JPS61140776A - Freezer for refrigerator, etc. - Google Patents

Freezer for refrigerator, etc.

Info

Publication number
JPS61140776A
JPS61140776A JP26216184A JP26216184A JPS61140776A JP S61140776 A JPS61140776 A JP S61140776A JP 26216184 A JP26216184 A JP 26216184A JP 26216184 A JP26216184 A JP 26216184A JP S61140776 A JPS61140776 A JP S61140776A
Authority
JP
Japan
Prior art keywords
temperature
capillary tube
valve
pressure
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26216184A
Other languages
Japanese (ja)
Inventor
横江 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP26216184A priority Critical patent/JPS61140776A/en
Publication of JPS61140776A publication Critical patent/JPS61140776A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷蔵庫、ショーケース等で冷媒流量調節器と
して毛細管を有する冷凍装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a refrigeration device having a capillary tube as a refrigerant flow rate regulator in a refrigerator, showcase, etc.

従来例の構成とその問題点 第2図により従来例について説明する。冷蔵庫等に備え
る冷凍装置は一般的に、圧縮機1′、凝2へ− 縮器2′、毛細管3′、蒸発器4′を順次環状に連結し
て構成されている。これらの構成部品の中で冷凍装置の
冷媒流量調節器の役目を果たしている毛細管3′は、凝
縮器2′出口と蒸発器4′入口との間に直列に通常1本
接続されており、凝縮器2′で凝縮されだ液冷媒を減圧
し、蒸発器4′で所定の温度で蒸発させる役目をしてい
る。通常この毛細管3′は、外気温度の高い、高負荷時
に最大の能力が発揮される様、管内径と長さを組み合わ
せて個々の冷凍装置ごとに最適な抵抗を選定し、これを
代表抵抗として様々な負荷条件で使用している。しかし
ながら、外気温度の低下等により冷凍装置の負荷が減少
した場合、これに応じて冷媒流量調節器である毛細管3
′の抵抗を選定する事が冷凍装置の効率的な運転をする
為には好ましく、動力費の低減にもなる。しかし、毛細
管3′を凝縮器2′出口と蒸発器4′入口間に直列に通
常1本接続するという従来の方式では、負荷に応じた冷
媒流量調節が容易ではなかった。
The structure of the conventional example and its problems will be explained with reference to FIG. A refrigeration system installed in a refrigerator or the like is generally constructed by sequentially connecting a compressor 1', a condenser 2', a capillary tube 3', and an evaporator 4' in an annular manner. Among these components, the capillary tube 3', which plays the role of a refrigerant flow rate regulator in the refrigeration system, is usually connected in series between the condenser 2' outlet and the evaporator 4' inlet, and The function is to reduce the pressure of the condensed liquid refrigerant in the vessel 2', and to evaporate it at a predetermined temperature in the evaporator 4'. Normally, this capillary tube 3' is selected to have the optimum resistance for each refrigeration equipment by combining the tube inner diameter and length, and this is used as the representative resistance so that the maximum capacity can be demonstrated at times of high outside temperature and high load. It is used under various load conditions. However, when the load on the refrigeration system decreases due to a drop in outside air temperature, etc., the capillary tube 3, which is a refrigerant flow rate regulator, responds accordingly.
It is preferable to select a resistance of ' for efficient operation of the refrigeration system, and it also reduces power costs. However, with the conventional system in which one capillary tube 3' is normally connected in series between the condenser 2' outlet and the evaporator 4' inlet, it is not easy to adjust the refrigerant flow rate according to the load.

発明の目的 3/、 本発明は冷凍装置の運転効率を向上させる事を目的とす
る。
Objective 3 of the Invention: The objective of the present invention is to improve the operating efficiency of a refrigeration system.

発明の構成 本発明は、温度式開閉弁にて制御される第1毛細管と、
制御されない第2毛細管を設け、高外気温度及び通常負
荷の時は第2毛細管のみで流量制御し、低外気温時に々
ると開成する温度式開閉弁にて両爪細管により流量制御
を行ない、負荷に応じた流量調節を行なうものである。
Structure of the Invention The present invention includes a first capillary tube controlled by a temperature-type on-off valve;
A second capillary tube that is not controlled is provided, and when the outside temperature is high and the load is normal, the flow rate is controlled only by the second capillary tube, and when the outside temperature is low, the flow rate is controlled by a double-clawed capillary tube using a temperature-type on-off valve that is occasionally opened. The flow rate is adjusted according to the load.

