JPS61165284A - High-energy density welding method of low melting metallic material - Google Patents

High-energy density welding method of low melting metallic material

Info

Publication number
JPS61165284A
JPS61165284A JP818185A JP818185A JPS61165284A JP S61165284 A JPS61165284 A JP S61165284A JP 818185 A JP818185 A JP 818185A JP 818185 A JP818185 A JP 818185A JP S61165284 A JPS61165284 A JP S61165284A
Authority
JP
Japan
Prior art keywords
welding
energy density
copper
low melting
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP818185A
Other languages
Japanese (ja)
Inventor
Kazuo Tanaka
一雄 田中
Atsushi Numata
淳 沼田
Masanori Moribe
森部 正典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP818185A priority Critical patent/JPS61165284A/en
Publication of JPS61165284A publication Critical patent/JPS61165284A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding

Abstract

PURPOSE:To obtain beautiful weld beads having no defects on both front and rear surfaces in the stage of subjecting low melting metallic materials to high- energy density welding by subjecting said materials to penetration welding at the energy density at which a backing strip made of copper or copper alloy does not melt. CONSTITUTION:The low melting metallic materials consisting of an Al alloy, Mg alloy, etc. are used as materials to be welded and are subjected to the penetration welding of high-energy density by using the backing strip made of the copper or copper alloy. The welding conditions under which the backing strip does not melt are set in this stage from the relation between the value ab obtd. by dividing the distance D0 from the center of the focusing coil 2 of an energy beam 1 to the surface of the work 3 by the distance DF from the center of the coil 2 to the beam focus 4 and the beam current. The good weld beads having no defects on both the front and rear surfaces are thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアルミニウム、アルミニウム合金、マグネシウ
ム、マグネシウム合金等の低融点金属材、殊に薄肉の同
金属材を高エネルギー密度溶接する方法に関し、より詳
しくはアンダーフィル等の表面欠陥がなく、且つ母材の
両面に良好なビードを形成することのできる貫通型の高
エネルギー密度溶接法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for high-energy density welding of low-melting metal materials such as aluminum, aluminum alloys, magnesium, and magnesium alloys, particularly thin-walled metal materials, and more particularly to Specifically, the present invention relates to a penetrating high-energy density welding method that is free from surface defects such as underfill and can form good beads on both sides of a base material.

〔従来の技術〕[Conventional technology]

電子ビーム溶接やレーザー溶接等の高エネルギー密度溶
接は、通常のアーク溶接等に比べて溶接能率が高くしか
も溶接位置を極めて正確に設定し得る等多くの特長を有
しているところから、厚板の溶接或は精密機器の溶接等
に広く利用されはじめている。一方アルミニウムやマグ
ネシウム或はこれらの各種合金は鉄鋼材に比べて軽量で
ある為、小型・軽量化の要請に沿うものとしてその利用
分野は急速に拡大しつつあり、これら軽金属の溶接に前
述の様な高エネルギー密度溶接を適用する例も徐々に増
えてきている。ところが上記の様な軽金属は概して低融
点である為、これに前述の様な高エネルギー密度溶接を
適用しようとすると色々な問題が生じてくる。かかる問
題のうち最も大きいのは、例えば第9図に略示する如く
ビード表面にアンダーフィル欠陥が発生する現象であり
、この欠陥を溶接条件の選定により改善することは極め
て困難なことであるとされている。そこで第10〜12
図に示す様なアンダーフィル防止対策が講じられている
が、以下に示す如く必ずしも満足し得るものとは言えな
い。即ち第10図(4)、@は母材1と同質の裏当材2
を用いて部分溶込み溶接する方法であり、アンダーフィ
ル欠陥は解消されるものの、溶接部の裏面に裏当材2が
一体に溶接されてしまう為、裏当材2の切除作業が大変
である。
High energy density welding such as electron beam welding and laser welding has many advantages such as higher welding efficiency and the ability to set the welding position extremely accurately compared to ordinary arc welding, etc. It is beginning to be widely used for welding of precision equipment and welding of precision equipment. On the other hand, aluminum, magnesium, and their various alloys are lighter than steel materials, so their field of use is rapidly expanding as they meet the demands for smaller size and lighter weight. The number of cases in which high energy density welding is applied is gradually increasing. However, since the above-mentioned light metals generally have a low melting point, various problems arise when attempting to apply the above-mentioned high energy density welding to these light metals. The biggest problem among these problems is the occurrence of underfill defects on the bead surface, as shown schematically in FIG. 9, and it is extremely difficult to improve these defects by selecting welding conditions. has been done. Therefore, 10th to 12th
Measures to prevent underfill have been taken as shown in the figure, but as shown below, they are not necessarily satisfactory. That is, in Fig. 10 (4), @ is the backing material 2 which is the same as the base material 1.
This method uses partial penetration welding to eliminate underfill defects, but since the backing material 2 is integrally welded to the back side of the welded part, it is difficult to remove the backing material 2. .

