JPS63207482A - Electron beam welding method for thick steel plate - Google Patents

Electron beam welding method for thick steel plate

Info

Publication number
JPS63207482A
JPS63207482A JP4009987A JP4009987A JPS63207482A JP S63207482 A JPS63207482 A JP S63207482A JP 4009987 A JP4009987 A JP 4009987A JP 4009987 A JP4009987 A JP 4009987A JP S63207482 A JPS63207482 A JP S63207482A
Authority
JP
Japan
Prior art keywords
welded
welding
electron beam
porosity
penetration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4009987A
Other languages
Japanese (ja)
Inventor
Kazuo Tanaka
一雄 田中
Masanori Moribe
森部 正典
Yasuo Murai
康生 村井
Yoshiaki Takayori
高寄 嘉明
Atsushi Numata
淳 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4009987A priority Critical patent/JPS63207482A/en
Publication of JPS63207482A publication Critical patent/JPS63207482A/en
Pending legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

PURPOSE:To weld thick steel plates without defects such as porosity, etc., even with the vertical welding by specifying component amounts of materials to be welded and projecting an electron beam at a push angle 2-10 deg. and confining the penetration to the inside of backing material. CONSTITUTION:The contents (weight %) of C, P, S and O of the materials to be welded are adjusted in the range of 0.20<=C<=0.60, P+S<=0.02, and O<=0.005 and the materials 1 to be welded are fitted so that the groove line becomes vertical to arrange the backing material 3. When the electron beam is projected on said groove line at the push angle 2-10 deg., the occurrence of the porosity due to the dropping of molten metal can be avoided. Further, when the welding is performed so that the penetration by the electron beam is confined to the inside of the backing material 3, the root porosity 8 exists in the backing material 3 and does not exist in the material 1 side to be welded and the thick steel plates can be welded without weld defects even with the vertical welding.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は機械構造用炭素鋼及び低合金鋼等の炭素を比較
的多量に含有すると共に、板厚が100IP以上である
厚鋼板を立向溶接する場合に好適の厚鋼板の電子ビーム
溶接方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to vertically oriented steel plates containing a relatively large amount of carbon, such as carbon steel for mechanical structures and low alloy steel, and having a thickness of 100 IP or more. The present invention relates to an electron beam welding method for thick steel plates suitable for welding.

[従来の技術] 電子ビーム溶接は高エネルギー密度を有するため、1パ
スで100nun以上の溶込みを得ることも設備能力の
面からは可能であり、広く実生産に適用されつつある。
[Prior Art] Since electron beam welding has a high energy density, it is possible to obtain a penetration of 100 nun or more in one pass in terms of equipment capacity, and it is being widely applied in actual production.

ところで厚板の電子ビーム溶接においては、溶接時に表
面又は裏面側に生じる溶湯が過剰となり、これを溶接部
に保持することが困難となり、たれ落ちが生じることが
問題となる。
By the way, in electron beam welding of thick plates, excessive molten metal is produced on the front or back side during welding, making it difficult to hold it in the welded area, resulting in the problem of dripping.

このたれ落ちが生じると、たれ落ちる溶湯が粘性により
板厚中央部付近の溶湯を引き出してしまい、ビード内部
で湯不足が生じてポロシティ等の欠陥が発生する。
When this dripping occurs, the viscosity of the dripping molten metal draws out the molten metal near the center of the plate thickness, causing a shortage of molten metal inside the bead and causing defects such as porosity.

この場合に、横向溶接においては、溶湯が重力の作用で
比較的冷たい母材側(下側)へ落ちようとするため、溶
湯が冷却されて凝固し易く、たれ落ちが生じにくい。該
だ、たれ落ち防止用の当板も被溶接材に固定して容易に
取付けることができる。このため、横向溶接においては
、溶湯のたれ落ち及びこのたれ落ちに起因するポロシテ
ィ等の内部欠陥は比較的容易に防止することができる。
In this case, in horizontal welding, the molten metal tends to fall toward the relatively cold base metal side (lower side) due to the action of gravity, so the molten metal is easily cooled and solidified, and dripping is less likely to occur. In addition, the plate to prevent dripping can also be fixed to the material to be welded and easily installed. Therefore, in horizontal welding, dripping of the molten metal and internal defects such as porosity caused by the dripping can be prevented relatively easily.

また板厚が20011II11である厚板でも、欠陥な
しに貫通溶接することができたという報告もある。
There is also a report that even a thick plate with a thickness of 20011II11 was able to be penetrate-welded without any defects.

しかしながら、立向姿勢の貫通溶接においては、余盛と
なって表裏面側へ出た溶湯が加熱された状態の余盛に順
次重なってビードを形成するため、余盛は過大となり易
く、凝固が遅れて溶湯を保持することが困難となる。こ
のため、立向溶接においては、たれ落ちが生じて内部に
ポロシティが発生しやすい。従って、厚板を安定して立
向貫通溶接することは困難である。
However, in penetration welding in a vertical position, the molten metal that comes out to the front and back sides as a surplus overlaps the heated surplus to form a bead, so the surplus tends to be too large and solidification is difficult. After a delay, it becomes difficult to hold the molten metal. For this reason, in vertical welding, dripping occurs and porosity is likely to occur inside. Therefore, it is difficult to perform vertical penetration welding of thick plates stably.