実施例の説明 以下に本発明の一実施例の構成について、第1図により
説明する。圧縮機1により圧縮された高温高圧の冷媒は
凝縮器2にて液化される。凝縮器2の出口には、温度式
開閉弁3を介して接続した第1毛細管4及び温度式開閉
弁3、第1毛細管4と並列に第2毛細管6接続されてい
る。そして、この両爪細管4,6の他端は蒸発器6に接
続されている。温度式開閉弁2は、外殻A 3 a +
外殻B3b、外殻B3b内に設けられた弁座3c、前記
弁座3Cの上流には凝縮器2の出口側に連なる入口バイ
ブ3dを有し、弁座3cの上方の外殻B3bの側面には
第1毛細管4の入口側に連なる出口バイブ3eが設けら
れている。3fは先端が球状で弁座3cを開閉するボー
ル弁である。ボール弁3fの上部には、外殻ASa内を
2室に気密に分ける圧力応動素子3g(以下ダイヤフラ
ム3qという)の変位を伝えるプランジャ3hがあり、
ボール弁3fとプランジャ3hはスポット溶接等により
、固着されている。ダイヤフラム3qの一側面側の室A
7は、ボール弁3fが開成している時は、冷凍システム
の高圧圧力が作用し、ボール弁3fが閉成している時は
、冷凍システムの低圧圧力が作用する。室B8には、キ
ャピラリ管9を通じて、その先端に感温筒10を有し、
感温筒1oの温度に応じた圧力が作用している。また感
温筒1oは外気温度又は外気温度と同傾向の温度変化を
示す冷凍サイクルの温度例えば凝縮器2等の温度を感゛
知するように設置されている。スプリング31は温度式
開閉弁3を開放する方向にカを付勢しており、この力は
スプリングの選定により調整できる5ぺ− ものである。感温筒1oの圧力特性としては、負荷が大
きい場合や通常の負荷の場合は、ダイヤフラム3q下面
に作用しボール弁3fを開方向に作用しているスプリン
グ31の付勢力や室A7の圧力との合成力に打ち勝つ圧
力が作用する。又、感温筒10の温度が設定温度以下に
なれば、ダイヤフラム3q下面に作用しているスプリン
グ31の付勢力や室A7の圧力との合成力に負ける力が
作用する。
DESCRIPTION OF THE EMBODIMENTS The configuration of an embodiment of the present invention will be explained below with reference to FIG. The high temperature, high pressure refrigerant compressed by the compressor 1 is liquefied in the condenser 2. At the outlet of the condenser 2, a first capillary tube 4 and a second capillary tube 6 are connected in parallel with the temperature type shut-off valve 3 and the first capillary tube 4, which are connected via a temperature-type shut-off valve 3. The other ends of the double-claw tubes 4 and 6 are connected to an evaporator 6. The temperature type on-off valve 2 has an outer shell A 3 a +
An outer shell B3b, a valve seat 3c provided in the outer shell B3b, an inlet vibe 3d connected to the outlet side of the condenser 2 upstream of the valve seat 3C, and a side surface of the outer shell B3b above the valve seat 3c. is provided with an outlet vibe 3e connected to the inlet side of the first capillary tube 4. 3f is a ball valve with a spherical tip that opens and closes the valve seat 3c. At the top of the ball valve 3f, there is a plunger 3h that transmits the displacement of a pressure responsive element 3g (hereinafter referred to as a diaphragm 3q) that airtightly divides the inside of the outer shell ASa into two chambers.
The ball valve 3f and the plunger 3h are fixed together by spot welding or the like. Chamber A on one side of diaphragm 3q
7, when the ball valve 3f is open, the high pressure of the refrigeration system acts, and when the ball valve 3f is closed, the low pressure of the refrigeration system acts. The chamber B8 has a temperature sensing tube 10 at its tip through a capillary tube 9,
A pressure is applied depending on the temperature of the temperature sensing cylinder 1o. Further, the temperature sensing tube 1o is installed so as to sense the temperature of the outside air or the temperature of the refrigeration cycle, such as the temperature of the condenser 2, etc., which shows a temperature change with the same tendency as the outside temperature. The spring 31 biases the thermostatic on-off valve 3 in the direction of opening, and this force can be adjusted by selecting the spring. The pressure characteristics of the thermosensor tube 1o are such that when the load is large or normal, the biasing force of the spring 31 acting on the lower surface of the diaphragm 3q and the opening direction of the ball valve 3f and the pressure in the chamber A7 A pressure that overcomes the resultant force acts. Further, when the temperature of the temperature sensing cylinder 10 becomes lower than the set temperature, a force is applied which overcomes the combined force of the urging force of the spring 31 acting on the lower surface of the diaphragm 3q and the pressure of the chamber A7.

