JPS61138519A - Membrane separation process of hydrogen isotope - Google Patents

Membrane separation process of hydrogen isotope

Info

Publication number
JPS61138519A
JPS61138519A JP25969284A JP25969284A JPS61138519A JP S61138519 A JPS61138519 A JP S61138519A JP 25969284 A JP25969284 A JP 25969284A JP 25969284 A JP25969284 A JP 25969284A JP S61138519 A JPS61138519 A JP S61138519A
Authority
JP
Japan
Prior art keywords
membrane
hydrogen
film body
tritium
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25969284A
Other languages
Japanese (ja)
Other versions
JPS6394B2 (en
Inventor
Masao Matsui
松井 正夫
Manabu Ueno
学 上野
Hiroyuki Kawakami
裕之 川上
Yasukazu Kitamatsu
北松 康和
Yoshihiko Mishina
三品 義彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP25969284A priority Critical patent/JPS61138519A/en
Publication of JPS61138519A publication Critical patent/JPS61138519A/en
Publication of JPS6394B2 publication Critical patent/JPS6394B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To improve isolation performance for hydrogen isotope by using a film body formed of a shape memory alloy prepd. by sintering Ni-Al powder and executing separation by permeation at near a martensitic transformation temp. of said film body. CONSTITUTION:A film body 1 formed of a shape memory alloy prepd. by sintering Ni-Al powder is fixed to a clamp 2, and a gaseous mixture of hydrogen with tritium to be isolated is introduced into a feed tank 3. Then, a permeation cell 6 is heated by an electric furnace 5 at a specified temp. corresponding to the martensitic transformation temp. of said film body 1. The hydrogen- tritium gaseous mixture 4 is allowed to permeate the film body by sucking using vacuum, thus gaseous tritium is isolated. As the result, the isolation performance for hydrogen isotope is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、核融合炉から放出される排ガス中に含まれて
いる水素同位体たるトリチウムを回収し、燃料として再
利用する工程や環境問題に関連してトリチウムを含む水
の電気分解によりトリチウムガスを回収する工程への利
用が期待できる水素同位体の膜分離法に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to the process of recovering tritium, a hydrogen isotope contained in the exhaust gas emitted from a nuclear fusion reactor, and reusing it as fuel, as well as environmental problems. The present invention relates to a membrane separation method for hydrogen isotopes that can be expected to be used in the process of recovering tritium gas through electrolysis of tritium-containing water.

〔従来の技術〕[Conventional technology]

従来、この種の水素−トリチウム混合ガスの分離法とし
ては、水蒸溜法、深冷分離法、熱拡散法、金属膜透過法
、及びレーザー法が知られている。
Conventionally, water distillation, cryogenic separation, thermal diffusion, metal membrane permeation, and laser methods are known as methods for separating this type of hydrogen-tritium mixed gas.

このうち金属膜透過法は金iI4膜による水素同位体の
透過速度が同位体の種類により異なることを利用するも
ので、従来の提案としてはHoFujita etal
 、 J、Nucl、SC1、TechnoJ 、 、
 17,436(1980)がある。
Among these, the metal membrane permeation method utilizes the fact that the permeation rate of hydrogen isotopes through a gold iI4 membrane differs depending on the type of isotope.
, J, Nucl, SC1, TechnoJ , ,
17,436 (1980).

この膜分離法)ま操作が簡単であって、省エネルギー技
術の面から有望である。
This membrane separation method is easy to operate and is promising as an energy-saving technology.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、現在最適と考えられているパラジウム合
金膜でさえ、効率のよい分離には400℃位の高温が必
要であり、高温での操作のためトリチウムガスのもれに
対する対策が必要となる。
However, even with palladium alloy membranes, which are currently considered optimal, a high temperature of around 400° C. is required for efficient separation, and countermeasures against leakage of tritium gas are required for operation at high temperatures.

