JPS61140388A - Electron beam welding method - Google Patents

Electron beam welding method

Info

Publication number
JPS61140388A
JPS61140388A JP26175784A JP26175784A JPS61140388A JP S61140388 A JPS61140388 A JP S61140388A JP 26175784 A JP26175784 A JP 26175784A JP 26175784 A JP26175784 A JP 26175784A JP S61140388 A JPS61140388 A JP S61140388A
Authority
JP
Japan
Prior art keywords
welding
electron beam
copper plate
cooling
beads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26175784A
Other languages
Japanese (ja)
Inventor
Yoshimi Kamito
好美 上戸
Takayuki Kono
隆之 河野
Yosaburo Mabuchi
馬渕 洋三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26175784A priority Critical patent/JPS61140388A/en
Publication of JPS61140388A publication Critical patent/JPS61140388A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/003Cooling means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

PURPOSE:To reduce the manhour in welding and the cost by providing the copper plate for cooling to cover a welding part and its back side and by moving with setting to the progress of the weld. CONSTITUTION:The copper plate 8 for cooling of rectangular frame shape is fitted freely alidably in the welding direction on the outer periphery of base metals 2, 2. The copper plate 8 for cooling has the hollow section to circulate the cooling water on the inner part and projection shaped mold parts 8-1, 8-2 of proper excess metal shape are formed on its upper and lower faces. The electron beam gun is moved along the groove slit 10 and the copper plate 8 for cooling is moved as well at the same sped from its rear part. The copper plate 8 forms proper surfaces excess metal beads 3, 4 simultaneously melting and joining of the base metals 2, 2 by the electron beam 1. The undercut of beads, etc. are reduced and the manhour in welding can be out off with this method. The cost reduction by the disuse of attached equipment is enabled further.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、特にステンレス鋼、アルミニウム合金、低融
点合金等の湯流れ性の高い材種のH板に対する電子ビー
ム溶接方法の改良に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention particularly relates to an improvement in an electron beam welding method for H plates made of materials with high flowability such as stainless steel, aluminum alloys, and low melting point alloys. be.

〈従来の技術〉 第3図、第4図にそれぞれ下向き、水平の貫通又は部分
溶造み電子ビーム溶接による母材の溶込み形状の一例を
示す1図において、 01、Olaは電子ビーム、02
.02aは母材、03.03aは溶着金属、04.04
aは熱影響部、05aはビードたれ落ち防と板である。
<Prior art> In Fig. 3 and Fig. 4, which show an example of the penetration shape of the base material by downward and horizontal penetration or partial welding electron beam welding, respectively, 01 and Ola are electron beam welding, 02
.. 02a is base material, 03.03a is weld metal, 04.04
a is a heat-affected zone, and 05a is a bead drip prevention plate.

而して、例えば第3図の場合、加熱、加速された電子ビ
ームO1は母材02.02の表面又は内部で集束され、
母材02.02を溶融穿孔して深溶込み溶接を行ない、
この結果、表面張力や重力等の関係により一定形状の溶
着金属部03及び熱影響部04が形成される。
For example, in the case of FIG. 3, the heated and accelerated electron beam O1 is focused on the surface or inside of the base material 02.02,
Weld the base material 02.02 and perform deep penetration welding.
As a result, a welded metal portion 03 and a heat-affected zone 04 of a fixed shape are formed due to relationships such as surface tension and gravity.

ところが、特に母材がステンレス鋼、アルミニウム合金
、低融点合金等の湯流れ性の高い材種である場合には、
重力の影響が大きく1表面ビートのアンダーカット並び
に裏面ビートのグレープ状ビードが発生し、場合によっ
ては吹き抜けが生じ、健全な溶接が困難である。
However, especially when the base material is a material with high fluidity such as stainless steel, aluminum alloy, or low melting point alloy,
The influence of gravity is large, causing undercuts on one surface bead and grape-like beads on the back surface, and in some cases, blow-through occurs, making sound welding difficult.