この厚板の立向貫通溶接において、溶湯のたれ落ちを防
止する方法として、従来、銅の当金を用いる方法、又は
開先の表面又は裏面に溝を設け、過剰となる溶湯量を減
少させ°て溶湯のたれ落ちを防止する方法が公知である
Conventional methods for preventing molten metal from dripping during vertical penetration welding of thick plates include using a copper dowel, or creating grooves on the front or back side of the groove to reduce the amount of molten metal that becomes excessive. A method of preventing molten metal from dripping is known.

[発明が解決しようとする問題点] しかしながら、前者の銅製当金を使用する方法において
は、溶接の進行にともなって被溶接材と銅当金を相対的
にスライドさせることが必要であるが、余盛高さの変動
及び溶湯の銅当金への固着等が生じ、この当金をスムー
ズにスライドさせることは非常に困難であり、この方法
は実用的とはいえない。また、開先の表面又は裏面に溝
を設ける方法においては、このような溝を設けると、溝
の内部に強い残留磁気が生じ易く、ビームはこの磁気の
影響により左右又は上下方向に曲ることとなり、また、
溶接中に、この残留磁気の強さが変動するという問題点
がある。このように、ビームが左右に曲った場合は、目
はずれが生じる。また、ビームが上に曲ると溶湯は重力
により表面側へ押されるため、表面でたれ落ちが生じ、
ビームが下方へ曲れば裏面側でたれ落ちが生じてしまう
[Problems to be Solved by the Invention] However, in the former method using a copper dowel, it is necessary to slide the welded material and the copper dot relative to each other as welding progresses; Fluctuations in the height of the overfill and sticking of the molten metal to the copper dowel occur, making it extremely difficult to slide the dowel smoothly, and this method cannot be said to be practical. In addition, in the method of forming grooves on the front or back side of the groove, when such grooves are provided, strong residual magnetism is likely to occur inside the groove, and the beam may bend horizontally or vertically due to the influence of this magnetism. And also,
There is a problem in that the strength of this residual magnetism fluctuates during welding. If the beam bends left and right in this way, a misalignment will occur. Also, when the beam bends upward, the molten metal is pushed toward the surface by gravity, causing dripping on the surface.
If the beam bends downward, dripping will occur on the back side.

更に、厚板の電子ビーム溶接におけるポロシティの生成
要因として、鋼材中のガス成分が考えられる。つまり、
被溶接材の酸素含有量が多い場合には、溶接中に発生し
たガスが溶湯から外部へ抜は終らないうちに、凝固が完
了し、その部分にポロシティが生じる。
Furthermore, gas components in the steel material are considered to be a factor in the generation of porosity during electron beam welding of thick plates. In other words,
When the oxygen content of the material to be welded is high, solidification is completed before the gas generated during welding is exhausted from the molten metal to the outside, and porosity occurs in that part.

更にまた、炭素含有量が多くなるとP、Sの同容量が多
いδ相の凝固量が減少し、γ相凝固量が増えるので、P
、Sの固溶量が減少し、凝固割れが発生し易くなる。
Furthermore, as the carbon content increases, the amount of coagulation of the δ phase, which has the same capacity as P and S, decreases, and the amount of coagulation of the γ phase increases.
, the solid solution amount of S decreases, and solidification cracking becomes more likely to occur.

一般的には高炭素鋼は(P+8>を0.03%程度含有
しており、高炭素鋼等においては凝固割れが発生し易い
ため電子ビーム溶接の適用は困難とされている。
Generally, high carbon steel contains about 0.03% of (P+8>), and solidification cracking is likely to occur in high carbon steel, making it difficult to apply electron beam welding.

このように、被溶接材の酸素量に起因するポロシティ並
びにCI及びP、S量に起因する凝固割れが発生するが
、被溶接材の組成と、これらの種々の欠陥の発生頻度と
の関係については、未だ十分に検討されていない。
As described above, porosity caused by the oxygen content of the welded material and solidification cracking caused by the CI, P, and S content occur, but the relationship between the composition of the welded material and the frequency of occurrence of these various defects is has not yet been sufficiently investigated.

このようなことから、板厚が100IllPJJ、上で
ある厚鋼板を立向貫通溶接する場合には溶接品質の安定
性上、多大の問題点を有している。
For this reason, when performing vertical penetration welding on a thick steel plate having a thickness of 100 IllPJJ or more, there are many problems in terms of stability of welding quality.

本発明はかかる事情に鑑みてなされたものであって、ポ
ロシティ及びコールドシャット並びに凝固割れ等の欠陥
がない健全な溶接部を得ることができる厚鋼板の電子ビ
ーム溶接方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for electron beam welding of thick steel plates that can obtain a sound welded part free from defects such as porosity, cold shut, and solidification cracking. do.

