JPS59177117A - Separation of hydrogen-helium - Google Patents

Separation of hydrogen-helium

Info

Publication number
JPS59177117A
JPS59177117A JP58048916A JP4891683A JPS59177117A JP S59177117 A JPS59177117 A JP S59177117A JP 58048916 A JP58048916 A JP 58048916A JP 4891683 A JP4891683 A JP 4891683A JP S59177117 A JPS59177117 A JP S59177117A
Authority
JP
Japan
Prior art keywords
membrane
helium
hydrogen
separation
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58048916A
Other languages
Japanese (ja)
Other versions
JPH0331641B2 (en
Inventor
Kuniaki Watanabe
渡辺 国昭
Masao Matsuyama
松山 政夫
Hitoshi Miyake
三宅 均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP58048916A priority Critical patent/JPS59177117A/en
Publication of JPS59177117A publication Critical patent/JPS59177117A/en
Publication of JPH0331641B2 publication Critical patent/JPH0331641B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0072Inorganic membrane manufacture by deposition from the gaseous phase, e.g. sputtering, CVD, PVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0221Group 4 or 5 metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02232Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To separate hydrogen by allowing the same to permeate a separation membrane, by forming partial pressure difference in both sides of the separation membrane by sending a gaseous mixture containing hydrogen and helium to the single side of the separation membrane comprising a transient metal or an alloy thereof on a gas pervious support. CONSTITUTION:A continuous membrane having a thickness of about 1mum or less comprising a transient metal such as Fe, Cr, Mn, Ni, Ag, Pd or Ti or an alloy thereof is formed on a gas pervious support such as a ceramic porous membrane by sputtering. This continuous membrane is used as a separation membrane and a gaseous mixture containing hydrogen, an isotope thereof and helium is sent to the single side of said membrane while the supply side of the membrane is pressurized to form partial pressure difference in both sides of the membrane and hydrogen and the isotope thereof are permeated to the opposite side of the membrane more fastly as compared with helium to separate the same. As the above mentioned continuous membrane, a SUS membrane comprising an Fe-Cr-Ni type alloy is suitably used from a standpoint of cost and capacity.

Description

【発明の詳細な説明】 本発明は同位体を含む水素とヘリウムとを分離する膜分
離法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a membrane separation method for separating hydrogen and helium containing isotopes.

エネルギーの需要は年々増加する一方であり、そのため
の様々のエネルギー源が探索されており、そのなかで有
望なものとして核融合反応がある。
The demand for energy continues to increase year by year, and various energy sources are being explored to meet this demand, with nuclear fusion being one of the most promising.

これはデユートリウムとトリチウムとの次式の核融合反
応を利用するものである。
This utilizes the following nuclear fusion reaction between deutorium and tritium.

’ H十’ H−今’ He + n これによればipのトリチウムが重水素と反応すると約
1億K aylのエネルギーが発生する。
'H 10'H-Now' He + n According to this, when tritium in ip reacts with deuterium, approximately 100 million K ayl of energy is generated.

しかしこの反応転化率はたかだか10%であり、核融合
廃ガス中には未反応原料のデユートリウムとトリチウム
を大量に含み、これを生成したヘリウムから分離し回収
する必要がある。
However, the conversion rate of this reaction is at most 10%, and the fusion waste gas contains large amounts of unreacted raw materials deutorium and tritium, which must be separated and recovered from the helium produced.

その分離法の一つに分離にかかるエネルギーが小さく操
作が容易である膜分離法があるが、水素およびその同位
体ならびにヘリウムはいずれも分子量の小さい気体でか
つ分子量の差も小さく一般に膜分離法では分離しにくい
気体である。
One of the separation methods is membrane separation, which requires less energy for separation and is easy to operate. However, hydrogen, its isotopes, and helium are all gases with small molecular weights, and the difference in molecular weight is small, so membrane separation is generally used. It is a gas that is difficult to separate.

そこで、同位体を含む水素とヘリウムとの膜分離法を実
現すべく鋭意研究した結果本発明に到達したものである
Therefore, the present invention was achieved as a result of intensive research aimed at realizing a membrane separation method for hydrogen and helium containing isotopes.