そこで、従来、溶接入熱を制限したり、フィラーワイヤ
の添加による溶融金属の増量を図ったり、多層バス溶接
を実施したりして上記問題点の解決を図っていた。
Conventionally, attempts have been made to solve the above problems by limiting the welding heat input, increasing the amount of molten metal by adding filler wire, or performing multilayer bus welding.

〈発明が解決しようとする問題点〉 ところが、上記溶接入熱を制限する方法では、電子ビー
ム溶接装置の出力以上の深溶込みが必要な場合に所要の
溶込深さが得られないという欠点があり、又、前記フィ
ラーワイヤの添加による溶融金属の増量を図る方法では
、ワイヤ送給設備が余分に必要な上、その送給速度制御
が困難であるという欠点がある。更に前記多層パス溶接
による方法によれば、パス数が増えることによって溶接
工数が増すという欠点が生ずる。
<Problems to be Solved by the Invention> However, the above method of limiting welding heat input has the disadvantage that the required penetration depth cannot be obtained when deeper penetration than the output of the electron beam welding device is required. Furthermore, the method of increasing the amount of molten metal by adding filler wire has the disadvantage that additional wire feeding equipment is required and that it is difficult to control the feeding speed. Furthermore, the multi-pass welding method described above has the disadvantage that the number of welding steps increases as the number of passes increases.

第4図に示すような水平溶接の場合には、母材02a、
02aの板圧が増すと、所要の溶込み深さを得るために
溶接入熱が大きくなり、特に表面ビード側での溶着金属
03aのたれ落ちが生じ易く、アンダーカットが大きく
なる。そこで、図示の如く表面及び裏面の電子ビームO
1aの照射位置より数mm直下にビードたれ落ち防止板
05aが取り付けられるが、これによってもビードのた
れ落ちを完全に防止することができず、特に湯流れ性の
高い材料にあっては大きなアンダーカットを生じる。
In the case of horizontal welding as shown in Fig. 4, base metal 02a,
When the plate pressure of 02a increases, the welding heat input increases in order to obtain the required penetration depth, and the weld metal 03a tends to drip down particularly on the surface bead side, resulting in a large undercut. Therefore, as shown in the figure, the electron beams on the front and back surfaces are
A bead dripping prevention plate 05a is installed a few mm directly below the irradiation position 1a, but even this cannot completely prevent bead dripping, and especially with materials with high flowability, a large undercut may occur. result in a cut.

このため、溶接後に補修溶接を行っているのが現状であ
る。
For this reason, repair welding is currently performed after welding.

本発明は上記問題点を有効に解決すべくなされたもので
、その目的とするところは、湯流れ性の高い材種の厚板
材を電子ビーム溶接する場合に発生するビードのたれ落
ちによる表面のアンダー力・ント及び裏面グレープ状ビ
ードを防止し、もって溶接工数の削減、付属設備の廃止
を図ることにある。
The present invention has been made to effectively solve the above-mentioned problems, and its purpose is to reduce surface damage due to bead dripping that occurs when electron beam welding thick plate materials with high flowability. The purpose is to prevent under-force and back side grape-like beads, thereby reducing welding man-hours and eliminating the need for attached equipment.

く問題点を解決するための手段) 上記目的を達成すべく本発明では溶接部表裏面を覆う適
正余盛形状鋳型部を有する冷却用銅板を電子ビーム溶接
の進行に合わせて移動させるようにしたのである。
In order to achieve the above-mentioned object, in the present invention, a cooling copper plate having an appropriately shaped mold part covering the front and back surfaces of the welded part is moved in accordance with the progress of electron beam welding. It is.

〈実施例〉 以下に本発明の一実施例を添付図面に基づいて説明する
<Example> An example of the present invention will be described below based on the accompanying drawings.

第1図、第2図はそれぞれ本発明方法による下向き貫通
溶接、横向き貫通溶接を示す斜視図である。
1 and 2 are perspective views showing downward penetration welding and lateral penetration welding, respectively, according to the method of the present invention.

