JPS62210039A - Method for extracting and transferring tritium - Google Patents

Method for extracting and transferring tritium

Info

Publication number
JPS62210039A
JPS62210039A JP5010086A JP5010086A JPS62210039A JP S62210039 A JPS62210039 A JP S62210039A JP 5010086 A JP5010086 A JP 5010086A JP 5010086 A JP5010086 A JP 5010086A JP S62210039 A JPS62210039 A JP S62210039A
Authority
JP
Japan
Prior art keywords
tritium
electrode
diaphragm
hydrogen
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5010086A
Other languages
Japanese (ja)
Other versions
JPH0566167B2 (en
Inventor
Tetsuyuki Konishi
哲之 小西
Hideo Ono
大野 英雄
Yuji Naruse
成瀬 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP5010086A priority Critical patent/JPS62210039A/en
Priority to CA000531421A priority patent/CA1311213C/en
Publication of JPS62210039A publication Critical patent/JPS62210039A/en
Publication of JPH0566167B2 publication Critical patent/JPH0566167B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To extract and transfer the following tritium to the other side of a diaphragm from a medium contg. tritium of one side of the diaphragm which is pure and has easily utilizable pressure by using the diaphragm wherein an electrically-conductive substance for hydrogen ion is sandwiched by hydrogen permeable metallic membrane electrodes are conducting current between both electrodes. CONSTITUTION:A diaphragm is formed by sandwiching both sides of a substance 1 such as ion exchange resin and beta''-alumina which is an electric charge carrier of hydrogen ion by means of metallic membranes 2, 3 (electrodes) such as Pd and Pt wherein hydrogen is selectively permeated and it is no permeable for the other substance. When conducting current between both electrodes, tritium <3>H contained in a medium 4 is dissociated and dissolved in the electrode 2, reaches the interface of the electrode 2 and a proton electric conducto4 1, is ionized and migrated in the electric conductor, reaches the electrode 3, and again becomes at atomic state. This tritium is permeated through the electrode, thereafter made into gaseous tritium, and discharged to 5. In such a way, low-partial pressure tritium contained in the medium is extracted as gaseous tritium which is pure and has easily utilizable pressure by utilizing the simple elecrochemical cell structure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は低分王のトリチウム乞含む媒体上りトリチウム
?連続的に分離回収して純粋なガス体として得ろ方法に
関するものであって、水素イオン導電註物質乞水素透過
性金属膜電極ではさんだ隔膜乞用いろことを特徴とする
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is based on a medium containing tritium, which is low in volume. The present invention relates to a method for obtaining a pure gas by continuous separation and recovery, and is characterized by the use of a diaphragm sandwiched between a hydrogen ion conductive substance and a hydrogen permeable metal membrane electrode.

同位体(以下単にトリチウムと称する)を含む媒体から
の水素の化学形の同位体混合ガス(以下トリチウムガス
と称する)の、特に再利用の容易な形、すなわち常圧付
近の純ガスとしての抽出の方法はなく、わずかに以下に
示すような技術的に複雑、困難で安全性、経済性でも不
利と思われろ方法が原理的には可能であるのみであった
Extraction of an isotopic mixed gas of the chemical form of hydrogen (hereinafter referred to as tritium gas) from a medium containing the isotope (hereinafter simply referred to as tritium) in a form that is particularly easy to reuse, that is, as a pure gas near normal pressure. There is no such method, and only the method described below, which is technically complex, difficult, and disadvantageous in terms of safety and economy, is possible in principle.

まず、パラジウム、ニオブなどの水素透過性金属膜を用
いてトリチウムを分離、抽出することが可能であり、水
素精製法として実用化している。
First, it is possible to separate and extract tritium using a hydrogen-permeable metal membrane such as palladium or niobium, and it has been put into practical use as a hydrogen purification method.

本法では膜のトリチウムに対する選択透過性を利用して
おり、操作の連続性と得られるトリチウムガスの純度の
点では問題はない。しかし透過は膜の両側の水素分圧差
により起るため、トリチウム分圧の低い媒体からの分離
抽出の場合には透過側のトリチウムガスの圧力はさらに
低いものとなる一方、媒体からのトリチウム回収率を十
分な値にするためには透過側のトリチウムガスの王カン
極めて低く、はとんど真空に維持しなげればならない。
This method utilizes the selective permselectivity of the membrane for tritium, and there are no problems in terms of operational continuity and the purity of the tritium gas obtained. However, since permeation occurs due to the difference in hydrogen partial pressure on both sides of the membrane, in the case of separation and extraction from a medium with a low tritium partial pressure, the pressure of tritium gas on the permeate side will be even lower, but the tritium recovery rate from the medium will be lower. In order to obtain a sufficient value, the amount of tritium gas on the permeation side must be extremely low and maintained in a vacuum.

つまり本法では透過側を排気する一方でトリチウムガス
を利用可能な圧力まで昇圧する強力な真空ポンプとの組
合せが不可欠であるが、トリチウムの放射線環境下で使
用でき、しかも得られるトリチウムを汚染しないために
は油類を使用しない型式のポンプでなげればならずこれ
は技術的には極めて困難でまた高価である。
In other words, this method requires a combination with a powerful vacuum pump that pumps up the tritium gas to a usable pressure while evacuating the permeate side, but it can be used in a tritium radiation environment and does not contaminate the tritium obtained. In order to do this, a type of pump that does not use oil must be used, which is technically extremely difficult and expensive.