即ち本発明は ガス透過性支持体に遷移金属又はその合金の連続膜を形
成せしめた分離膜を用いて水素(同位体を含む)とヘリ
ウムとを分離する方法である。
That is, the present invention is a method for separating hydrogen (including isotopes) and helium using a separation membrane in which a continuous membrane of a transition metal or its alloy is formed on a gas-permeable support.

本発明に用いられるガス透過性支持体としては、ガスの
透過性のあるものであるならばIvf(/C限定されな
いが、有機高分子フィルム、有機多孔質体、あるいは無
機多孔質体などが用いられる。
As the gas permeable support used in the present invention, as long as it is gas permeable, Ivf (/C) may be used, but is not limited to an organic polymer film, an organic porous material, or an inorganic porous material. It will be done.

このうち、気体透過性の大きい有機あるいは無機多孔質
体が好適に用いられる。
Among these, organic or inorganic porous materials with high gas permeability are preferably used.

そのなかでも、膜が金属で高温に耐えるのでガス透過性
支持体としても高温に耐える材料である無機多孔膜例え
ばセラミックス多孔膜、ガラス多孔膜、ステンレス焼結
金属多孔体などが好適に用いられる。
Among these, inorganic porous membranes such as ceramic porous membranes, glass porous membranes, stainless steel porous sintered bodies, etc., which are materials that can withstand high temperatures as gas-permeable supports, are preferably used because the membranes are metal and can withstand high temperatures.

高温での膜分離は、一般に気体の透過性は温度があがる
と高くなるので高温では透過量が多くなること、あるい
は高温の廃ガスを冷却せずにその一部、ま処理できるな
どの利点がある。
Membrane separation at high temperatures generally has the advantage that gas permeability increases as the temperature rises, so the amount of permeation increases at high temperatures, or that a portion of high-temperature waste gas can be treated without cooling it. be.

支持体の形状としては、分離モジュールの形状に応じて
決められ、平膜、管状、中空糸等種種の形状をとり得る
The shape of the support is determined depending on the shape of the separation module, and can take various shapes such as a flat membrane, a tubular shape, and a hollow fiber.

本発明に用いられる遷移金属は原子番号21〜30.3
9〜48.57〜80の元素であp例えばFe、 Cr
、 Mn、 Ni、 Ag、 Pd、 Ti等をあげる
ことができ、また、これらは種々の合金例えばFe −
Cr −Ni 、 Ni −Mo 、 Ni −Cr−
Fe −Mo −C。
The transition metal used in the present invention has an atomic number of 21 to 30.3.
9-48.57-80 elements such as Fe, Cr
, Mn, Ni, Ag, Pd, Ti, etc., and these can also be used in various alloys such as Fe-
Cr-Ni, Ni-Mo, Ni-Cr-
Fe-Mo-C.

などでも使用できる。It can also be used.

本発明は前述のガス透過性支持体の上に上記金属又は合
金の連続薄膜層を形成せしめて分離膜とするが薄膜層の
形成法としては、スパッタリング法、蒸着法、イオンブ
レーティング法などの従来公知の物理的沈着法(PVD
法)やメッキなどの化学的沈着法が適用されるが、その
なかで金属膜とガス透過性支持体との密着性が良好とな
るスパッタリング、イオングレーティング法が好適であ
る。
In the present invention, a continuous thin film layer of the above-mentioned metal or alloy is formed on the above-mentioned gas-permeable support to form a separation membrane. Methods for forming the thin film layer include sputtering method, vapor deposition method, ion blating method, etc. Conventionally known physical deposition method (PVD)
Among these, sputtering and ion grating methods are preferred because they provide good adhesion between the metal film and the gas-permeable support.

又、金属膜が形成される過程において該金属が一部酸化
される場合もあるが、酸化物が安定である限り分離膜と
してはそのまま使うことができる。
Furthermore, in the process of forming a metal film, the metal may be partially oxidized, but as long as the oxide is stable, it can be used as is as a separation film.

本発明の分離方法は該遷移金属膜においておこなわれる
ものであり、その厚さKは%に限定はないが欠陥部が生
じ力い限りできる限り薄いものが好ましく、膜厚として
は1μm以下、好ましくは1oooX以下である。
The separation method of the present invention is carried out on the transition metal film, and its thickness K is not limited to %, but it is preferably as thin as possible without causing defects, and the film thickness is preferably 1 μm or less, preferably is less than or equal to 1oooX.