したがって、室温でもパラジウム合金膜に匹敵する分離
係数を示す透過膜、またはできるだけ低温で大きい分離
係数を示す透過膜を開発することが望まれている。
Therefore, it is desired to develop a permeable membrane that exhibits a separation coefficient comparable to that of a palladium alloy membrane even at room temperature, or a permeable membrane that exhibits a large separation coefficient at as low a temperature as possible.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれらの要望を満足させることを目的とするも
ので、その要旨は、膜体によって水素同位体混合ガスを
透過分離する膜分離法;:おいて、上記膜体をNム一、
υ粉末焼結で調製した形状記憶合金で形成すると共に、
当該膜体のマルテンサイト変態温度付近下で透過分離す
ることを特徴とする水素同位体の膜分離法書二ある。
The present invention aims to satisfy these demands, and its gist is a membrane separation method in which hydrogen isotope mixed gas is permeated and separated by a membrane body;
Formed with shape memory alloy prepared by υ powder sintering,
There is a method for membrane separation of hydrogen isotopes, which is characterized by permeation and separation at a temperature near the martensitic transformation temperature of the membrane.

〔実施例〕〔Example〕

(1)  粉末焼結で調製した形状記憶合金の膜体に使
用したNi−Al系合金は、まずNl粉末とM粉末を5
0%(重量)の割合で混合してから石英ガラス管中に充
填し、焼結ポート上、真空下で、700℃の温度で1時
間用焼結して合金粉末を調製し、次に、この合金粉末に
N!粉末を加えてNi j 73%、7vI+ 27%
(二なるよう(:成分調製してから686M−の成形圧
力で成形した試料(Nl−Al囚〕を1250”Cで1
時間焼結してから氷水中で焼入れし、熱弾性形マルテン
サイト組織を形成させて、形状記憶現象を起こす膜体(
ニした( Ni −AJ(B) )膜体は直径10U、
厚さIULである。
(1) The Ni-Al alloy used for the film body of the shape memory alloy prepared by powder sintering was first mixed with 50% Nl powder and M powder.
After mixing at a ratio of 0% (weight), it was filled into a quartz glass tube and sintered on a sintering port under vacuum at a temperature of 700°C for 1 hour to prepare an alloy powder, and then: N to this alloy powder! Add powder to Ni j 73%, 7vI+ 27%
(2) After preparing the components, a sample (Nl-Al prisoner) molded at a molding pressure of 686M was heated to 1250"C for 1
After being sintered for a period of time, it is quenched in ice water to form a thermoelastic martensitic structure, which causes a shape memory phenomenon.
The (Ni-AJ(B)) membrane body has a diameter of 10U,
The thickness is IUL.

+1)  水素同位体の分離 調製した前記膜体(1)を図の如く、クランプ(2)に
固定し、供給タンク(3))膜分離すべき水素−トリテ
クム混合ガス(4)を導入してから、電気炉(5)によ
って、前記膜体(1)のマルテンナイト変態温度に相応
する所定の温度に透過セル(6)を加熱し、この状態で
真空吸引:;より水素−トリチクム混合ガス(4)を膜
体(1)に透過し、トリチウムガスを分離するようにし
ている。
+1) Hydrogen isotope separation The prepared membrane body (1) is fixed to the clamp (2) as shown in the figure, and the hydrogen-tritecum mixed gas (4) to be membrane separated is introduced into the supply tank (3). Then, the permeation cell (6) is heated by the electric furnace (5) to a predetermined temperature corresponding to the martenite transformation temperature of the membrane (1), and in this state vacuum suction:; 4) is permeated through the membrane body (1) to separate tritium gas.

尚、(表−1)は所定温度の下、膜体を透過し集められ
た気体を一定時間毎(ニテプラーポンプで定量分析し、
各時間毎に求めた分離係数の比で供給側に濃縮されるト
リチウムガスの量を求め、他のデータととも(=示した
ものである。
In addition, (Table 1) shows that the gas that permeates through the membrane body and is collected at a specified temperature is quantitatively analyzed using a Nitepra pump.
The amount of tritium gas concentrated on the supply side was determined based on the ratio of the separation coefficients determined for each time period, and was shown together with other data.

