JPS61138519A - Membrane separation process of hydrogen isotope - Google Patents
Membrane separation process of hydrogen isotopeInfo
- Publication number
- JPS61138519A JPS61138519A JP25969284A JP25969284A JPS61138519A JP S61138519 A JPS61138519 A JP S61138519A JP 25969284 A JP25969284 A JP 25969284A JP 25969284 A JP25969284 A JP 25969284A JP S61138519 A JPS61138519 A JP S61138519A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- hydrogen
- film body
- tritium
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、核融合炉から放出される排ガス中に含まれて
いる水素同位体たるトリチウムを回収し、燃料として再
利用する工程や環境問題に関連してトリチウムを含む水
の電気分解によりトリチウムガスを回収する工程への利
用が期待できる水素同位体の膜分離法に関するものであ
る。[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to the process of recovering tritium, a hydrogen isotope contained in the exhaust gas emitted from a nuclear fusion reactor, and reusing it as fuel, as well as environmental problems. The present invention relates to a membrane separation method for hydrogen isotopes that can be expected to be used in the process of recovering tritium gas through electrolysis of tritium-containing water.
従来、この種の水素−トリチウム混合ガスの分離法とし
ては、水蒸溜法、深冷分離法、熱拡散法、金属膜透過法
、及びレーザー法が知られている。Conventionally, water distillation, cryogenic separation, thermal diffusion, metal membrane permeation, and laser methods are known as methods for separating this type of hydrogen-tritium mixed gas.
このうち金属膜透過法は金iI4膜による水素同位体の
透過速度が同位体の種類により異なることを利用するも
ので、従来の提案としてはHoFujita etal
、 J、Nucl、SC1、TechnoJ 、 、
17,436(1980)がある。Among these, the metal membrane permeation method utilizes the fact that the permeation rate of hydrogen isotopes through a gold iI4 membrane differs depending on the type of isotope.
, J, Nucl, SC1, TechnoJ , ,
17,436 (1980).
この膜分離法)ま操作が簡単であって、省エネルギー技
術の面から有望である。This membrane separation method is easy to operate and is promising as an energy-saving technology.
しかしながら、現在最適と考えられているパラジウム合
金膜でさえ、効率のよい分離には400℃位の高温が必
要であり、高温での操作のためトリチウムガスのもれに
対する対策が必要となる。However, even with palladium alloy membranes, which are currently considered optimal, a high temperature of around 400° C. is required for efficient separation, and countermeasures against leakage of tritium gas are required for operation at high temperatures.
したがって、室温でもパラジウム合金膜に匹敵する分離
係数を示す透過膜、またはできるだけ低温で大きい分離
係数を示す透過膜を開発することが望まれている。Therefore, it is desired to develop a permeable membrane that exhibits a separation coefficient comparable to that of a palladium alloy membrane even at room temperature, or a permeable membrane that exhibits a large separation coefficient at as low a temperature as possible.
本発明はこれらの要望を満足させることを目的とするも
ので、その要旨は、膜体によって水素同位体混合ガスを
透過分離する膜分離法;:おいて、上記膜体をNム一、
υ粉末焼結で調製した形状記憶合金で形成すると共に、
当該膜体のマルテンサイト変態温度付近下で透過分離す
ることを特徴とする水素同位体の膜分離法書二ある。The present invention aims to satisfy these demands, and its gist is a membrane separation method in which hydrogen isotope mixed gas is permeated and separated by a membrane body;
Formed with shape memory alloy prepared by υ powder sintering,
There is a method for membrane separation of hydrogen isotopes, which is characterized by permeation and separation at a temperature near the martensitic transformation temperature of the membrane.
(1) 粉末焼結で調製した形状記憶合金の膜体に使
用したNi−Al系合金は、まずNl粉末とM粉末を5
0%(重量)の割合で混合してから石英ガラス管中に充
填し、焼結ポート上、真空下で、700℃の温度で1時
間用焼結して合金粉末を調製し、次に、この合金粉末に
N!粉末を加えてNi j 73%、7vI+ 27%
(二なるよう(:成分調製してから686M−の成形圧
力で成形した試料(Nl−Al囚〕を1250”Cで1
時間焼結してから氷水中で焼入れし、熱弾性形マルテン
サイト組織を形成させて、形状記憶現象を起こす膜体(
ニした( Ni −AJ(B) )膜体は直径10U、
厚さIULである。(1) The Ni-Al alloy used for the film body of the shape memory alloy prepared by powder sintering was first mixed with 50% Nl powder and M powder.
After mixing at a ratio of 0% (weight), it was filled into a quartz glass tube and sintered on a sintering port under vacuum at a temperature of 700°C for 1 hour to prepare an alloy powder, and then: N to this alloy powder! Add powder to Ni j 73%, 7vI+ 27%
(2) After preparing the components, a sample (Nl-Al prisoner) molded at a molding pressure of 686M was heated to 1250"C for 1
After being sintered for a period of time, it is quenched in ice water to form a thermoelastic martensitic structure, which causes a shape memory phenomenon.