本発明の遷移金属膜としてはコスト及び性能の面からは
Fe系の合金例えばFe −Cr −Ni系の合金であ
るRul!膜が好適に用いられる。
From the viewpoint of cost and performance, the transition metal film of the present invention is an Fe-based alloy such as Fe-Cr-Ni alloy Rul! Membranes are preferably used.

分離手法としては、分離膜の片側(供給側)に水素およ
びその同位体及びヘリウムを含む混合気体を送り、水素
及びその同位体を膜の反対側(透過側)にヘリウムよシ
はやく透過させて分離する。
The separation method involves sending a gas mixture containing hydrogen, its isotopes, and helium to one side of the separation membrane (the supply side), and quickly allowing the hydrogen and its isotopes to permeate through the other side of the membrane (the permeation side), rather than the helium. To separate.

分離手法としては、膜の供給側を加圧する方法、あるい
は膜の透過側を減圧する方法、あるいはアルゴンなどの
気体をキャリヤーガスとして流すことなどにより膜の両
側に分圧差をつけ実施例 本発明の分離膜は核融合廃ガスの分離ばかりでなく、そ
の水素とヘリウムとの分離性の高いことを利用して通常
の水素とヘリウムの混合ガスの分離、例えばヘリウム、
水素を含む天然ガスからの水素分離などにも使用できる
のはもちろん、さらに、水素の透過性がすぐれているこ
とより、水素、ヘリウムより分子量の大きい気体例えば
メタン、アルゴンなどを含む混合気体からの水素分離に
も使うことができる。
Separation techniques include applying pressure to the supply side of the membrane, reducing pressure to the permeate side of the membrane, or creating a partial pressure difference on both sides of the membrane by flowing gas such as argon as a carrier gas. Separation membranes are used not only to separate nuclear fusion waste gas, but also to separate ordinary hydrogen and helium mixed gases, such as helium and helium, by taking advantage of its high separation properties between hydrogen and helium.
Not only can it be used to separate hydrogen from natural gas containing hydrogen, but also from mixed gases containing gases with molecular weights larger than hydrogen and helium, such as methane and argon, due to its excellent hydrogen permeability. It can also be used for hydrogen separation.

以下、実施例により本発明を具体的に説明するが、本発
明は何らこれらの実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例1  金属薄膜層の形成 厚さ300μmのビスフェノールA−ポリカーボネート
フィルム表面に厚さ100Xの5US304からなる金
属薄膜層を形成した。該金属薄膜層は5US304板(
厚さ3間)をターゲットとしArガス圧力5X10  
TorrにおけるDCマグネトロンスパッタによって形
成した。投入電力はターゲットの単位面積当り2W/c
+(であり、ターゲットと基板となるポリカーボネート
フイルムの間の距離は156mであった。
Example 1 Formation of a metal thin film layer A metal thin film layer made of 5US304 and having a thickness of 100× was formed on the surface of a bisphenol A-polycarbonate film having a thickness of 300 μm. The metal thin film layer is made of 5US304 plate (
Ar gas pressure 5X10 with a thickness of 3 mm) as a target
It was formed by DC magnetron sputtering at Torr. Input power is 2W/c per unit area of target
+(, and the distance between the target and the polycarbonate film serving as the substrate was 156 m.

この膜の分離性能を表IK示す。The separation performance of this membrane is shown in Table IK.

H21,8,7 D214.4 T2O,53 2 He   <xio   (測定限界以下)2 Ne   <XIO(が(j定限界以下)なお気体透過
係数の測定は次の方法によった。
H21,8,7 D214.4 T2O,53 2 He <xio (below the measurement limit) 2 Ne <XIO (but (below the j-determined limit)) The gas permeability coefficient was measured by the following method.

