JPS6394B2 - - Google Patents

Info

Publication number
JPS6394B2
JPS6394B2 JP25969284A JP25969284A JPS6394B2 JP S6394 B2 JPS6394 B2 JP S6394B2 JP 25969284 A JP25969284 A JP 25969284A JP 25969284 A JP25969284 A JP 25969284A JP S6394 B2 JPS6394 B2 JP S6394B2
Authority
JP
Japan
Prior art keywords
membrane
membrane body
hydrogen
separation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25969284A
Other languages
Japanese (ja)
Other versions
JPS61138519A (en
Inventor
Masao Matsui
Manabu Ueno
Hiroyuki Kawakami
Yasukazu Kitamatsu
Yoshihiko Mishina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP25969284A priority Critical patent/JPS61138519A/en
Publication of JPS61138519A publication Critical patent/JPS61138519A/en
Publication of JPS6394B2 publication Critical patent/JPS6394B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、核融合炉から放出される排ガス中に
含まれている水素同位体たるトリチウムを回収
し、燃料として再利用する工程や環境問題に関連
してトリチウムを含む水の電気分解によりトリチ
ウムガスを回収する工程への利用が期待できる水
素同位体の膜分離法に関するものである。 〔従来の技術〕 従来、この種の水素−トリチウム混合ガスの分
離法としては、水蒸溜法、深冷分離法、熱拡散
法、金属膜透過法、及びレーザー法が知られてい
る。 このうち金属膜透過法は金属膜による水素同位
体の透過速度が同位体の種類により異なることを
利用するもので、従来の提案としてはH.
Fujitaetal.J.Nucl.Sci.Technol.Technci.、17、
436(1980)がある。 この膜分離法は操作が簡単であつて、省エネル
ギー技術の面から有望である。 〔発明が解決しようとする問題点〕 しかしながら、現在最適と考えられているパラ
ジウム合金膜でさえ、効率のよい分離には400℃
位の高温が必要であり、高温での操作のためトリ
チウムガスのもれに対する対策が必要となる。 したがつて、室温でもパラジウム合金膜に匹敵
する分離係数を示す透過膜、またはできるだけ低
温で大きい分離係数を示す透過膜を開発すること
が望まれている。 〔問題点を解決するための手段〕 本発明はこれらの要望を満足させることを目的
とするもので、その要旨は、膜体によつて水素同
位体混合ガスを透過分離する膜分離法において、
上記膜体をNi−Al粉末焼結で調製した形状記憶
合金で形成すると共に、当該膜体のマルテンサイ
ト変態温度付近下で透過分離することを特徴とす
る水素同位体の膜分離法にある。 〔実施例〕 (i) 粉末焼結で調製した形状記憶合金の膜体に使
用したNi−Al系合金は、まず、Ni粉末とAl粉
末を50%(重量)の割合で混合してから石英ガ
ラス管中に充填し、焼結ボート上、真空下で、
700℃の温度で1時間假焼結して合金粉末を調
製し、次に、この合金粉末にNi粉末を加えて
Ni:73%、Al:27%になるように成分調製し
てから686Mpaの成形圧力で成形した試料〔Ni
−Al(A)〕を1250℃で1時間焼結してから氷水
中で焼入れし、熱弾性形マルテンサイト組織を
形成させて、形状記憶現象を起こす膜体にした
〔Ni−Al(B)〕膜体は直径10mm、厚さ1mmであ
る。 (ii) 水素同位体の分離 調製した前記膜体1を図の如く、クランプ2
に固定し、供給タンク3に分離すべき水素−ト
リチウム混合ガス4を導入してから、電気炉5
によつて、前記膜体1のマルテンサイト変態温
度に相応する所定の温度に透過セル6を加熱
し、この状態で真空吸引により水素−トリチウ
ム混合ガス4を膜体1に透過し、トリチウムガ
スを分離するようにしている。 尚、(表−1)は所定温度の下、膜体を透過し
集められた気体を一定時間毎にテプラ−ポンプで
定量分析し、各時間毎に求めた分離係数の比で供
給側に濃縮されるトリチウムガスの量を求め、他
のデータとともに示したものである。
[Industrial Application Field] The present invention relates to the process of recovering tritium, which is a hydrogen isotope contained in the exhaust gas emitted from a nuclear fusion reactor, and reusing it as fuel, and in connection with environmental issues. This paper relates to a membrane separation method for hydrogen isotopes that is expected to be used in the process of recovering tritium gas through water electrolysis. [Prior Art] Conventionally, water distillation method, cryogenic separation method, thermal diffusion method, metal membrane permeation method, and laser method are known as methods for separating this type of hydrogen-tritium mixed gas. Among these, the metal membrane permeation method takes advantage of the fact that the permeation rate of hydrogen isotopes through metal membranes differs depending on the type of isotope.
Fujitaetal.J.Nucl.Sci.Technol.Technci., 17,
436 (1980). This membrane separation method is easy to operate and is promising from the viewpoint of energy saving technology. [Problems to be solved by the invention] However, even with palladium alloy membranes, which are currently considered to be optimal, efficient separation requires a temperature of 400°C.
This requires a high temperature of about 100,000 yen, and measures must be taken to prevent tritium gas from leaking due to the high temperature operation. Therefore, it is desired to develop a permeable membrane that exhibits a separation coefficient comparable to that of a palladium alloy membrane even at room temperature, or a permeable membrane that exhibits a large separation coefficient at as low a temperature as possible. [Means for Solving the Problems] The present invention aims to satisfy these demands, and its gist is to provide a membrane separation method for permeating and separating a hydrogen isotope mixed gas using a membrane body.
The present invention provides a membrane separation method for hydrogen isotopes, characterized in that the membrane body is formed of a shape memory alloy prepared by sintering Ni-Al powder, and the membrane body is permeated and separated at a temperature near the martensitic transformation temperature of the membrane body. [Example] (i) The Ni-Al alloy used for the shape memory alloy film prepared by powder sintering was first mixed with Ni powder and Al powder at a ratio of 50% (by weight), and then mixed with quartz. Filled into a glass tube and sintered on a boat under vacuum.
An alloy powder was prepared by sintering at a temperature of 700℃ for 1 hour, and then Ni powder was added to this alloy powder.
A sample prepared with Ni: 73% and Al: 27% and then molded at a molding pressure of 686 MPa [Ni
-Al(A)] was sintered at 1250℃ for 1 hour and then quenched in ice water to form a thermoelastic martensitic structure, resulting in a film body that causes a shape memory phenomenon [Ni-Al(B) ] The membrane has a diameter of 10 mm and a thickness of 1 mm. (ii) Separation of hydrogen isotopes The prepared membrane body 1 was placed in clamp 2 as shown in the figure.
After introducing the hydrogen-tritium mixed gas 4 to be separated into the supply tank 3, the electric furnace 5
The permeation cell 6 is heated to a predetermined temperature corresponding to the martensitic transformation temperature of the membrane body 1, and in this state, the hydrogen-tritium mixed gas 4 is permeated through the membrane body 1 by vacuum suction to release the tritium gas. I try to separate them. In addition, (Table 1) shows that the gas that permeates through the membrane and is collected at a specified temperature is quantitatively analyzed using a Teppler pump at regular intervals, and the gas is concentrated on the supply side according to the ratio of the separation coefficient determined for each interval. The amount of tritium gas released is calculated and shown along with other data.