[問題点を解決するための手段] 本発明に係る厚鋼板の電子ビーム溶接方法は、厚鋼板を
立向姿勢で上進溶接する厚鋼板の電子ビーム溶接方法に
おいて、被溶接材のc、p、s及びOの含有量(重量%
)を下記不等式にて示す範囲に調整し、被溶接材の裏面
に裏当材を配設して、2゛乃至10”の後退角で電子ビ
ームを被溶接材に照射し、この電子ビームによる溶込み
が裏当材の内部にとどまるように部分溶込み溶接するこ
とを特徴とする。
[Means for Solving the Problems] The electron beam welding method for thick steel plates according to the present invention is an electron beam welding method for thick steel plates in which the thick steel plates are upwardly welded in a vertical position. , s and O content (wt%
) to the range shown by the inequality below, place a backing material on the back side of the workpiece, and irradiate the workpiece with an electron beam at a receding angle of 2" to 10". It is characterized by partial penetration welding so that the penetration remains inside the backing material.

0.20≦C≦0.60 P+8≦0.020 0≦0.005 [作用] 本発明においては、先ず、被溶接材のC,P、S及びO
の含有量(重量%)を下記不等式にて示す範囲に調節す
る。
0.20≦C≦0.60 P+8≦0.020 0≦0.005 [Function] In the present invention, first, C, P, S and O of the material to be welded are
The content (weight %) of is adjusted to the range shown by the following inequality.

0.20≦C≦0.60 P+S≦0.020 O≦0. 005 そして、この被溶接材に対し、2°乃至10゜の後退角
で電子ビームを照射するから、被溶接材表面からの溶湯
のたれ落ちに起因するポロシティの発生を回避すること
ができる。また、裏当材を使用し、電子ビームによる溶
込みが裏当材内部にとどまるように部分溶込み溶接する
ことにより、被溶接材内部におけるルートポロシティ及
びコールドシャット等の欠陥並びに凝固割れの発生を防
止することができる。
0.20≦C≦0.60 P+S≦0.020 O≦0. Since the material to be welded is irradiated with the electron beam at a receding angle of 2° to 10°, it is possible to avoid the occurrence of porosity caused by dripping of molten metal from the surface of the material to be welded. In addition, by using a backing material and performing partial penetration welding so that the penetration by the electron beam remains inside the backing material, defects such as root porosity and cold shut, as well as solidification cracking, can be prevented inside the welded material. It can be prevented.

以下、添付の図面を参照してこの発明の作用について説
明する。第1図(a>、(b)はこの発明に係る電子ビ
ーム溶接方法を説明する図であって、第1図(a)は平
面図、第1図(b)は縦断面図である。被溶接材1をそ
の合せ面(開先線2として被溶接材1の上面に現われて
いる)が垂直になるように合わせ、合せ面の後方であっ
て被溶接材の裏面に裏当材3を配設する。そして、電子
ビーム4を第1図(b)に示すようにθの後退角を有し
て開先線2に照射する。この場合に、電子ビーム4によ
る溶込みが裏当材3の内部まで到達するようにビーム強
度を調節し、立向姿勢で溶接材の下部から上部に向けて
上進溶接する。そうすると、開先線2の近傍の被溶接材
部分が溶融して溶湯5となり、この溶湯5が冷却されて
凝固することにより溶接金属6が形成される。この場合
に、被溶接材1の表面側にて溶湯5の液滴7がたれ落ち
るが、この溶湯のたれ落ちは極めて少ない。また、溶込
み先端部に発生するルートポロシティ8は裏当材3内に
存在し、被溶接材1内部には欠陥として存在しない。
Hereinafter, the operation of the present invention will be explained with reference to the accompanying drawings. FIGS. 1(a) and 1(b) are diagrams for explaining the electron beam welding method according to the present invention, with FIG. 1(a) being a plan view and FIG. 1(b) being a longitudinal sectional view. Align the workpiece 1 so that its mating surface (appearing on the top surface of the workpiece 1 as the groove line 2) is vertical, and place a backing material 3 behind the mating surface and on the back side of the workpiece. Then, as shown in Fig. 1(b), the electron beam 4 is irradiated onto the groove line 2 with a receding angle of θ. Adjust the beam strength so that the beam reaches the inside of the material 3, and weld upward from the bottom to the top of the material to be welded in a vertical position.Then, the part of the material to be welded near the groove line 2 will melt. A weld metal 6 is formed by cooling and solidifying the molten metal 5. In this case, droplets 7 of the molten metal 5 drip down on the surface side of the welded material 1. There is very little dripping.Furthermore, the root porosity 8 that occurs at the welding tip exists within the backing material 3 and does not exist as a defect inside the welded material 1.

次に、本願発明において上述の構成を採用する理由につ
いて説明する。本願発明者等は内部に欠陥を発生させる
ことなく、厚鋼板被溶接材を溶接する方法を開発すべく
種々実験研究を重ねた結果、以下の知見を得た。
Next, the reason for adopting the above-described configuration in the present invention will be explained. The inventors of the present application have conducted various experimental studies to develop a method for welding thick steel plates to be welded without causing internal defects, and have obtained the following findings.

前述の如く、立向貫通溶接で内部欠陥が無い溶接部を得
ることが極めて困難であるため、本H発明者等は、第2
図(a)、(b)に示すように水平の電子ビーム4によ
る部分溶込み溶接で溶接することを検討した。
As mentioned above, it is extremely difficult to obtain a welded part without internal defects by vertical penetration welding, so the inventors of the present invention
We considered welding by partial penetration welding using a horizontal electron beam 4 as shown in Figures (a) and (b).