第11図(4)、@は母材1の開先部表面を凸状に形成
して溶接を行なう方法であるが、溶接後の凸部の切削作
業及び裏側に大きく突出した裏ビードの切削作業に大変
な手数を要する。第12図囚、ノ)は一旦発生したアン
ダーフィル欠陥の上部に溶加材8を配置して化粧盤溶接
を行なう方法であるが、2回に亘って溶接しなければな
らないので作業能率が低く、しかも裏ビードが大きく突
出する為その切除作業も煩雑である。
Figure 11 (4) @ is a method in which the groove surface of the base metal 1 is formed into a convex shape and welding is performed, but the process involves cutting the convex part after welding and cutting the back bead that protrudes greatly on the back side. It takes a lot of work. Figure 12 (3) and (3) are methods in which filler metal 8 is placed on top of the underfill defect that has occurred and decorative welding is performed, but work efficiency is low because welding has to be performed twice. Moreover, since the back bead protrudes greatly, the removal work is also complicated.

一方、潜弧溶接やエレクトロスラグ溶接等の種々の溶接
において、溶融金属の支持用として水冷銅当金を利用す
る技術は相当以前から知られている。これは、銅の熱伝
導率が極めて高く、また水冷構造としておけば鋼等の溶
融金属に直接触れても溶融しないという特性を利用した
ものである。
On the other hand, in various welding processes such as submerged arc welding and electroslag welding, the technology of using water-cooled copper dowels to support molten metal has been known for quite some time. This takes advantage of the fact that copper has extremely high thermal conductivity, and if it is water-cooled, it will not melt even if it comes into direct contact with molten metal such as steel.

ところが前述の様な高エネルギー密度溶接では、電子ビ
ーム等のエネルギー密度が通常のアーク溶接の場合の1
02〜105 倍と極めて高い為、溶接部の裏面に銅当
金を沿えている場合、被溶接材を貫通した電子ビーム等
が銅当金に到達してこれを溶融し、銅が溶接金属内へ混
入して機械的性質や耐食性を劣化させるという問題が生
じてくる。こうした理由から電子ビーム溶接等では、裏
面に直接銅当金を当てて溶接する方法は採用されていな
い。
However, in high energy density welding as mentioned above, the energy density of the electron beam, etc. is 1
02 to 105 times, which is extremely high, so if a copper dowel is placed on the back side of the weld, the electron beam, etc. that penetrates the material to be welded will reach the copper dowel and melt it, causing the copper to enter the weld metal. A problem arises in that the mechanical properties and corrosion resistance are deteriorated by contamination. For these reasons, electron beam welding and the like do not employ a method of welding by directly applying a copper dowel to the back surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はこうした状況のもとで、前述の様な低融点の金
属を対象として簡単な操作で両面共に欠陥のない美麗な
溶接ビードを得ることのできる高エネルギー密度溶接法
を提供しようとするものであり、殊に通常レベルのエネ
ルギー溶接で使用されている銅当金を高エネルギー密度
溶接に有効に活用できる様にし、それにより低融点金属
材の高エネルギー密度溶接で生じる前述の様な問題を解
消しようとするものである。
Under these circumstances, the present invention aims to provide a high energy density welding method that can obtain a beautiful weld bead with no defects on both sides with simple operations for low melting point metals such as those mentioned above. In particular, we have made it possible to effectively utilize the copper dowels used in ordinary level energy welding for high energy density welding, thereby solving the above-mentioned problems that occur in high energy density welding of low melting point metal materials. This is what we are trying to resolve.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明に係る高エネルギー密度溶接法は、低融点金属材
を被溶接材とし、銅又は銅合金製の裏当材を用いて該裏
当材が溶融しないエネルギー密度のもとで貫通溶接する
ところに要旨を有するものである。
The high energy density welding method according to the present invention uses a low melting point metal material as the material to be welded, and performs penetration welding using a backing material made of copper or copper alloy under an energy density that does not melt the backing material. The main points are as follows.

