイバ・プリフォームの楕円度修正方法 | |
JPH0761831A (ja) | 光ファイバ用多孔質ガラス母材の製造方法 | |
WO1980001801A1 (en) | Optical fiber fabrication process | |
JPH0583500B2 (ja) | ||
EP0301797B1 (en) | Methods of making optical fiber and products produced thereby | |
JPH0316930A (ja) | 複雑屈折率分布を有する光ファイバの製造方法 | |
JPH0557216B2 (ja) | ||
JPS6136134A (ja) | 応力付与形偏波保持光フアイバ用母材の作製方法及び装置 | |
JPS59141436A (ja) | 光フアイバ母材の製造方法 | |
JPH0579614B2 (ja) | ||
JPH033618B2 (ja) | ||
JPS593029A (ja) | 偏波面保存光フアイバのプリフオ−ム製造方法 |