この様な構成に於いてその動作について説明する。負荷
が大きい場合や通常の負荷に於いては、感温筒10の温
度も高く、この為温度式開閉弁3は閉成し、凝縮器2に
て液化された冷媒は、第2毛細管5を通り、蒸発器6に
て所定の温度で蒸発し、通常の冷却サイクルを行なう。
The operation in such a configuration will be explained. When the load is large or under normal load, the temperature of the thermosensor cylinder 10 is high, so the temperature-type on-off valve 3 is closed, and the refrigerant liquefied in the condenser 2 flows through the second capillary tube 5. As a result, the liquid is evaporated at a predetermined temperature in the evaporator 6, and a normal cooling cycle is performed.

外気温度が下がり低負荷条件になると、ダイヤフラム3
qの上面に作用する感温筒1oの温度に相当する圧力は
、スプリング31の付勢力や室A7の圧力との合成力に
負け、温度式開閉弁3は開成する。これにより凝縮器2
にて液化された冷媒は、第2毛細管56ベーー7゛ 及び温度式開閉弁3を通って第1毛細管4の両方に供給
され、蒸発器6にて所定の温度で蒸発するものである。
When the outside temperature drops and low load conditions occur, diaphragm 3
The pressure corresponding to the temperature of the temperature-sensitive tube 1o acting on the upper surface of the temperature-sensitive cylinder 1o is overcome by the combined force of the urging force of the spring 31 and the pressure of the chamber A7, and the temperature-type on-off valve 3 is opened. This allows condenser 2
The liquefied refrigerant is supplied to both the first capillary tube 4 through the second capillary tube 56b7'' and the temperature-type on-off valve 3, and is evaporated in the evaporator 6 at a predetermined temperature.

第1毛細管4及び第2毛細管5の抵抗の設定としては、
高外気温時には第2毛細管5のみの抵抗で最大の冷却能
力が得られる様に、低外気温時には、両方の毛細管4,
5に冷媒が流れだ場合に最大冷却能力が得られる様に設
定している0 そのだめ温度式開閉弁3を用いる事により電力を必要と
せず、しかも、感温筒温度の高低を利用し、負荷に応じ
て第2毛細管5に冷媒を流したり、第1.第2毛細管4
,6の両方に冷媒を流す様にしたものであり、従来流量
調節の難かしかった毛細管を有する冷凍装置に於いて、
比較的簡易な方法で負荷に応じた冷媒流量調節を可能な
らしめたものであり、冷凍装置の経済的な運転を行なえ
、動力費の低減が図れる。
Setting the resistance of the first capillary tube 4 and the second capillary tube 5 is as follows:
When the outside temperature is high, the maximum cooling capacity can be obtained with the resistance of only the second capillary tube 5, and when the outside temperature is low, both capillary tubes 4,
5 is set so that the maximum cooling capacity is obtained when the refrigerant is flowing. 0 Therefore, by using the temperature type on-off valve 3, no electric power is required, and moreover, it utilizes the temperature of the thermosensor cylinder. Depending on the load, the refrigerant may be allowed to flow through the second capillary tube 5, or may be caused to flow through the first capillary tube 5. Second capillary tube 4
, 6, and in refrigeration equipment with capillary tubes, which was difficult to adjust the flow rate in the past,
This makes it possible to adjust the refrigerant flow rate according to the load using a relatively simple method, allowing economical operation of the refrigeration system and reducing power costs.

発明の効果 上記実施例より明らかな様に、本発明は、電力消費しな
い温度式開閉弁を使用し、高外気温時に7 、、、 、
Effects of the Invention As is clear from the above embodiments, the present invention uses a temperature-type on-off valve that does not consume electricity, and when the outside temperature is high,
.