【表】 この結果、粉末焼結により比金属密度の高い材
料を調製すれば、Ni単体からなる材料でも、室
温の試験ではPd−Ag合金に匹敵する分離係数を
示したが、Ni−Al(B)合金では、表1に示したよ
うに、マルテンサイト変態温度付近(310℃)で、
Pd−Ag合金の分離係数の約20倍の分離係数を示
した。 〔発明の効果〕 本発明は上述の如く、膜体をNi−Al粉末焼結
で調製した形状記憶合金で形成すると共に、当該
膜体のマルテンサイト変態温度付近下で透過分離
するから水素同位体の分離性能を向上できる。
[Table] As a result, if a material with a high specific metal density was prepared by powder sintering, even a material made of single Ni showed a separation factor comparable to that of a Pd-Ag alloy in a room temperature test. For alloy B), as shown in Table 1, near the martensitic transformation temperature (310℃),
The separation coefficient was approximately 20 times that of the Pd-Ag alloy. [Effects of the Invention] As described above, the present invention includes a membrane body made of a shape memory alloy prepared by sintering Ni-Al powder, and since hydrogen isotope is permeated and separated at a temperature near the martensitic transformation temperature of the membrane body. Separation performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の使用説明図である。 1……膜体。 The drawings are explanatory diagrams for use of the present invention. 1...Membrane body.