透過係数の測定 図−IK測定装置のセル部分を示す。コーン 実フラッ
ト7ランジ(1)伺きのガラス管2個より出来ており、
このフランジの間に0−リングで試料膜(2)を保持し
た。試料膜の有効面積は9.5 crIである。透過セ
ルの下流側にはトリチウムの透過速度を測定するだめの
窓なしG−Mカウンター(3)が接続されており、上流
側には予め一定量のトリチウムを封入したガラスアンプ
ル(4)を挿入した。
Transmission coefficient measurement diagram - shows the cell part of the IK measurement device. The cone is made from two glass tubes with a real flat 7 lunge (1).
The sample membrane (2) was held between the flanges with an O-ring. The effective area of the sample membrane is 9.5 crI. A windowless G-M counter (3) for measuring the tritium permeation rate is connected to the downstream side of the permeation cell, and a glass ampoule (4) pre-filled with a certain amount of tritium is inserted to the upstream side. did.

各気体の透過速度の測定はTime−1ag法によって
行なわれだ。非放射性ガスの透過速度は流通法で測定し
、透過量および電離真空計による排気速度は毛細管と2
個の電離真空計を用いて求めた。
The permeation rate of each gas was measured by the Time-1ag method. The permeation rate of non-radioactive gas is measured by the flow method, and the amount of permeation and the pumping rate using an ionization vacuum gauge are determined by the capillary tube and the pumping rate by the ionization vacuum gauge.
It was determined using two ionization vacuum gauges.

トリチウムガスの透過速度は閉鎖系でおこない、G−M
カウンターで濃度を測定した。透過速度は(Torr 
−cc /sec )の単位で求めており、これから求
めた透過係数の単位はod / secで表わされる。
The permeation rate of tritium gas was measured in a closed system, and G-M
The concentration was measured with a counter. The permeation rate is (Torr
-cc/sec), and the unit of the transmission coefficient calculated from this is expressed in od/sec.

流側2 実施例1のSUS膜表面にデユートリウム、プロチウム
及びヘリウムをそれぞれ2 vo1%づつ含み、残余は
アルゴンである混合気体を流し、膜ノ反対側(透過側)
Kアルゴンキャリヤーガスを流しだ。
Stream side 2 A mixed gas containing 2 vol% each of deutorium, protium, and helium, with the remainder being argon, was flowed onto the surface of the SUS membrane of Example 1, and the gas mixture was flowed onto the surface of the SUS membrane of Example 1 on the opposite side of the membrane (permeation side).
Flow the K-argon carrier gas.

10分抜道過側にはデユートリウム及びプロチウムは認
められだが、ヘリウムは認められなかった。
Deutorium and protium were detected on the 10-minute pass side, but helium was not detected.

【図面の簡単な説明】[Brief explanation of drawings]

図−1はガス透過速度の測定装置である。1はコーンフ
ラットフランジ、2は試料膜、3はG −Mカウンター
、4はガスアンプルを表わす。 0゛@l  m A a E 6″′″ 二1、代理人
 弁理士  前  1) 純  博j   、;′7、
l・ / 団−1
Figure 1 shows a gas permeation rate measuring device. 1 represents a cone flat flange, 2 represents a sample membrane, 3 represents a G-M counter, and 4 represents a gas ampoule. 0゛@l m A a E 6″′″ 21, Agent Patent Attorney Mae 1) Jun Hiroj, ;'7,
l・/Group-1

Claims (1)

【特許請求の範囲】 1、ガス透過性支持体に遷移金属又はその合金の連続膜
を形成せしめた分離膜を用いて水素(その同位体も含む
)とヘリウムとを分離することを特徴とする水素−ヘリ
ウム分離方法。 2、当該連続膜がsun膜であることを特徴とする特許
請求の範囲第1項記載の水素〜ヘリウム分離方法。
[Claims] 1. Hydrogen (including its isotopes) and helium are separated using a separation membrane in which a continuous membrane of a transition metal or its alloy is formed on a gas-permeable support. Hydrogen-helium separation method. 2. The hydrogen-helium separation method according to claim 1, wherein the continuous membrane is a sun membrane.
JP58048916A 1983-03-25 1983-03-25 Separation of hydrogen-helium Granted JPS59177117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58048916A JPS59177117A (en) 1983-03-25 1983-03-25 Separation of hydrogen-helium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58048916A JPS59177117A (en) 1983-03-25 1983-03-25 Separation of hydrogen-helium

Publications (2)