The (Ni-AJ(B)) membrane body has a diameter of 10U,
The thickness is IUL.
+1) 水素同位体の分離
調製した前記膜体(1)を図の如く、クランプ(2)に
固定し、供給タンク(3))膜分離すべき水素−トリテ
クム混合ガス(4)を導入してから、電気炉(5)によ
って、前記膜体(1)のマルテンナイト変態温度に相応
する所定の温度に透過セル(6)を加熱し、この状態で
真空吸引:;より水素−トリチクム混合ガス(4)を膜
体(1)に透過し、トリチウムガスを分離するようにし
ている。+1) Hydrogen isotope separation The prepared membrane body (1) is fixed to the clamp (2) as shown in the figure, and the hydrogen-tritecum mixed gas (4) to be membrane separated is introduced into the supply tank (3). Then, the permeation cell (6) is heated by the electric furnace (5) to a predetermined temperature corresponding to the martenite transformation temperature of the membrane (1), and in this state vacuum suction:; 4) is permeated through the membrane body (1) to separate tritium gas.
尚、(表−1)は所定温度の下、膜体を透過し集められ
た気体を一定時間毎(ニテプラーポンプで定量分析し、
各時間毎に求めた分離係数の比で供給側に濃縮されるト
リチウムガスの量を求め、他のデータととも(=示した
ものである。In addition, (Table 1) shows that the gas that permeates through the membrane body and is collected at a specified temperature is quantitatively analyzed using a Nitepra pump.
The amount of tritium gas concentrated on the supply side was determined based on the ratio of the separation coefficients determined for each time period, and was shown together with other data.
NI OJ4 0.98 204151a9
2.22270 3fL6 !1LO24,2B
d、e)
0.50 378 QJ33 1.968
U8316 0J6 1.00 20 13J
116 1.20245 51.2 2L2
λ42a)
Nl−人1(A) 0J35 1.01
20 9.93 a61 1.77220
&39 465 1.80b)
Ni−Al(B) 0月5 0.99 20 3.
31 164 2.02310 1.98 CI
CJ90 220Cン 3e
)
Pd−Ag O,504001,37
刈0 2.12(Jl)焼入れしない合金
(bl焼入れした合金 (C) Pd−25Ag、膜
−I−1−%
(d)ノコy ’f /L’膜 (elmol Cm
S paこの結果、粉末焼結により比金属密度の高い材
料を調製すれば、Ni単体からなる材料でも、室温の試
験、ではPd−Ag合金に匹敵する分離係数を示したが
、Ni−AI(ト)合金では、表11=示したように、
マルテンサイト変態温度付近(310℃)で、Pd−A
g合金の分離係数の約20倍の分離係数を示した。NI OJ4 0.98 204151a9
2.22270 3fL6! 1LO24, 2B
d, e) 0.50 378 QJ33 1.968
U8316 0J6 1.00 20 13J
116 1.20245 51.2 2L2
λ42a) Nl-person 1 (A) 0J35 1.01
20 9.93 a61 1.77220
&39 465 1.80b) Ni-Al(B) 0/5 0.99 20 3.
31 164 2.02310 1.98 CI
CJ90 220Cn 3e
) Pd-Ag O,504001,37
0 2.12 (Jl) Unquenched alloy (bl Quenched alloy (C) Pd-25Ag, membrane-I-1-% (d) Saw y 'f /L' membrane (elmol Cm
As a result, if a material with a high specific metal density was prepared by powder sintering, even a material made of single Ni showed a separation factor comparable to that of a Pd-Ag alloy in room temperature tests, but Ni-AI ( g) For alloys, as shown in Table 11,
At around the martensitic transformation temperature (310°C), Pd-A
It showed a separation factor about 20 times that of g-alloy.
本発明は上述の如く、膜体をNi−Al粉末焼結で調製
した形状記憶合金で形成すると共(=、当該膜体のマル
テンサイト変態温度付近下で透過分離するから水素同位
体の分離性能を向上できる。As described above, the present invention has a membrane body made of a shape memory alloy prepared by sintering Ni-Al powder, and permeation separation is performed near the martensitic transformation temperature of the membrane body, so hydrogen isotope separation performance is improved. can be improved.