第1図中2,2は移動テーブル9上に載置された厚板母
材であり、これらは互いに合わせられ、合わせ面には開
先スリットIOが形成されている。そして、これら母材
2,2の外周には図示の如く略矩形枠形の冷却用銅板8
が母材2,2の溶接方向 (図示矢印方向)にスライド
自在に嵌合しており、これの上下面には所定の凸形形状
をなす適正余盛形状鋳型部8−1.8−2が形成されて
いる。又、この冷却用銅板8は中空の矩形断面を有し、
これの内部には冷却水が流通すべく構成されており、こ
れには冷却水送給バイブロ及び冷却水排出バイブ7が連
結されている。尚、これら冷却水送給、排出バイブロ、
7は図示しない冷却水供給設備に連結されている。又、
冷却用銅板8は図示しない電子ビームガン、又はチャン
バーに支持され、該冷却用銅板8と電子ビームガン又は
チャンバー間には十分な絶縁シールドが施されている。
In FIG. 1, reference numerals 2 and 2 are thick plate base materials placed on a moving table 9, which are brought together and groove slits IO are formed in the mating surfaces. As shown in the figure, a cooling copper plate 8 having a substantially rectangular frame shape is provided on the outer periphery of these base materials 2, 2.
is fitted to be slidable in the welding direction of the base metals 2, 2 (in the direction of the arrow shown in the figure), and on the upper and lower surfaces thereof, there is a mold part 8-1. is formed. Moreover, this cooling copper plate 8 has a hollow rectangular cross section,
The inside of this is configured to allow cooling water to flow therein, and a cooling water supply vibro and a cooling water discharge vibrator 7 are connected to this. In addition, these cooling water supply, discharge vibro,
7 is connected to a cooling water supply facility (not shown). or,
The cooling copper plate 8 is supported by an electron beam gun or chamber (not shown), and a sufficient insulation shield is provided between the cooling copper plate 8 and the electron beam gun or chamber.

而して、冷却用銅板8内に冷却水を循環させつつ、電子
ビームガンを母材2,2の開先スリット10に沿って移
動させれば、冷却用銅板8もこれの後方から同一速度で
移動する。そして、電子ビームガンから放出される電子
ビーム1は母材2,2の開先スリット部10部に照射さ
れ、母材2,2を溶融してこれらを接合してゆくが、電
子ビームガンの後方から内部に冷却水を循環させる冷却
用鋼板8をスライドさせるため、該冷却用銅板8は溶融
金属を凝固させるとともに、その余盛形状鋳型部8−1
゜8−2で適正な表面余盛ビード3及び裏面余盛ビード
4を形成していく。尚、図中、5は熱影響部である。
Therefore, if the electron beam gun is moved along the groove slits 10 of the base materials 2, 2 while circulating the cooling water in the cooling copper plate 8, the cooling copper plate 8 will also be moved from behind at the same speed. Moving. Then, the electron beam 1 emitted from the electron beam gun is irradiated to the groove slit portion 10 of the base materials 2, 2, melting the base materials 2, 2 and joining them, but from the rear of the electron beam gun. In order to slide the cooling steel plate 8 that circulates cooling water inside, the cooling copper plate 8 solidifies the molten metal, and also solidifies the molten metal in the mold portion 8-1.
Proper surface reinforcement bead 3 and back surface reinforcement bead 4 are formed at 8-2. In addition, in the figure, 5 is a heat affected zone.

以上の結果、特に湯流れ性の高い材種の厚板溶接におい
て発生していた表面及び裏面ビードのアンダーカット、
グレープ状ビードを無くすことができる。又、この効果
を従来の溶接入熱の制限、フィラーワイヤの添加による
溶融金属の増量、多層パス溶接等の手段によることなく
得ることができるため、溶接工数を削減することができ
、付属設備の廃止に伴うコストメリットが得られる。
As a result of the above, undercuts on the front and back beads that occurred during thick plate welding, especially with materials with high flowability,
Grape beads can be eliminated. In addition, this effect can be achieved without using conventional methods such as limiting welding heat input, increasing the amount of molten metal by adding filler wire, or using multi-layer pass welding, which reduces welding man-hours and reduces the need for attached equipment. Cost benefits associated with abolition can be obtained.