NI   OJ4  0.98  204151a9 
 2.22270 3fL6   !1LO24,2B
d、e) 0.50  378  QJ33     1.968
U8316 0J6  1.00  20 13J  
 116  1.20245 51.2  2L2  
 λ42a) Nl−人1(A)  0J35   1.01    
20 9.93    a61    1.77220
  &39  465  1.80b) Ni−Al(B) 0月5  0.99  20 3.
31  164  2.02310 1.98  CI
CJ90  220Cン            3e
) Pd−Ag         O,504001,37
刈0       2.12(Jl)焼入れしない合金
 (bl焼入れした合金 (C) Pd−25Ag、膜
−I−1−% (d)ノコy ’f /L’膜 (elmol Cm 
S paこの結果、粉末焼結により比金属密度の高い材
料を調製すれば、Ni単体からなる材料でも、室温の試
験、ではPd−Ag合金に匹敵する分離係数を示したが
、Ni−AI(ト)合金では、表11=示したように、
マルテンサイト変態温度付近(310℃)で、Pd−A
g合金の分離係数の約20倍の分離係数を示した。
NI OJ4 0.98 204151a9
2.22270 3fL6! 1LO24, 2B
d, e) 0.50 378 QJ33 1.968
U8316 0J6 1.00 20 13J
116 1.20245 51.2 2L2
λ42a) Nl-person 1 (A) 0J35 1.01
20 9.93 a61 1.77220
&39 465 1.80b) Ni-Al(B) 0/5 0.99 20 3.
31 164 2.02310 1.98 CI
CJ90 220Cn 3e
) Pd-Ag O,504001,37
0 2.12 (Jl) Unquenched alloy (bl Quenched alloy (C) Pd-25Ag, membrane-I-1-% (d) Saw y 'f /L' membrane (elmol Cm
As a result, if a material with a high specific metal density was prepared by powder sintering, even a material made of single Ni showed a separation factor comparable to that of a Pd-Ag alloy in room temperature tests, but Ni-AI ( g) For alloys, as shown in Table 11,
At around the martensitic transformation temperature (310°C), Pd-A
It showed a separation factor about 20 times that of g-alloy.

〔発明の効果〕〔Effect of the invention〕

本発明は上述の如く、膜体をNi−Al粉末焼結で調製
した形状記憶合金で形成すると共(=、当該膜体のマル
テンサイト変態温度付近下で透過分離するから水素同位
体の分離性能を向上できる。
As described above, the present invention has a membrane body made of a shape memory alloy prepared by sintering Ni-Al powder, and permeation separation is performed near the martensitic transformation temperature of the membrane body, so hydrogen isotope separation performance is improved. can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の使用説明図である。 (1)・・膜体。 昭和59年12月 8 日 出願人  松  井  正  夫 同    上   野       学問    川 
  上   裕   2同     北   松   
康   和−〇ロ      義      産 量     :   0
The drawings are explanatory diagrams for use of the present invention. (1)...Membrane body. December 8, 1980 Applicant: Masao Matsui, Manabu Ueno
Yutaka Kami 2 Kitamatsu
Kowa-〇Royoshi Production: 0

Claims (1)

【特許請求の範囲】[Claims] 膜体によって水素同位体混合ガスを透過分離する膜分離
法において、上記膜体をNi−Al粉末焼結で調製した
形状記憶合金で形成すると共に、当該膜体のマルテンサ
イト変態温度付近で透過分離することを特徴とする水素
同位体の膜分離法。
In a membrane separation method in which hydrogen isotope mixed gas is permeated and separated by a membrane, the membrane is formed of a shape memory alloy prepared by sintering Ni-Al powder, and the membrane is permeated and separated at a temperature near the martensitic transformation temperature of the membrane. A membrane separation method for hydrogen isotopes.
JP25969284A 1984-12-08 1984-12-08 Membrane separation process of hydrogen isotope Granted JPS61138519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25969284A JPS61138519A (en) 1984-12-08 1984-12-08 Membrane separation process of hydrogen isotope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25969284A JPS61138519A (en) 1984-12-08 1984-12-08 Membrane separation process of hydrogen isotope