なお、第2図(a)は平面図、第2図(b)は縦断面図
であり、第1図(a)、(b)と同一物には同一符号を
付して説明を省略する。
In addition, FIG. 2(a) is a plan view, and FIG. 2(b) is a longitudinal cross-sectional view. Components that are the same as those in FIGS. 1(a) and (b) are given the same reference numerals and explanations are omitted. .

しかし、溶込み深さが1100aをこえる部分溶込み溶
接において、無欠陥の溶接部を得ることは貫通溶接の場
合に比較し、更に困難であった。
However, in partial penetration welding where the penetration depth exceeds 1100a, it is more difficult to obtain a defect-free weld than in the case of penetration welding.

その原因は貫通溶接においては、過剰な溶湯を被溶接材
の表面及び裏面の余盛として分担して保持するのに対し
、第2図(a)、(b)に示す部分溶込み溶接において
は、溶湯を表面のみで保持するため、溶湯は一層たれ落
ち易くなり、溶込み中央部付近に大きなポロシティ9が
発生した。
The reason for this is that in penetration welding, the excess molten metal is shared and retained as excess metal on the front and back surfaces of the welded material, whereas in partial penetration welding as shown in Figures 2(a) and (b), Since the molten metal was held only on the surface, the molten metal was more likely to drip down, and large porosity 9 was generated near the center of penetration.

また、溶込み先端部近傍ではルートポロシティ8及びコ
ールドシャット10が発生し、更に、溶込み先端部から
板厚中央にかけて微細な凝固割れ11が発生した。
In addition, root porosity 8 and cold shut 10 occurred near the penetration tip, and furthermore, fine solidification cracks 11 occurred from the penetration tip to the center of the plate thickness.

そこで、本願発明者等は、第3図(a)、(b)に示す
ように、電子ビーム4に後退角θを与えた部分溶込み溶
接法について検討した。なお、第3図(a)、(b)に
おいて、第1図(a)、(b)と同一物には同一符号を
付して説明を省略する。
Therefore, the inventors of the present invention studied a partial penetration welding method in which the electron beam 4 is given a sweepback angle θ, as shown in FIGS. 3(a) and 3(b). Note that in FIGS. 3(a) and 3(b), the same parts as in FIGS. 1(a) and 1(b) are designated by the same reference numerals, and the description thereof will be omitted.

ビームに後退角θを与えることにより、ビーム孔内の溶
湯は重力の作用でビーム孔の奥側へ押されることとなり
、過剰な溶湯は表面から液滴7となってたれ落ちが生じ
るものの、板厚中央部付近に生じていた大きなポロシテ
ィ(第2図に示すポロシティ9)は発生しなくなった。
By giving the beam a receding angle θ, the molten metal inside the beam hole is pushed toward the back of the beam hole by the action of gravity, and although excess molten metal drips from the surface as droplets 7, the plate The large porosity (porosity 9 shown in Figure 2) that had occurred near the center of the thickness no longer occurred.

なお、ビームに後退角を与え、立向上進溶接を行なう方
法は特開昭52−31937号に開示されている。
A method for performing vertical advancement welding by giving a beam a sweepback angle is disclosed in Japanese Patent Laid-Open No. 31937/1983.

この公報においては、アルミニウム合金を対象としてお
り、溶゛湯のたれ落ちが発生せずに、きれいなビード外
観が得られ、また、ルートポロシティ及びコールドシャ
ット等の内部欠陥の発生がこの溶接法を用いることによ
り完全に防止されるとしている。
This publication targets aluminum alloys, and using this welding method, a clean bead appearance can be obtained without dripping of molten metal, and internal defects such as root porosity and cold shut can be avoided. It is said that this will completely prevent it.

この効果は、対象とする板厚が比較的薄いことと、アル
ミニウムの融点が低いことによるものと考えられる。
This effect is thought to be due to the relatively thin thickness of the target plate and the low melting point of aluminum.

しかし、本願発明において対象としているのは、板厚が
1001111以上の厚鋼板である。また、鋼はアルミ
ニウムに比較して融点が高い。このため、厚鋼板の場合
は、薄いアルミニウム板の場合と異なり、ルート部の欠
陥を完全に防止することは困難であり、また、アルミニ
ウムの場合に生じなかった溶接金属の凝固割れの問題が
生じる。
However, the object of the present invention is a thick steel plate having a thickness of 1001111 mm or more. Also, steel has a higher melting point than aluminum. For this reason, in the case of thick steel plates, unlike in the case of thin aluminum plates, it is difficult to completely prevent defects in the root part, and the problem of solidification cracking of the weld metal, which does not occur in the case of aluminum, occurs. .

更に、アルミニウムは比重が小さいために10°乃至3
0°という大きな後退角を必要としたと考えられるが、
厚鋼板の場合には、後退角が10”を超えると極端に溶
は込み深さが減少してしまう。
Furthermore, since aluminum has a low specific gravity, the
It is thought that a large receding angle of 0° was required, but
In the case of thick steel plates, if the receding angle exceeds 10'', the penetration depth will be extremely reduced.

そこで、本願発明者等は、厚鋼板の電子ビーム溶接に最
適のビーム後退角を見つけるべく種々検討した結果、厚
鋼板においては、ビーム後退角を2°乃至10”に設定
する必要があることを見出した。
Therefore, the inventors of the present application conducted various studies to find the optimal beam sweep angle for electron beam welding of thick steel plates, and as a result, they found that for thick steel plates, the beam sweep angle should be set between 2° and 10". I found it.