〔作用〕[Effect]

本発明では後記実施例でも明らかにする如く、アルミニ
ウム、アルミニウム合金、マグネシウム、マグネシウム
合金等の低融点金属を溶接対象とし、裏面に銅又は銅合
金よりなる裏当金を当接して、電子ビームやレーザー等
(以下電子ビームで代表する)の高エネルギー密度を有
する加熱源を照射して溶接を行なうものであり、この溶
接に当たっては照射する電子ビーム等が被溶接材を貫通
ししかも裏当金を溶融しない様にエネルギー密度を制御
する。その結果裏面側の溶融金属が裏当金によって支持
される為、裏ビードが美麗に仕上ると共に表面にも適度
の余盛りを有するビードを得ることができ、アンダーフ
ィル欠陥を完全に解消することができる。しかも溶接に
当たっては裏当金が溶融しない様にエネルギー密度を制
御しているので溶接終了後は簡単に離脱することができ
、後処理を含めて作業性を著しく改善することができる
In the present invention, as will be made clear in the examples below, low-melting point metals such as aluminum, aluminum alloys, magnesium, and magnesium alloys are to be welded, and a backing metal made of copper or copper alloy is brought into contact with the back surface of the welding target, and an electron beam or Welding is performed by irradiating a heating source with a high energy density such as a laser (hereinafter referred to as an electron beam), and in this welding, the irradiated electron beam etc. penetrates the material to be welded and does not damage the backing metal. Control the energy density so that it does not melt. As a result, the molten metal on the back side is supported by the backing metal, so the back bead is beautifully finished and the bead has an appropriate amount of excess on the surface, making it possible to completely eliminate underfill defects. can. Moreover, during welding, the energy density is controlled so that the backing metal does not melt, so it can be easily removed after welding, and workability including post-processing can be significantly improved.

〔実施例〕〔Example〕

以下実験の経緯を追って本発明の構成及び作用効果を一
層明確にする。
The structure and effects of the present invention will be further clarified by following the details of the experiment below.

まず本発明者等は鋼材、マグネシウム合金、アルミニウ
ム合金を選択し、これらを溶融させるに要する電子ビー
ムの限界出力値を明確にしようとして基礎実験を行なっ
たところ、第1〜8図に示す様な結果が得られた。即ち
電子ビームの加速電圧を120KV、ワークディスタン
スを650鱈とし、又焦点位置がワーク表面になる様に
位置決めし、ワーク材としてアルミニウム合金(508
8:第1図)、マグネシウム合金(AZ81C:第2図
)及び銅(CI220 :第8図)を用い、ビーム電流
と溶接速度を変えた場合の溶融性を調べた。結果は第1
〜8図に示した通りであり、アルミニウム合金やマグネ
シウム合金は1〜8mA程度の低いビーム電流で溶融す
るが、銅は10mAのビーム電流でも溶融しない。また
第4図は電子ビームの焦点位置を銅製ワークの厚さ方向
にずらした場合において、ビーム電流及びa、値が銅製
ワークの溶融性に与える影響を示したグラフであり、電
子ビームの焦点をワーク表面からずらせるとビームの直
径が大きくなってエネルギー密度が急激に低下し、例え
ばビーム電流を25mAまで高めた場合でも銅製ワーク
を未溶融状態に保つことが可能である。
First, the inventors selected steel materials, magnesium alloys, and aluminum alloys, and conducted basic experiments to clarify the critical output value of the electron beam required to melt these materials. The results were obtained. That is, the accelerating voltage of the electron beam was set to 120 KV, the work distance was set to 650 KV, the focal point was positioned so that it was on the work surface, and the work material was an aluminum alloy (508 KV).
8: Fig. 1), a magnesium alloy (AZ81C: Fig. 2), and copper (CI220: Fig. 8), and the meltability was investigated when the beam current and welding speed were changed. The result is the first
As shown in Figure 8, aluminum alloys and magnesium alloys melt with a beam current as low as 1 to 8 mA, but copper does not melt even with a beam current of 10 mA. Fig. 4 is a graph showing the influence of beam current and a value on the meltability of a copper workpiece when the focal position of the electron beam is shifted in the thickness direction of the copper workpiece. When the beam is moved away from the workpiece surface, the diameter of the beam increases and the energy density drops sharply, making it possible to keep the copper workpiece in an unmolten state even when the beam current is increased to 25 mA, for example.