は、第2毛細管のみで冷凍装置を構成し、低外気温時に
は、温度式開閉弁を介して第1 、第2毛細管の両方を
介して冷凍装置を構成して、冷媒流量調節を行なってい
るので、冷凍装置の効率的な運転が図れる。又、温度式
開閉弁には、キャピラリ管を通じその先端に感温筒が付
いているので、キャピラリ管の長さ調節により、冷凍装
置に応じて、感温筒位置を適切に選定する事ができる。
The refrigeration system is configured with only the second capillary tube, and when the outside temperature is low, the refrigeration system is configured through both the first and second capillary tubes via a thermostatic on-off valve to adjust the refrigerant flow rate. Therefore, efficient operation of the refrigeration system can be achieved. In addition, the temperature-type on-off valve has a temperature-sensing tube attached to the tip of the capillary tube, so by adjusting the length of the capillary tube, the temperature-sensing tube position can be appropriately selected depending on the refrigeration equipment. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例の冷凍装置の配管図、第2図は
従来の冷凍装置の配管図である。 1・・・・・圧縮機、2・・・・・・凝縮器、3・・・
・・・温度式開閉弁、4・・・・・・第1毛細管、6・
・・・・・第2毛細管、6・・・・・・蒸発器、3q・
・・・・・ダイヤフラム、1o・・・・・・感温筒。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
FIG. 1 is a piping diagram of a refrigeration system according to an embodiment of the present invention, and FIG. 2 is a piping diagram of a conventional refrigeration system. 1... Compressor, 2... Condenser, 3...
...temperature type on-off valve, 4...first capillary tube, 6.
...Second capillary tube, 6...Evaporator, 3q.
...Diaphragm, 1o...Temperature-sensitive tube. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
figure

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、凝縮器、温度式開閉弁、第1毛細管、蒸発器を
順次環状に配管し、かつ温度式開閉弁をバイパスした第
2毛細管を備え、前記温度式開閉弁の圧力応動素子の一
側に冷凍システム内の圧力を与え、かつ外気温度に応じ
た圧力を前記圧力応動素子の他側に与える感温筒を備え
、前記感温筒温度が所定温度以下になると第1毛細管を
開成し、所定温度以上では第1毛細管を閉成せしめる冷
蔵庫等の冷凍装置。
A compressor, a condenser, a temperature-type on-off valve, a first capillary tube, and an evaporator are piped in order in an annular manner, and a second capillary tube bypasses the temperature-type on-off valve, and one side of the pressure-responsive element of the temperature-type on-off valve. a temperature-sensitive cylinder that applies pressure in the refrigeration system to the other side of the pressure-responsive element and applies pressure according to outside air temperature to the other side of the pressure-responsive element, and opens a first capillary when the temperature of the temperature-sensitive cylinder becomes a predetermined temperature or less; A refrigeration device such as a refrigerator that closes the first capillary tube when the temperature exceeds a predetermined temperature.
JP26216184A 1984-12-12 1984-12-12 Freezer for refrigerator, etc. Pending JPS61140776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26216184A JPS61140776A (en) 1984-12-12 1984-12-12 Freezer for refrigerator, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26216184A JPS61140776A (en) 1984-12-12 1984-12-12 Freezer for refrigerator, etc.

Publications (1)

Publication Number Publication Date
JPS61140776A true JPS61140776A (en) 1986-06-27

Family

ID=17371908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26216184A Pending JPS61140776A (en) 1984-12-12 1984-12-12 Freezer for refrigerator, etc.

Country Status (1)

Country Link
JP (1) JPS61140776A (en)

Similar Documents

Publication Publication Date Title
US4899555A (en) Evaporator feed system with flash cooled motor
US3967782A (en) Refrigeration expansion valve
JPH01230966A (en) Control of refrigerating system and thermostatic expansion valve
JP3413943B2 (en) Refrigeration cycle
US4982574A (en) Reverse cycle type refrigeration system with water cooled condenser and economizer feature
US2051971A (en) Refrigerating apparatus
JPH09133435A (en) Expansion valve
JPS61140776A (en) Freezer for refrigerator, etc.
US3803864A (en) Air conditioning control system
JPH01175276U (en)
GB2068522A (en) Temperature-sensitive control system
US5931377A (en) Air conditioning system for a vehicle incorporating therein a block type expansion valve
US3688517A (en) Air conditioning control system
JPS60188759A (en) Refrigerator for refrigerator, etc.
JP3716378B2 (en) Hunting prevention method for temperature expansion valve
JPS60188760A (en) Refrigerator for refrigerator, etc.
JPH05196324A (en) Expansion valve for refrigerating cycle
JP2001116400A (en) Refrigeration cycle
JPH0419408Y2 (en)
JPH0639979B2 (en) Refrigeration cycle equipment
JPH10325479A (en) Cold storage and refrigerating device, refrigerant bypass valve for correcting flow rate, and temperature expansion valve
JPS6215739Y2 (en)
JP3213440B2 (en) Expansion valve
JPS59173669A (en) Expansion valve
KR940022035A (en) Refrigerator freezer