このビーム後退角を2°乃至10°の範囲としたのは以
下の理由による。先ず後退角が2°未満であると、ビー
ム孔内の溶湯をビーム孔の奥側へ押す重力の力が小さく
なり、表面から溶湯がたれ落ちやすい。このため、粘性
でビーム孔内部の溶湯が引き出され、溶接部中央にて溶
湯不足が生じてポロシティが生成される。逆に、後退角
が10゛を超えると、ビーム孔内の溶湯が重力の作用で
ビーム孔の奥側に集まってルート近傍のビーム孔を満た
す。そうすると、ビームがこの溶湯を除去しながらビー
ム孔を形成することが必要となるため、溶は込み深さが
減少すると共に、溶込み深さの変動が大きくなるので、
厚板の溶接に適さない。このような理由で、厚鋼板の場
合には、ビーム後退角を2°乃至10°の範囲に設定す
る。
The reason why this beam recession angle is set in the range of 2° to 10° is as follows. First, if the receding angle is less than 2°, the force of gravity that pushes the molten metal in the beam hole toward the back of the beam hole becomes small, and the molten metal tends to drip from the surface. For this reason, the molten metal inside the beam hole is drawn out due to viscosity, causing a shortage of molten metal at the center of the welding area and generating porosity. On the other hand, when the receding angle exceeds 10°, the molten metal within the beam hole gathers toward the back of the beam hole due to the action of gravity, filling the beam hole near the root. In this case, it becomes necessary for the beam to form a beam hole while removing this molten metal, which reduces the penetration depth and increases the variation in the penetration depth.
Not suitable for welding thick plates. For this reason, in the case of thick steel plates, the beam recession angle is set in the range of 2° to 10°.

なお、この場合に、第2図に示すように、溶込み先端部
近傍に生じるルートポロシティ8及びコールドシャット
10並びに溶込み先端部から板厚中央部に生じる微細な
凝固割れ11は、第3図に示す方法においても防止する
ことはできず、第2図の場合と同様に発生した。
In this case, as shown in FIG. 2, the root porosity 8 and cold shut 10 that occur near the penetration tip and the minute solidification cracks 11 that occur from the penetration tip to the center of the plate thickness are as shown in FIG. Even with the method shown in Figure 2, the problem could not be prevented, and the problem occurred in the same way as in the case shown in Figure 2.

この溶込み先端部近傍に生じるコールドシャットは溶は
込み先端部のビード幅が狭いため、その周りの母材が電
子ビーム及び溶湯から得る熱量が少ないので、母材の温
度が十分に上がらないで、溶湯が急冷凝固されるために
生じるものである。
The cold shut that occurs near the welding tip is caused by the narrow bead width at the welding tip, and the surrounding base metal receives less heat from the electron beam and molten metal, so the temperature of the base metal does not rise sufficiently. This occurs because the molten metal is rapidly solidified.

一方、ルートポロシティは金属蒸気の爆発で空洞が生じ
、コールドシャットの場合と同様に、溶湯が急冷凝固さ
れるため、溶湯が十分にこの空洞を満さぬまま凝固が進
むことにより発生する。
On the other hand, root porosity occurs when a cavity is created by the explosion of metal vapor, and as in the case of cold shut, the molten metal is rapidly cooled and solidified, and solidification proceeds without the molten metal sufficiently filling the cavity.

このコールドシャット及びルートポロシティの発生を防
止する為には、溶込み先端部のビード幅を広くすること
が考えられるが、溶は込み深さが深い部分溶込み溶接の
場合には、ビード幅を広くすると縦割れが発生すること
となり、この溶込み先端部の欠陥の防止は非常に困難で
ある。
In order to prevent this cold shut and root porosity from occurring, it is possible to widen the bead width at the penetration tip, but in the case of partial penetration welding where the penetration depth is deep, the bead width may be increased. If it is widened, vertical cracks will occur, and it is very difficult to prevent defects at the tip of the penetration.

このため、第4図に示すように、予め被溶接材1の裏面
側に凸部12を形成した開先形状を検討した。このよう
な開先を用いることにより、溶込み先端部ルートポロシ
ティ等の欠陥を全て凸部12の中に発生させることがで
きる。そして、溶接後、この凸部12を切削除去するこ
とにより、これらの欠陥がない溶接部を得ることができ
る。
For this reason, as shown in FIG. 4, a groove shape in which a convex portion 12 was previously formed on the back side of the welded material 1 was studied. By using such a groove, all defects such as root porosity at the penetration tip can be generated in the convex portion 12. After welding, by cutting and removing the convex portion 12, a welded portion free of these defects can be obtained.

しかし、この方法においても、微細な凝固割れは、第2
図及び第3図に示す方法と同様に板厚中央部付近に発生
していた。
However, even with this method, fine solidification cracks are caused by secondary
Similar to the method shown in Figures and Figure 3, the cracks occurred near the center of the plate thickness.