尚加速電圧を変化させた場合、板材表面が溶融しないビ
ーム電流の限界が変わることは容易に推測されることで
ある。
It is easily assumed that when the accelerating voltage is changed, the limit of the beam current at which the surface of the plate material does not melt changes.

尚第4図に示したa、値とは、第5図に略示する如くビ
ーム1の集束コイル2中心からワーク8表面までの距離
(Do)を、同コイル2中心からビームの焦点4までの
距fi(DF)で除した値である。
The value a shown in FIG. 4 is the distance (Do) from the center of the focusing coil 2 of the beam 1 to the surface of the workpiece 8, as shown schematically in FIG. It is the value divided by the distance fi (DF).

一般に電子ビームの裏波溶接で良好な裏波を得る条件と
して、被溶接物の板厚全体を貫通するのに要するビーム
量と被溶接物の裏面側に飛散するビーム量との間には一
定の比率があるとされており、被溶接物の裏側に飛散す
るビーム量は、ビームが被溶接物の板厚を貫通するのに
要するビーム量の10〜2596程度が適正であるとさ
れている。
In general, as a condition for obtaining good Uranami in electron beam welding, there is a constant between the amount of beam required to penetrate the entire thickness of the workpiece and the amount of beam scattered to the back side of the workpiece. It is said that there is a ratio of 10 to 2596, which is the amount of beam required for the beam to penetrate the thickness of the workpiece, for the amount of beam scattered on the back side of the workpiece. .

こうした電子ビームの特性と銅やアルミニウム合金、マ
グネシウム合金等の溶融性を考えれば、ビーム電流や焦
点位置を適正に調整することにより、アルミニウム合金
を貫通し且つその裏面に配置した銅材が溶融しない様な
溶接条件を得ることができる。例えば被溶接物の裏面側
に貫通するビームのエネルギー密度が高い状態ではビー
ム電流を10mA程度以下に抑え、又エネルギー密度が
低い状態ではビーム電流を25 mA程度以下に抑える
ことにより、銅当金を溶融させることなく被溶接物を板
厚全体に亘って確実に溶接することができる。また被溶
接材の板厚を15mm程度以下に抑えてやれば、上記の
様な適正なビーム溶接状況を容易に得ることができる。
Considering these characteristics of the electron beam and the melting properties of copper, aluminum alloy, magnesium alloy, etc., by appropriately adjusting the beam current and focus position, it is possible to penetrate the aluminum alloy and prevent the copper material placed on the back side from melting. Various welding conditions can be obtained. For example, when the energy density of the beam penetrating the back side of the workpiece is high, the beam current can be kept to about 10 mA or less, and when the energy density is low, the beam current can be kept to about 25 mA or less. The object to be welded can be reliably welded over the entire thickness without melting. Furthermore, if the thickness of the material to be welded is kept to about 15 mm or less, the above-mentioned appropriate beam welding conditions can be easily obtained.