Publications (2)

Publication Number Publication Date
JPS61138519A true JPS61138519A (en) 1986-06-26
JPS6394B2 JPS6394B2 (en) 1988-01-05

Family

ID=17337594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25969284A Granted JPS61138519A (en) 1984-12-08 1984-12-08 Membrane separation process of hydrogen isotope

Country Status (1)

Country Link
JP (1) JPS61138519A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0455397A2 (en) * 1990-04-30 1991-11-06 Ontario Hydro Process and apparatus for tritium recovery
US6569226B1 (en) * 2001-09-28 2003-05-27 The United States Of America As Represented By The United States Department Of Energy Metal/ceramic composites with high hydrogen permeability
WO2007000027A1 (en) * 2005-06-29 2007-01-04 The University Of Queensland Isotope separation by quantum swelling
KR100786626B1 (en) 2006-10-11 2007-12-21 한국표준과학연구원 Hydrogen isotopic pump and its application on the low temperature calibration system
US7614868B2 (en) 2004-11-05 2009-11-10 Funai Electric Co., Ltd. Display apparatus and metal mold structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0455397A2 (en) * 1990-04-30 1991-11-06 Ontario Hydro Process and apparatus for tritium recovery
US6569226B1 (en) * 2001-09-28 2003-05-27 The United States Of America As Represented By The United States Department Of Energy Metal/ceramic composites with high hydrogen permeability
US7614868B2 (en) 2004-11-05 2009-11-10 Funai Electric Co., Ltd. Display apparatus and metal mold structure
WO2007000027A1 (en) * 2005-06-29 2007-01-04 The University Of Queensland Isotope separation by quantum swelling
KR100786626B1 (en) 2006-10-11 2007-12-21 한국표준과학연구원 Hydrogen isotopic pump and its application on the low temperature calibration system

Also Published As

Publication number Publication date
JPS6394B2 (en) 1988-01-05

Similar Documents

Publication Publication Date Title
Grashoff et al. The purification of hydrogen
Burkhanov et al. Palladium-based alloy membranes for separation of high purity hydrogen from hydrogen-containing gas mixtures
Yoshida et al. Preliminary design of a fusion reactor fuel cleanup system by the palladium-alloy membrane method
US20130115156A1 (en) Process for the detritiation of soft housekeeping waste and plant thereof
US3793435A (en) Separation of hydrogen from other gases
CN107469628B (en) The device and method of gaseous state tritium and its isotope in a kind of removal fused salt
Sheridan Iii et al. Hydrogen separation from mixed gas streams using reversible metal hydrides
JPS59177117A (en) Separation of hydrogen-helium
JPS61138519A (en) Membrane separation process of hydrogen isotope
JPS57209629A (en) Method and plant for enriching heavy hydrogen and/or tritium by stage in substance proper to exchange heavy hydrogen and tritium with hydrogen in isotope form
Birdsell et al. Tritium recovery from tritiated water with a two-stage palladium membrane reactor
GB860099A (en) Method of producing permeable membranes
US3232026A (en) Separation method using activated diffusion barriers
CN103977714B (en) A kind of stainless steel-based/the compound porous metal film of Ni-FeO and preparation method thereof
CN106586961B (en) Surabaya preparation facilities and method
Violante et al. Membrane separation technologies: their application to the fusion reactor fuel cycle
CN112281016A (en) Palladium alloy for hydrogen permeation and preparation method thereof
Imoto et al. Separation of hydrogen isotopes with uranium hydride
GB832317A (en) Process for the production of fine-pore metal filters, membranes and diaphragms
CN104128093B (en) A kind of hydrogen isotope method for gas purification
JP2022170760A (en) Carbonic acid gas treatment device, and carbonic acid gas treatment method
Willms et al. Fuel cleanup systems for fusion fuel processing
JPS59177120A (en) Membrane separation system of hydrogen isotope
CN1117941A (en) Ceramic-metal composite film reactor and its preparation and application
JP3737574B2 (en) Carbon dioxide separation method and carbon dioxide separation membrane