一方、第2I2Iに示す横向き貫通溶接においても、以
上と全く同様の方法で溶接でき、同様の効果を得ること
ができる。即ち、第2図中、 1aは電子ビーム、2a
、2aは厚板母材、3aは表面余盛ビード、4aは裏面
余盛ビード、5aは熱影響部、8aは冷却水送給パイプ
、7aは冷却水排出パイプ、8aは冷却用銅板、8a−
1,8a−2は余盛形状鋳型部、9aは移動テーブル、
10aは開先スリットである。
On the other hand, in the horizontal penetration welding shown in No. 2 I2I, welding can be performed in exactly the same manner as described above, and the same effects can be obtained. That is, in Fig. 2, 1a is an electron beam, 2a
, 2a is a thick plate base material, 3a is a surface reinforcement bead, 4a is a back reinforcement bead, 5a is a heat affected zone, 8a is a cooling water supply pipe, 7a is a cooling water discharge pipe, 8a is a cooling copper plate, 8a −
1, 8a-2 is an overfill shape mold part, 9a is a moving table,
10a is a groove slit.

尚、母材の表面形状に合わせて冷却用銅板を準備すれば
、本発明方法は如何なる形状の母材に対しても適用でき
る。
The method of the present invention can be applied to any shape of the base material as long as the cooling copper plate is prepared in accordance with the surface shape of the base material.

〈発明の効果〉 以上の説明で明らかな如く本発明によれば、適正余盛形
状鋳型を有する冷却用銅板を溶接の進行に合わせて移動
させるようにしたため、特に湯流れ性の高い材種の厚板
溶接においても、ビードのたれ落ちを防止して適正な余
盛ビードを得ることができ、その結果溶接工数の削減、
付属設備の廃止に伴うコストの低減が達成できる。
<Effects of the Invention> As is clear from the above explanation, according to the present invention, the cooling copper plate having the proper overflow shape mold is moved in accordance with the progress of welding. Even when welding thick plates, it is possible to prevent the bead from dripping and obtain an appropriate excess bead, resulting in a reduction in welding man-hours and
Cost reductions can be achieved by eliminating attached equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はそれぞれ本発明方法による下向き貫通
溶接、横向き貫通溶接を示す斜視図、第3図、第4図は
それぞれ従来方法による下向き貫通溶接、横向き貫通溶
接を示す斜視図である。 図面中、 1.1aは電子ビーム、 2.2aは厚板母材、 3.3aは表面余盛ビード、 4.4aは裏面余盛ビード、 5.5aは熱影響部、 6.6aは冷却水送給パイプ、 7.7aは冷却水排水パイプ、 8ン8aは冷却用銅板、 8−1.8−2.8a−1,8a−2は余盛形状鋳型部
、9.9aは移動テーブル、 1G、 10aは開先スリットである。
1 and 2 are perspective views showing downward penetration welding and lateral penetration welding by the method of the present invention, respectively. FIGS. 3 and 4 are perspective views showing downward penetration welding and lateral penetration welding by the conventional method, respectively. . In the drawings, 1.1a is the electron beam, 2.2a is the thick plate base material, 3.3a is the front reinforcement bead, 4.4a is the back reinforcement bead, 5.5a is the heat affected zone, and 6.6a is the cooling. Water supply pipe, 7.7a is a cooling water drain pipe, 8-8a is a cooling copper plate, 8-1.8-2.8a-1, 8a-2 is a mold part with extra buildup shape, 9.9a is a moving table , 1G, 10a are groove slits.