第6〜8図は本発明に係る溶接態様を例示する概略説明
図であり、第6図(4)、@は被溶接材1.1の下面に
上面の平らな銅当金5を配置して電子ビーム溶接を行な
う例を示しており、この場合ビード裏面は被溶接物1の
裏面と同一平面状に形成される。また第7図(A)、 
Q3)は上面に裏ビード形成用の凹溝6を形成した銅当
金5を配置して溶接する例を示しており、必要に応じて
凹溝4の形状や大きさ及び溶接時のエネルギー密度を調
整することによって適度の余盛りビードを形成すること
もできる。第8図囚、@は箱材等の溶接製作時に採用さ
れる例で、略直角に組付けた被溶接材1,1の裏面角部
に銅当金5を添装し外面側から高エネルギー密度溶接を
行なう例を示している。これら何れの溶接例においても
溶融金属は銅当金5に支持されているので裏面側に流出
することがなく、表側ビードにも適度の余盛りが保障さ
れることになる。尚第7,8図の例の様に裏面に余盛り
ビードを形成する場合、余盛りビードが大きすぎると溶
融金属の全体量が相対的に不足気味となり、ビード表面
の余盛り不足が生じることもあるが、この様な場合は溶
接時に表面側から適量の溶加材を補給すればよい。また
溶接所要時間が短く銅当金の熱容量が十分に大きいとき
は単なる矩形長尺の銅当金でも差支えないが、溶接時間
が長時間に及び或は銅当金の熱容量が小さい場合等には
、銅当金を水冷構造にして昇温を防止するのがよい。
6 to 8 are schematic explanatory diagrams illustrating welding modes according to the present invention, and in FIG. 6 (4), @ is a copper dowel 5 with a flat top surface placed on the bottom surface of the workpiece 1.1. In this example, the back surface of the bead is formed to be flush with the back surface of the workpiece 1 to be welded. Also, Fig. 7 (A),
Q3) shows an example of welding by arranging a copper dowel 5 with a groove 6 for forming a back bead on the upper surface. It is also possible to form a moderate excess bead by adjusting. Figure 8 (@) is an example that is adopted when welding and manufacturing box materials, etc. A copper dowel 5 is attached to the back corner of the welded materials 1, 1 assembled at approximately right angles, and high energy is applied from the outside side. An example of density welding is shown. In any of these welding examples, since the molten metal is supported by the copper dowel 5, it does not flow out to the back side, and an appropriate amount of excess metal is ensured on the front bead. In addition, when forming an extra bead on the back side as in the example shown in Figures 7 and 8, if the extra bead is too large, the overall amount of molten metal will be relatively insufficient, resulting in insufficient extra bead on the bead surface. However, in such cases, it is sufficient to replenish an appropriate amount of filler metal from the surface side during welding. In addition, if the welding time is short and the heat capacity of the copper dowel is sufficiently large, a simple rectangular copper dot may be used, but if the welding time is long or the heat capacity of the copper dot is small, It is preferable to use a water-cooled structure for the copper dowel to prevent temperature rise.

第1表はマグネシウム合金(A281C)及びアルミニ
ウム合金(5088)を用いて本発明の高エネルギー密
度溶接実験を行なった結果を示したものであり、この表
からも明らかな様に裏当材として銅を使用し且つ該銅当
材が溶融しない様に電子ビームのエネルギー密度とビー
ム電流を調整  、することにより、銅当材を溶融させ
ることなく被溶接材を肉厚全体に亘って確実に溶接する
ことができ、しかもアンダーフィル等を一切生じること
なく両面側共に美麗なビードを得ることができる。
Table 1 shows the results of high energy density welding experiments of the present invention using magnesium alloy (A281C) and aluminum alloy (5088), and as is clear from this table, copper was used as the backing material. By adjusting the energy density and beam current of the electron beam so that the copper material does not melt, the material to be welded can be reliably welded over the entire thickness without melting the copper material. Furthermore, beautiful beads can be obtained on both sides without any underfill or the like.

しかし銅当金を使用しない場合はアンダーフィル欠陥が
発生し、また電子ビーム照射による溶融性が被溶接材と
近似している鋼を裏当材として使用すると、裏当材の一
部が電子ビームによって溶融してしまう。尚第1表の結
果からも明らかな様に、本発明を実施するに当たっては
、被溶接材の種類や肉厚に応じてエネルギー密度(ビー
ム電流、ab値を含む)及び溶接速度等を適正にコント
ロールする必要がある。
However, if a copper dowel is not used, underfill defects will occur, and if a steel whose meltability when irradiated with an electron beam is similar to that of the material to be welded is used as a backing material, part of the backing material will be damaged by the electron beam. It will melt due to As is clear from the results in Table 1, when implementing the present invention, the energy density (including beam current and AB value), welding speed, etc. must be adjusted appropriately depending on the type and thickness of the material to be welded. need to be controlled.