この凝固割れは、貫通溶接の場合には殆んど発生せず、
部分溶込み溶接の場合に発生する。貫通溶接の場合には
、平行状のビードが被溶接材全体を貫通する。しかし、
部分溶は込み溶接においては、裏面部に溶融しない被溶
接材が残ることから、この部分に起因する拘束力が複雑
に被溶接材全体に作用して、凝固割れを発生させるもの
と考察される。
This solidification cracking hardly occurs in the case of penetration welding,
Occurs during partial penetration welding. In the case of penetration welding, parallel beads penetrate the entire material to be welded. but,
In partial penetration welding, there is some material to be welded that does not melt on the back side, so it is thought that the restraining force caused by this part acts on the entire material to be welded in a complex manner, causing solidification cracking. .

そこで、この溶込み先端部近傍の溶接時に生じる応力が
被溶接材に及ぼす影響を小さくするために、第1図に示
すように、被溶接材1から独立した裏当材3を使用した
Therefore, in order to reduce the influence of stress generated during welding near the penetration tip on the welded material, a backing material 3 independent from the welded material 1 was used as shown in FIG. 1.

この結果、溶込み先端部の欠陥を全て裏当材3内部にと
どめることができ、かつ(P+S)lを制限することに
より、被溶接材中で凝固割れがない溶接部を得ることが
できた。このような理由で、本願発明においては裏当材
を使用する。
As a result, all the defects at the penetration tip could be kept inside the backing material 3, and by limiting (P+S)l, it was possible to obtain a welded part without solidification cracks in the welded material. . For this reason, a backing material is used in the present invention.

なお、溶込み先端部近傍において欠陥が生じる範囲は溶
込み深さによって異なる。例えば、溶込み深さが150
umの場合には、溶込み先端部から約20nun、溶込
み深さが2501の場合には、約30IIIllまでの
範囲に欠陥が発生した。このため、裏当材の厚さは、被
溶接材の板厚が約150IIllの場合には約30Il
1以上、また被溶接材の板厚が約2501111nの場
合には、約50Il111以上であることが好ましい。
Note that the range in which defects occur near the penetration tip varies depending on the penetration depth. For example, the penetration depth is 150
In the case of um, defects occurred in a range of about 20nun from the penetration tip, and in the case of a penetration depth of 2501, defects occurred in a range of about 30IIIll. Therefore, the thickness of the backing material is approximately 30 II when the thickness of the material to be welded is approximately 150 II.
1 or more, and when the plate thickness of the material to be welded is about 2501111n, it is preferably about 50Il111 or more.

裏当材はその成分が溶接金属に混入するため、被溶接材
と同一組成の共材とすることが望ましいが、溶接部の要
求特性に合わせ、溶接欠陥及び継手性能に悪影響を及ぼ
さない範囲で、被溶接材と類似の組成を有する材料を使
用することも可能である。
Since the components of the backing material will mix with the weld metal, it is desirable to use a co-material with the same composition as the welded material, but it should be used as long as it does not adversely affect weld defects or joint performance, depending on the required characteristics of the welded part. It is also possible to use a material having a composition similar to that of the material to be welded.

次に、被溶接材の組成と種々の欠陥の発生状況との関係
について説明する。第5図は開先の形状並びに被溶接材
のC含有量(重量%)及び(P+S)含有量(重量%)
と割れ発生の有無との関係を示すグラフ図である。
Next, the relationship between the composition of the material to be welded and the occurrence of various defects will be explained. Figure 5 shows the groove shape and the C content (wt%) and (P+S) content (wt%) of the welded material.
FIG. 3 is a graph diagram showing the relationship between the occurrence of cracking and the occurrence of cracking.

但し、開先Aは第1図に示す形状、開先Bは第4図に示
す形状、開先Cは第3図に示す形状のものである。
However, the groove A has the shape shown in FIG. 1, the groove B has the shape shown in FIG. 4, and the groove C has the shape shown in FIG. 3.

この第5図は、板厚が150乃至300uである鋼材を
使用し、加速電圧が150にVであり、ビーム電流を3
00乃至400111A、溶接速度を0.6乃至1.5
n+m/秒、ビーム後退角を2乃至10°の範囲で変化
させて得たデータをプロットしたものである。
In Fig. 5, a steel material with a plate thickness of 150 to 300 μ is used, the acceleration voltage is 150 V, and the beam current is 3
00 to 400111A, welding speed 0.6 to 1.5
The data are plotted at n+m/sec with the beam recession angle varied from 2 to 10 degrees.

この図から明らかなように、開先をAタイプとし、C含
有量を0.60%以下、(P+S)含有量を0.020
%以下と規制することにより、欠陥が無い電子ビーム溶
接部が得られることがわかる。
As is clear from this figure, the groove is A type, the C content is 0.60% or less, and the (P+S) content is 0.020%.
% or less, electron beam welded parts free of defects can be obtained.

第6図は板厚及び後退角と欠陥発生の有無との関係を示
すグラフ図であり、第7図は酸素含有量(重量%)及び
板厚とポロシティ発生の有無との関係を示すグラフ図で
ある。加速電圧、ビーム電流、及び溶接速度等の条件は
、第5図の場合と同一である。
Figure 6 is a graph showing the relationship between plate thickness and recession angle and the presence or absence of defects, and Figure 7 is a graph showing the relationship between oxygen content (wt%) and plate thickness and the presence or absence of porosity. It is. Conditions such as accelerating voltage, beam current, and welding speed are the same as in the case of FIG. 5.