Publication Number Publication Date
JPS59177117A true JPS59177117A (en) 1984-10-06
JPH0331641B2 JPH0331641B2 (en) 1991-05-08

Family

ID=12816571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58048916A Granted JPS59177117A (en) 1983-03-25 1983-03-25 Separation of hydrogen-helium

Country Status (1)

Country Link
JP (1) JPS59177117A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857080A (en) * 1987-12-02 1989-08-15 Membrane Technology & Research, Inc. Ultrathin composite metal membranes
US4865630A (en) * 1985-12-28 1989-09-12 Fumio Abe Porous membrane for use in reaction process
US4944777A (en) * 1984-09-18 1990-07-31 Shmayda Walter T Separating hydrogen from a mixture of substances
US5240473A (en) * 1992-09-01 1993-08-31 Air Products And Chemicals, Inc. Process for restoring permeance of an oxygen-permeable ion transport membrane utilized to recover oxygen from an oxygen-containing gaseous mixture
US5261932A (en) * 1992-09-01 1993-11-16 Air Products And Chemicals, Inc. Process for recovering oxygen from gaseous mixtures containing water or carbon dioxide which process employs ion transport membranes
US5269822A (en) * 1992-09-01 1993-12-14 Air Products And Chemicals, Inc. Process for recovering oxygen from gaseous mixtures containing water or carbon dioxide which process employs barium-containing ion transport membranes
US5342431A (en) * 1989-10-23 1994-08-30 Wisconsin Alumni Research Foundation Metal oxide membranes for gas separation
US5439624A (en) * 1994-02-14 1995-08-08 Wisconsin Alumni Research Foundation Method for forming porous ceramic materials
US5456740A (en) * 1994-06-22 1995-10-10 Millipore Corporation High-efficiency metal membrane getter element and process for making
US5487774A (en) * 1993-11-08 1996-01-30 Wisconsin Alumni Research Foundation Gas phase fractionation method using porous ceramic membrane
US5738708A (en) * 1995-06-07 1998-04-14 The Regents Of The University Of California Office Of Technology Transfer Composite metal membrane
JP2007137752A (en) * 2005-11-22 2007-06-07 Japan Fine Ceramics Center Helium separating material and method of producing the same
CN107261845A (en) * 2017-08-25 2017-10-20 中国工程物理研究院核物理与化学研究所 A kind of separation method of hydrogen isotope mixed gas
CN107930400A (en) * 2017-12-07 2018-04-20 中国工程物理研究院核物理与化学研究所 A kind of hydrogen helium separation and hydrogen isotope concentration coupled system and method
CN109381941A (en) * 2018-11-30 2019-02-26 西北有色金属研究院 A kind of hydrogen isotope purifying filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931843A (en) * 1972-07-21 1974-03-22
JPS5228748A (en) * 1975-08-29 1977-03-03 Matsushita Electric Ind Co Ltd Defrosting control process
JPS55130801A (en) * 1979-02-15 1980-10-11 Hill Eugene Farrell Separation of hydrogen which use coating titaniummzirconium alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931843A (en) * 1972-07-21 1974-03-22
JPS5228748A (en) * 1975-08-29 1977-03-03 Matsushita Electric Ind Co Ltd Defrosting control process
JPS55130801A (en) * 1979-02-15 1980-10-11 Hill Eugene Farrell Separation of hydrogen which use coating titaniummzirconium alloy