11′ 〔発明の効果〕 本発明は以上の様に構成されており、低融点金属材の高
エネルギー密度溶接に銅当金を適用できる様にしたので
、従来から問題視されていたアンダーフィル欠陥を確実
に解消することができ、しかも表・裏面側共に健全で美
麗な溶接ビードを得ることができる。しかも本発明では
銅当材を裏面側に配置し、且つ電子ビーム等のエネルギ
ー密度を適正に調整するだけで、他の開先加工や溶接後
の煩雑な後処理等が一切不要であるから、作業性及び溶
接能率の点でも極めて優れた方法である。
11' [Effects of the Invention] The present invention is constructed as described above, and the copper dowel can be applied to high-energy density welding of low-melting point metal materials, thereby eliminating underfill defects, which have been considered a problem in the past. It is possible to reliably eliminate this problem, and to obtain a healthy and beautiful weld bead on both the front and back sides. Moreover, in the present invention, by simply arranging the copper backing material on the back side and appropriately adjusting the energy density of the electron beam, etc., there is no need for any other groove processing or complicated post-processing after welding. This is an extremely excellent method in terms of workability and welding efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図はアルミニウム合金、マグネシウム合金及び
銅を対象としてビーム電流及び溶接速度を変えた場合の
溶融状況を示す実験結果のグラフ、第4図は電子ビーム
のa、値及びビーム電流が銅の溶融性に与える影響を示
すグラフ、第5図は電子ビーム照射状況を示す説明図、
第6〜8図は本発明の溶接例を示す概略断面図、第9図
は従来例で生じたアンダーフィル欠陥を示す概略断面図
、第10〜12図は公知のアンダーフィル防止溶接例を
示す概略断面図である。 1・・・被溶接材、      2・・・裏当材。
Figures 1 to 3 are graphs of experimental results showing the melting state when beam current and welding speed are changed for aluminum alloy, magnesium alloy, and copper. A graph showing the influence of
Figures 6 to 8 are schematic sectional views showing welding examples of the present invention, Figure 9 is a schematic sectional view showing underfill defects that occur in conventional examples, and Figures 10 to 12 show known examples of underfill prevention welding. It is a schematic sectional view. 1... Material to be welded, 2... Backing material.

Claims (1)

【特許請求の範囲】[Claims] 低融点金属材を被溶接材とする高エネルギー密度溶接に
おいて、銅又は銅合金製の裏当材を用いて該裏当材が溶
融しないエネルギー密度のもとで貫通溶接することを特
徴とする低融点金属材の高エネルギー密度溶接法。
In high-energy-density welding of low-melting-point metal materials, welding is performed using a backing material made of copper or copper alloy at an energy density that does not melt the backing material. High energy density welding method for melting point metal materials.
JP818185A 1985-01-18 1985-01-18 High-energy density welding method of low melting metallic material Pending JPS61165284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP818185A JPS61165284A (en) 1985-01-18 1985-01-18 High-energy density welding method of low melting metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP818185A JPS61165284A (en) 1985-01-18 1985-01-18 High-energy density welding method of low melting metallic material

Publications (1)

Publication Number Publication Date
JPS61165284A true JPS61165284A (en) 1986-07-25

Family

ID=11686138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP818185A Pending JPS61165284A (en) 1985-01-18 1985-01-18 High-energy density welding method of low melting metallic material

Country Status (1)

Country Link
JP (1) JPS61165284A (en)

Similar Documents

Publication Publication Date Title
CN110434332B (en) Online heat treatment process for metal additive manufacturing
JP3159593B2 (en) Laser processing method and apparatus
JP5725723B2 (en) High power laser beam welding and its assembly
JP2020506808A5 (en)
US3881084A (en) Method of welding galvanized steel
Hirose et al. CO 2 laser beam welding of 6061-T6 aluminum alloy thin plate
US20030111514A1 (en) Method of friction welding, and frictionally welded structure
US3808395A (en) Method of metallurgically joining a beryllium-base part and a copper-base part
CN107304470A (en) The manufacture method of target material assembly
CN104250687B (en) Electron beam is adjusted
CN1660537A (en) Method of application of activator in use for laser welding titanium alloy
JP2005279744A (en) Butt welding method of different kind of material using high energy beam
JP2006130562A (en) Method for repairing hole of metallic workpiece
US3944779A (en) Process for fusion-welding iron-nickle-cobalt alloy and copper or said alloy, copper and iron
JP6533642B2 (en) Member to be joined for high energy beam welding and method of manufacturing joined body
JPS61165284A (en) High-energy density welding method of low melting metallic material
Iwase et al. Dual-focus technique for high-power Nd: YAG laser welding of aluminum alloys
WO2012153590A1 (en) Laser welding method
WO2017099004A1 (en) Butt welding method
JPH08309567A (en) Method for welding aluminum alloy
JPS61193788A (en) Welding method
Katayama et al. Laser welding of aluminium alloy 5456
JPH035090A (en) Laser beam welding method for galvanized steel sheet
JPH0480986B2 (en)
JPH06126476A (en) Laser welding method for aluminum alloy