Claims (1)

【特許請求の範囲】[Claims] 電子ビームガンから放出される電子ビームを集束させて
溶接部に照射することによって所要の溶接を行う電子ビ
ーム溶接方法において、溶接部、溶接部裏側を覆う適正
余盛形状鋳型部を有する冷却用銅板を電子ビーム溶接の
進行に合わせて移動させるようにしたことを特徴とする
電子ビーム溶接方法。
In an electron beam welding method in which the required welding is performed by focusing the electron beam emitted from an electron beam gun and irradiating it to the welding part, a cooling copper plate having a mold part with an appropriate reinforcement shape that covers the welding part and the back side of the welding part is used. An electron beam welding method characterized in that the electron beam is moved in accordance with the progress of electron beam welding.
JP26175784A 1984-12-13 1984-12-13 Electron beam welding method Pending JPS61140388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26175784A JPS61140388A (en) 1984-12-13 1984-12-13 Electron beam welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26175784A JPS61140388A (en) 1984-12-13 1984-12-13 Electron beam welding method

Publications (1)

Publication Number Publication Date
JPS61140388A true JPS61140388A (en) 1986-06-27

Family

ID=17366277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26175784A Pending JPS61140388A (en) 1984-12-13 1984-12-13 Electron beam welding method

Country Status (1)

Country Link
JP (1) JPS61140388A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107639339A (en) * 2017-10-17 2018-01-30 常熟理工学院 Magnesium alloy plate and the method for copper alloy plate welding
CN109128614A (en) * 2018-11-01 2019-01-04 湖北维胜机器人科技有限公司 Automobile batteries frame welding fixture quadrangle positioning clamping device
CN111001903A (en) * 2019-12-06 2020-04-14 南京理工大学 High nitrogen steel vibration material disk accuse type accuse nature device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107639339A (en) * 2017-10-17 2018-01-30 常熟理工学院 Magnesium alloy plate and the method for copper alloy plate welding
CN109128614A (en) * 2018-11-01 2019-01-04 湖北维胜机器人科技有限公司 Automobile batteries frame welding fixture quadrangle positioning clamping device
CN111001903A (en) * 2019-12-06 2020-04-14 南京理工大学 High nitrogen steel vibration material disk accuse type accuse nature device

Similar Documents

Publication Publication Date Title
JP3159593B2 (en) Laser processing method and apparatus
Fabbro et al. Study of CW Nd-Yag laser welding of Zn-coated steel sheets
HUE015524T5 (en) Laser welding with beam oscillation
GB0225518D0 (en) Welding method
JP2010240741A (en) High-powered laser beam welding and assembly therefor
CN110325316B (en) Method for smoothing the surface of a laser welded joint
US20210260690A1 (en) Method for splash-free welding, in particular using a solid-state laser
JP2002001557A (en) Butt welding method by laser beam
JPS61140388A (en) Electron beam welding method
Shida et al. CO2 Laser Welding of Aluminum Alloys (No. 1) Welding of Aluminum Alloys using CO 2 Laser Beam in combination with MIG Arc
JPH0919778A (en) Laser welding method for aluminum alloy without exposing molten metal on the rear surface
Iwase et al. Real time X-ray observation of dual focus beam welding of aluminum alloys
DE102013010560B4 (en) Method for joining workpieces made of zinc-containing copper alloys and joining part
JP2000336465A (en) Method for partially strengthening aluminum casting
JPH08309567A (en) Method for welding aluminum alloy
JPH08309568A (en) Laser welding method for aluminum alloy
Fujinaga et al. Development of an all-position YAG laser butt welding process with addition of filler wire
JPH03180287A (en) Laser beam welding method
JP2861528B2 (en) Laser welding method for steel sheet for press forming
JPS63207482A (en) Electron beam welding method for thick steel plate
JP7160090B2 (en) Composite welding method for metallic materials and butt welding member for metallic materials
CN108436268B (en) Laser welding method for forming excess height
JP2945294B2 (en) Laser welding method for high carbon steel strip
GB2178682A (en) Electric-resistance seam-welding method
JPS61165284A (en) High-energy density welding method of low melting metallic material