この第6図及び第7図から明らかなように、板厚の大き
さに拘らず、後退角を2′″乃至10°、酸素含有量を
0.005重量%以下にすることによって、欠陥が無い
清浄な溶接部を得ることができる。
As is clear from Figures 6 and 7, defects can be eliminated by setting the receding angle to 2''' to 10° and the oxygen content to 0.005% by weight or less, regardless of the plate thickness. A clean welded area can be obtained.

このような理由で、被溶接材のcSp、s及び0成分の
含有量(重量%)を下記不等式にて示す範囲に設定する
For this reason, the contents (wt%) of cSp, s, and 0 components in the welded material are set within the range shown by the following inequality.

0.20≦C≦0.60 P+S≦0.020 0≦0.005 [実施例] 次に、本発明方法により溶接した場合の実施例1〜26
について、本願特許請求の範囲にて規定した条件から外
れる条件で溶接した場合の比較例1〜41と共に説明す
る。
0.20≦C≦0.60 P+S≦0.020 0≦0.005 [Example] Next, Examples 1 to 26 in which welding was performed by the method of the present invention
This will be explained together with Comparative Examples 1 to 41 in which welding was performed under conditions that deviate from the conditions specified in the claims of the present application.

下記第1表は各実施例及び比較例の組成、溶接条件及び
溶接欠陥の有無等を示す。
Table 1 below shows the composition, welding conditions, presence or absence of welding defects, etc. of each example and comparative example.

この第1表に示すように、供試材は、C,(P十S>及
びOの含有量を種々変化させた炭素鋼又はCr及びMo
含有低合金鋼である。
As shown in Table 1, the test materials were carbon steel with various contents of C, (P1S> and O) or Cr and Mo
Contains low alloy steel.

開先の形状は、A(第1図に示すもの)、B(第4図に
示すもの)及びC(第3図に示すもの)の3種類があり
、実施例はいずれもAタイプの開先を有する。なお、A
タイプの場合の裏当材は厚さが100)であり、被溶接
部材と同一組成の共材を使用した。
There are three types of groove shapes: A (as shown in Figure 1), B (as shown in Figure 4), and C (as shown in Figure 3). have a tip. In addition, A
The backing material in the case of this type had a thickness of 100 mm, and was a common material having the same composition as the welded member.

また、第1表中、Oは欠陥がない場合、×は欠陥が発生
した場合である。
Further, in Table 1, O indicates a case where there is no defect, and × indicates a case where a defect occurs.

この第1表から明らかなように、開先形状が8又はCタ
イプの場合には、いずれも被溶接材の内部において割れ
が生じたのに対し、裏当材を使用する開先タイプAの場
合には、C含有量が0.20−0.60%、(P+S)
含有量が0.020%以下、0含有量が0.005%以
下のときに、割れ及びポロシティは全く生じなかった。
As is clear from Table 1, cracks occurred inside the welded material when the groove shape was Type 8 or C, whereas when the groove type A used a backing material, cracks occurred inside the welded material. In case, C content is 0.20-0.60%, (P+S)
No cracking or porosity occurred when the content was 0.020% or less and the zero content was 0.005% or less.

また、ビーム後退角が2°未満の場合にはポロシティが
発生したが、2゛以上の場合にはボロシー 2〇 − ティは発生しなかった。
In addition, porosity occurred when the beam recession angle was less than 2°, but porosity did not occur when the beam recession angle was 2° or more.

し発明の効果] この発明によれは、電子ビーム溶接時の溶湯たれ落ちに
起因するポロシティの発生が回避されると共に、ルート
ポロシティ及びコールドシャット等の欠陥並びに凝固割
れ等がない健全な溶接部を得ることができる。
[Effects of the Invention] According to the present invention, the occurrence of porosity due to dripping of molten metal during electron beam welding can be avoided, and a sound welded part without defects such as root porosity and cold shut, as well as solidification cracks, etc. can be achieved. Obtainable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)はこの発明の実施例に係る電子ビ
ーム溶接方法を示す図、第2図(a)。 (b)は水平ビームの場合、第3図(a)、(b)は裏
当材がない場合、及び第4図は裏面に凸起を有する場合
の開先形状を示す図、第5図はC1(P+8)含有量及
び開先形状と割れの有無との関係を示すグラフ図、第6
図は板厚及び後退角と欠陥の有無との関係を示すグラフ
図、第7図はC含有量及び板厚とポロシティの有無との
関係を示すグラフ図である。 1:被溶接材、2;開先線、3:裏当材、4:電子ビー
ム、5;溶湯、6;溶接金属、7:たれ落ち溶湯、8ニ
ル−トポロジティ、9;ポロシティ、10:コールドシ
ャット、11:凝固割れ出願人 株式会社 神 戸 製
 鋼 所代理人 弁理士 藤 巻 正 憲 後狼内(°)
FIGS. 1(a) and 1(b) are diagrams showing an electron beam welding method according to an embodiment of the present invention, and FIG. 2(a) is a diagram showing an electron beam welding method according to an embodiment of the present invention. (b) shows the groove shape in the case of a horizontal beam, Fig. 3 (a) and (b) show the groove shape without a backing material, and Fig. 4 shows the groove shape in the case where the back side has a convexity. is a graph showing the relationship between C1 (P+8) content, groove shape, and presence or absence of cracks, No. 6
The figure is a graph showing the relationship between plate thickness and receding angle and the presence or absence of defects, and FIG. 7 is a graph showing the relationship between C content and plate thickness and the presence or absence of porosity. 1: Material to be welded, 2: Groove line, 3: Backing material, 4: Electron beam, 5: Molten metal, 6: Weld metal, 7: Dripping molten metal, 8-nil topology, 9: Porosity, 10: Cold Shut, 11: Solidification Cracking Applicant Kobe Steel Co., Ltd. Representative Patent Attorney Tadashi Fujimaki Kengo Rouchi (°)