Claims (1)

【特許請求の範囲】[Claims] 1 膜体によつて水素同位体混合ガスを透過分離
する膜分離法において、上記膜体をNi−Al粉末
焼結で調製した形状記憶合金で形成すると共に、
当該膜体のマルテンサイト変態温度付近で透過分
離することを特徴とする水素同位体の膜分離法。
1. In a membrane separation method in which hydrogen isotope mixed gas is permeated and separated by a membrane body, the membrane body is formed of a shape memory alloy prepared by Ni-Al powder sintering, and
A membrane separation method for hydrogen isotopes, characterized in that permeation separation is carried out near the martensitic transformation temperature of the membrane body.
JP25969284A 1984-12-08 1984-12-08 Membrane separation process of hydrogen isotope Granted JPS61138519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25969284A JPS61138519A (en) 1984-12-08 1984-12-08 Membrane separation process of hydrogen isotope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25969284A JPS61138519A (en) 1984-12-08 1984-12-08 Membrane separation process of hydrogen isotope

Publications (2)

Publication Number Publication Date
JPS61138519A JPS61138519A (en) 1986-06-26
JPS6394B2 true JPS6394B2 (en) 1988-01-05

Family

ID=17337594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25969284A Granted JPS61138519A (en) 1984-12-08 1984-12-08 Membrane separation process of hydrogen isotope

Country Status (1)

Country Link
JP (1) JPS61138519A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154878A (en) * 1990-04-30 1992-10-13 Anthony Busigin Process and apparatus for tritium recovery
US6569226B1 (en) * 2001-09-28 2003-05-27 The United States Of America As Represented By The United States Department Of Energy Metal/ceramic composites with high hydrogen permeability
JP3108609U (en) 2004-11-05 2005-04-28 船井電機株式会社 Mold structure
WO2007000027A1 (en) * 2005-06-29 2007-01-04 The University Of Queensland Isotope separation by quantum swelling
KR100786626B1 (en) 2006-10-11 2007-12-21 한국표준과학연구원 Hydrogen isotopic pump and its application on the low temperature calibration system

Also Published As

Publication number Publication date
JPS61138519A (en) 1986-06-26

Similar Documents

Publication Publication Date Title
US3881891A (en) Method for preparation of super-high purity hydrogen
US2961062A (en) Large surface area hydrogen permeation cell
JP5429658B2 (en) Lithium isotope separation and concentration method and apparatus, and 6Li isotope or 7Li isotope highly concentrated recovery system and recovery method
CN109399561B (en) Online hydrogen production system and method
US20130115156A1 (en) Process for the detritiation of soft housekeeping waste and plant thereof
RU2242059C2 (en) Method for separating rare nuclear fission products and their extraction from spent nuclear fuel, application of these products (alternatives)
JPS6394B2 (en)
JPH0331641B2 (en)
CN110797127B (en) Fuel circulation demonstration experiment system in magnetic confinement fusion reactor deuterium tritium
Konishi et al. Experiments on a ceramic electrolysis cell and a palladium diffuser at the Tritium Systems Test Assembly
Basile et al. Membrane integrated system in the fusion reactor fuel cycle
Violante et al. Membrane separation technologies: their application to the fusion reactor fuel cycle
Meunier et al. Thin film permeation membranes for hydrogen purification
CN104147928B (en) A kind of containing the quick minimizing technology of protium in hydrogen tritide isotope gas
Etievant Solar high-temperature direct water splitting—a review of experiments in France
CN104128093B (en) A kind of hydrogen isotope method for gas purification
EP0737095B1 (en) Geographically distributed tritium extraction plant
CN110467190B (en) Device and method for recycling boron from radioactive boron-containing waste liquid
GB1032218A (en) Improvements in or relating to the purification of hydrogen
CN210656147U (en) Palladium membrane hydrogen purification device
JPS62210039A (en) Method for extracting and transferring tritium
WO2024071106A1 (en) Hydrogen isotope transport device and hydrogen isotope transport method
JP2585327B2 (en) Tritium separation and recovery device and multifunctional separation membrane for tritium separation and recovery
Pistunovich et al. Membrane pumping technology for helium and hydrogen isotope separation in the fusion reactor
CN100471547C (en) Permeable film for separating hydrogen