図面は本発明の使用説明図である。
(1)・・膜体。
昭和59年12月 8 日
出願人 松 井 正 夫
同 上 野 学問 川
上 裕 2同 北 松
康 和−〇ロ 義 産
量 : 0The drawings are explanatory diagrams for use of the present invention. (1)...Membrane body. December 8, 1980 Applicant: Masao Matsui, Manabu Ueno
Yutaka Kami 2 Kitamatsu
Kowa-〇Royoshi Production: 0
Claims (1)
法において、上記膜体をNi−Al粉末焼結で調製した
形状記憶合金で形成すると共に、当該膜体のマルテンサ
イト変態温度付近で透過分離することを特徴とする水素
同位体の膜分離法。In a membrane separation method in which hydrogen isotope mixed gas is permeated and separated by a membrane, the membrane is formed of a shape memory alloy prepared by sintering Ni-Al powder, and the membrane is permeated and separated at a temperature near the martensitic transformation temperature of the membrane. A membrane separation method for hydrogen isotopes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25969284A JPS61138519A (en) | 1984-12-08 | 1984-12-08 | Membrane separation process of hydrogen isotope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25969284A JPS61138519A (en) | 1984-12-08 | 1984-12-08 | Membrane separation process of hydrogen isotope |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61138519A true JPS61138519A (en) | 1986-06-26 |
JPS6394B2 JPS6394B2 (en) | 1988-01-05 |
Family
ID=17337594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25969284A Granted JPS61138519A (en) | 1984-12-08 | 1984-12-08 | Membrane separation process of hydrogen isotope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61138519A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0455397A2 (en) * | 1990-04-30 | 1991-11-06 | Ontario Hydro | Process and apparatus for tritium recovery |
US6569226B1 (en) * | 2001-09-28 | 2003-05-27 | The United States Of America As Represented By The United States Department Of Energy | Metal/ceramic composites with high hydrogen permeability |
WO2007000027A1 (en) * | 2005-06-29 | 2007-01-04 | The University Of Queensland | Isotope separation by quantum swelling |
KR100786626B1 (en) | 2006-10-11 | 2007-12-21 | 한국표준과학연구원 | Hydrogen isotopic pump and its application on the low temperature calibration system |
US7614868B2 (en) | 2004-11-05 | 2009-11-10 | Funai Electric Co., Ltd. | Display apparatus and metal mold structure |
-
1984
- 1984-12-08 JP JP25969284A patent/JPS61138519A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0455397A2 (en) * | 1990-04-30 | 1991-11-06 | Ontario Hydro | Process and apparatus for tritium recovery |
US6569226B1 (en) * | 2001-09-28 | 2003-05-27 | The United States Of America As Represented By The United States Department Of Energy | Metal/ceramic composites with high hydrogen permeability |
US7614868B2 (en) | 2004-11-05 | 2009-11-10 | Funai Electric Co., Ltd. | Display apparatus and metal mold structure |
WO2007000027A1 (en) * | 2005-06-29 | 2007-01-04 | The University Of Queensland | Isotope separation by quantum swelling |
KR100786626B1 (en) | 2006-10-11 | 2007-12-21 | 한국표준과학연구원 | Hydrogen isotopic pump and its application on the low temperature calibration system |
Also Published As
Publication number | Publication date |
---|---|
JPS6394B2 (en) | 1988-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Grashoff et al. | The purification of hydrogen | |
Burkhanov et al. | Palladium-based alloy membranes for separation of high purity hydrogen from hydrogen-containing gas mixtures | |
Yoshida et al. | Preliminary design of a fusion reactor fuel cleanup system by the palladium-alloy membrane method | |
US20130115156A1 (en) | Process for the detritiation of soft housekeeping waste and plant thereof | |
US3793435A (en) | Separation of hydrogen from other gases | |
CN107469628B (en) | The device and method of gaseous state tritium and its isotope in a kind of removal fused salt | |
Sheridan Iii et al. | Hydrogen separation from mixed gas streams using reversible metal hydrides | |
JPS59177117A (en) | Separation of hydrogen-helium | |
JPS61138519A (en) | Membrane separation process of hydrogen isotope | |
JPS57209629A (en) | Method and plant for enriching heavy hydrogen and/or tritium by stage in substance proper to exchange heavy hydrogen and tritium with hydrogen in isotope form | |
Birdsell et al. | Tritium recovery from tritiated water with a two-stage palladium membrane reactor | |
GB860099A (en) | Method of producing permeable membranes | |
US3232026A (en) | Separation method using activated diffusion barriers | |
CN103977714B (en) | A kind of stainless steel-based/the compound porous metal film of Ni-FeO and preparation method thereof | |
CN106586961B (en) | Surabaya preparation facilities and method | |
Violante et al. | Membrane separation technologies: their application to the fusion reactor fuel cycle | |
CN112281016A (en) | Palladium alloy for hydrogen permeation and preparation method thereof | |
Imoto et al. | Separation of hydrogen isotopes with uranium hydride | |
GB832317A (en) | Process for the production of fine-pore metal filters, membranes and diaphragms | |
CN104128093B (en) | A kind of hydrogen isotope method for gas purification | |
JP2022170760A (en) | Carbonic acid gas treatment device, and carbonic acid gas treatment method | |
Willms et al. | Fuel cleanup systems for fusion fuel processing | |
JPS59177120A (en) | Membrane separation system of hydrogen isotope | |
CN1117941A (en) | Ceramic-metal composite film reactor and its preparation and application | |
JP3737574B2 (en) | Carbon dioxide separation method and carbon dioxide separation membrane |