Claims (1)

【特許請求の範囲】 厚鋼板を立向姿勢で上進溶接する厚鋼板の電子ビーム溶
接方法において、被溶接材のC、P、S及びOの含有量
(重量%)を下記不等式にて示す範囲に調整し、被溶接
材の裏面に裏当材を配設して、2°乃至10°の後退角
で電子ビームを被溶接材に照射し、この電子ビームによ
る溶込みが裏当材の内部にとどまるように部分溶込み溶
接することを特徴とする厚鋼板の電子ビーム溶接方法。 0.20≦C≦0.60 P+S≦0.020 O≦0.005
[Claims] In an electron beam welding method for thick steel plates in which the steel plates are welded upward in a vertical position, the content (% by weight) of C, P, S, and O in the material to be welded is expressed by the following inequality. A backing material is placed on the back side of the material to be welded, and the electron beam is irradiated onto the material at a receding angle of 2° to 10°. A method for electron beam welding of thick steel plates, which is characterized by partial penetration welding so that the welding stays inside. 0.20≦C≦0.60 P+S≦0.020 O≦0.005
JP4009987A 1987-02-25 1987-02-25 Electron beam welding method for thick steel plate Pending JPS63207482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4009987A JPS63207482A (en) 1987-02-25 1987-02-25 Electron beam welding method for thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4009987A JPS63207482A (en) 1987-02-25 1987-02-25 Electron beam welding method for thick steel plate

Publications (1)

Publication Number Publication Date
JPS63207482A true JPS63207482A (en) 1988-08-26

Family

ID=12571417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4009987A Pending JPS63207482A (en) 1987-02-25 1987-02-25 Electron beam welding method for thick steel plate

Country Status (1)

Country Link
JP (1) JPS63207482A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2872441A1 (en) * 2004-07-01 2006-01-06 Commissariat Energie Atomique Electron beam welding procedure for aluminium alloy components consists of forming weld bead 20 per cent deeper than components thickness to avoid fissuring
EP2316607A1 (en) * 2009-10-27 2011-05-04 General Electric Company Workpiece with channel and process of welding for preventing porosity in a formed weld

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2872441A1 (en) * 2004-07-01 2006-01-06 Commissariat Energie Atomique Electron beam welding procedure for aluminium alloy components consists of forming weld bead 20 per cent deeper than components thickness to avoid fissuring
EP2316607A1 (en) * 2009-10-27 2011-05-04 General Electric Company Workpiece with channel and process of welding for preventing porosity in a formed weld

Similar Documents

Publication Publication Date Title
Haboudou et al. Reduction of porosity content generated during Nd: YAG laser welding of A356 and AA5083 aluminium alloys
EP2246144B1 (en) A method of high-powered laser beam welding of articles using a metallic shim produding from the surfaces of the articles ; Assembly therefore
EP2666579B1 (en) Hybrid laser arc welding process and apparatus
JP5873658B2 (en) Hybrid laser arc welding process and apparatus
JP4612076B2 (en) Laser welding method for metal plated plate
EP0098306A1 (en) Welding method using laser beam
CN102357734A (en) Method for connecting 2XXX and 7XXX heterogeneous aluminum alloy by laser filler wire
Meng et al. Formation and suppression mechanism of lack of fusion in narrow gap laser-arc hybrid welding
US4019018A (en) Process for narrow gap welding of aluminum alloy thick plates
US8853594B2 (en) Welding method and apparatus therefor
Yuan et al. Relationship between penetration and porosity in horizontal fillet welding by a new process “hybrid tandem MAG welding process”
JPH11254152A (en) Welding method for conductor
JPS63207482A (en) Electron beam welding method for thick steel plate
EP0129402A1 (en) Spray welding of metals
US2805178A (en) Welding flux composition
Tian et al. The porosity formation mechanism in the laser-welded butt joint of 8 mm thickness Ti-6Al-4V alloy: effect of welding speed on the metallurgical pore formation
US3609287A (en) Method and apparatus for electron beam welding
JP7160090B2 (en) Composite welding method for metallic materials and butt welding member for metallic materials
JPH09155548A (en) Welding method of metal
JP2005262226A (en) Laser welding method of galvanized steel sheet
JP4622305B2 (en) Method of lap fusion welding of Zn-plated steel sheet and Fe-based filler material
KR102027770B1 (en) Welding method for zinc plated steel using the gap paste
JPH0334433B2 (en)
JPS61140388A (en) Electron beam welding method
JPH01205892A (en) Method for welding high carbon steel