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944777A (en) * 1984-09-18 1990-07-31 Shmayda Walter T Separating hydrogen from a mixture of substances
US4865630A (en) * 1985-12-28 1989-09-12 Fumio Abe Porous membrane for use in reaction process
US4857080A (en) * 1987-12-02 1989-08-15 Membrane Technology & Research, Inc. Ultrathin composite metal membranes
US5342431A (en) * 1989-10-23 1994-08-30 Wisconsin Alumni Research Foundation Metal oxide membranes for gas separation
US5240473A (en) * 1992-09-01 1993-08-31 Air Products And Chemicals, Inc. Process for restoring permeance of an oxygen-permeable ion transport membrane utilized to recover oxygen from an oxygen-containing gaseous mixture
US5261932A (en) * 1992-09-01 1993-11-16 Air Products And Chemicals, Inc. Process for recovering oxygen from gaseous mixtures containing water or carbon dioxide which process employs ion transport membranes
US5269822A (en) * 1992-09-01 1993-12-14 Air Products And Chemicals, Inc. Process for recovering oxygen from gaseous mixtures containing water or carbon dioxide which process employs barium-containing ion transport membranes
US5487774A (en) * 1993-11-08 1996-01-30 Wisconsin Alumni Research Foundation Gas phase fractionation method using porous ceramic membrane
US5712037A (en) * 1994-02-14 1998-01-27 Wisconsin Alumni Research Foundation Substituted silica gel
US5610109A (en) * 1994-02-14 1997-03-11 Wisconsin Alumni Research Foundation Porous ceramic material
US5639412A (en) * 1994-02-14 1997-06-17 Wisconsin Alumni Research Foundation Substituted silica sol
US5439624A (en) * 1994-02-14 1995-08-08 Wisconsin Alumni Research Foundation Method for forming porous ceramic materials
US5456740A (en) * 1994-06-22 1995-10-10 Millipore Corporation High-efficiency metal membrane getter element and process for making
US5738708A (en) * 1995-06-07 1998-04-14 The Regents Of The University Of California Office Of Technology Transfer Composite metal membrane
JP2007137752A (en) * 2005-11-22 2007-06-07 Japan Fine Ceramics Center Helium separating material and method of producing the same
JP4668043B2 (en) * 2005-11-22 2011-04-13 財団法人ファインセラミックスセンター Method for manufacturing helium separator
CN107261845A (en) * 2017-08-25 2017-10-20 中国工程物理研究院核物理与化学研究所 A kind of separation method of hydrogen isotope mixed gas
CN107930400A (en) * 2017-12-07 2018-04-20 中国工程物理研究院核物理与化学研究所 A kind of hydrogen helium separation and hydrogen isotope concentration coupled system and method
CN109381941A (en) * 2018-11-30 2019-02-26 西北有色金属研究院 A kind of hydrogen isotope purifying filter

Also Published As

Publication number Publication date
JPH0331641B2 (en) 1991-05-08

Similar Documents

Publication Publication Date Title
JPS59177117A (en) Separation of hydrogen-helium
Tosti et al. Rolled thin Pd and Pd–Ag membranes for hydrogen separation and production
US2958391A (en) Purification of hydrogen utilizing hydrogen-permeable membranes
US2961062A (en) Large surface area hydrogen permeation cell
Peachey et al. Composite PdTa metal membranes for hydrogen separation
Hara et al. An amorphous alloy membrane without noble metals for gaseous hydrogen separation
Burkhanov et al. Palladium-based alloy membranes for separation of high purity hydrogen from hydrogen-containing gas mixtures
Zhang et al. Experimental and simulation studies on concentration polarization in H2 enrichment by highly permeable and selective Pd membranes
Pati et al. Pd-Ag-Cu dense metallic membrane for hydrogen isotope purification and recovery at low pressures
Tosti Supported and laminated Pd-based metallic membranes
Yoshida et al. Preliminary design of a fusion reactor fuel cleanup system by the palladium-alloy membrane method
US3344582A (en) Irreversible hydrogen membrane
Morooka et al. Palladium membrane formed in macropores of support tube by chemical vapor deposition with crossflow through a porous wall
Lundin et al. Glass frit sealing method for macroscopic defects in Pd-based composite membranes with application in catalytic membrane reactors
Winnick Electrochemical membrane gas separation
Peters et al. Fabrication of palladium-based membranes by magnetron sputtering
Violante et al. Membrane separation technologies: their application to the fusion reactor fuel cycle
Yen et al. Sandwiched liquid metal membrane (SLiMM) for hydrogen purification
Meunier et al. Thin film permeation membranes for hydrogen purification
RU2305587C2 (en) Composite oxygen-conducting diaphragm
US20180118566A1 (en) Hydrogen separation membrane
Fuerst et al. High temperature deuterium enrichment using TiC coated vanadium membranes
JPH0130533B2 (en)
Iaquaniello et al. Hydrogen palladium selective membranes: an economic perspective
JPH02265631A (en) Alloy film for separation of hydrogen