金属の水素化反応を利用した活性金属充填塔も、条件に
よってはトリチウムの分離回収に利用可能である。しか
し本法は本質的にバッチ操作となり、充填された金属の
容量までしかトリチウムを回収できず、またトリチウム
の吸収と放出を同時には行なえないため、充填塔は複数
を並列し、常時トリチウムの回収量乞監視しながら交互
に回収と放出を行なうための切換操作暑する必要がある
。トリチウムガスはこの吸収操作を終了した塔を一旦排
気した後に加熱再生することにより発生するが、システ
ムの運転上断続的にしか得られず、また常にかなりの量
のトリチウムが利用されずに水素化物とし℃蓄積されて
いる。また現在のところ本法に使用できろ金属はウラン
金属のみであり、これは核燃料物質であるため入手、取
扱いが規制されていること、ウランの化学的性質上取扱
いや使用に際しては常に酸素や水分を避けろ必要がある
こと、が欠点として挙げられる。
Active metal packed columns that utilize metal hydrogenation reactions can also be used to separate and recover tritium, depending on the conditions. However, this method is essentially a batch operation, and tritium can only be recovered up to the capacity of the filled metal, and tritium cannot be absorbed and released at the same time. Therefore, multiple packed columns are connected in parallel to constantly recover tritium. It is necessary to perform switching operations for alternate collection and discharge while monitoring the volume. Tritium gas is generated by heating and regenerating the gas after once exhausting the tower that has completed this absorption operation, but it is only obtained intermittently due to the operation of the system, and a considerable amount of tritium is always unused and converted into hydride. It is accumulated at ℃. Currently, the only metal that can be used in this law is uranium metal, which is a nuclear fuel material and its acquisition and handling are regulated. The disadvantage is that it is necessary to avoid

この他に、触媒乞用いてトリチウムを酸化し、水に転換
し℃乾燥塔またはコールドトラップでこの水を回収する
方法は、主として空気や不活性ガスからのトリチウムの
分離、除去法として広く行なわれているが、回収された
トリチウムの再利用は極めて困難である。
In addition, the method of oxidizing tritium using a catalyst, converting it to water, and recovering this water in a °C drying tower or cold trap is widely used as a method for separating and removing tritium from air or inert gas. However, it is extremely difficult to reuse the recovered tritium.

(発明が解決しようとする問題点) パラジウム、ニオブ等からなる水素透過性隔膜を用いる
選択的透過法、活性金属充填塔を用いろ水素化反応によ
る方法、また触媒を利用する方法などの前記従来法は、
前述の如く、技術的に複雑。
(Problems to be Solved by the Invention) The above-mentioned conventional methods include a selective permeation method using a hydrogen-permeable diaphragm made of palladium, niobium, etc., a method using a hydrogenation reaction using an active metal packed column, and a method using a catalyst. The law is
As mentioned above, it is technically complex.

困難なものであり、その上に安全性、経済性の点で種々
の問題点があった。
In addition to being difficult, there were various problems in terms of safety and economy.

(問題点を解決するための手段) 本発明は、以上のように従来法では極めて困難であった
トリチウムの分離抽出、昇圧、移送V −個の単純な装
置で行なうことを目的としたものであり、トリチウムの
選択的なポンプの構成方法とみなすことができろ。
(Means for Solving the Problems) As described above, the purpose of the present invention is to carry out the separation, extraction, pressurization, and transfer of tritium using V - simple devices, which were extremely difficult in the conventional methods. Yes, it can be considered as a method of constructing a tritium selective pump.

すなわち、本発明は主として水素イオンZ電荷担体とす
る物質を水素透過性金属膜電極ではさんだプロトン導電
性電解質からなる隔膜を用い、両電極間に電流を通じ℃
一方の電極に接したトリチウムガスむ媒体からトリチウ
ムを連続的に分離抽出する一方、他方の電極より該隔膜
によつ℃該媒体から隔てられた空間に純トリチウムガス
を放出するトリチウムの抽出・移送方法である。
That is, the present invention uses a diaphragm made of a proton-conductive electrolyte in which a substance serving as a charge carrier for hydrogen ions Z is sandwiched between hydrogen-permeable metal membrane electrodes, and a current is passed between the two electrodes to raise the temperature at °C.
Tritium is continuously separated and extracted from a medium containing tritium gas in contact with one electrode, while pure tritium gas is released from the other electrode into a space separated from the medium by the diaphragm. It's a method.

本発明により、複雑な装置や操作によらずして媒体中の
低分圧のトリチウムZ、純粋で利用しやすい圧力のトリ
チウムガスへの抽出、移送することが可能となる。
The present invention makes it possible to extract and transfer tritium Z at a low partial pressure in a medium to tritium gas at a pure and easily available pressure without using complicated equipment or operations.

(実施例) 本発明の一実施例を図1に基いて説明する。図中1は主
として水素イオンZ電荷担体とする物質(以下プロトン
導電体と称する)であり、2,3は水素1選択的に透過
し、他の物質に対しては気密の金属膜である。これは一
種の電気化学装置であって、上は電解質、2.3は電極
として作用し、旦の外部電源により運転され機械的可動
部分はな℃ゝ0 土はトリチウム(図中、水素H,とじて示す)を含む媒
体とし、ここからトリチウムは電極g中へ解離溶解し、
拡散透過により電極2とプロトン導電体ユの界面に達す
る。ここでトリチウムはイオン化し、両電極間にかけら
れた電位差に従ってプロトン導電体1中を泳動し、電極
3へと達する。
(Example) An example of the present invention will be described based on FIG. 1. In the figure, 1 is a substance mainly used as a charge carrier for hydrogen ions (hereinafter referred to as a proton conductor), and 2 and 3 are metal membranes that selectively permeate hydrogen 1 and are airtight to other substances. This is a type of electrochemical device, with the upper layer acting as an electrolyte and 2.3 acting as an electrode.It is operated by an external power source and has no mechanically moving parts. ) from which tritium dissociates and dissolves into the electrode g,
It reaches the interface between the electrode 2 and the proton conductor Yu by diffusion permeation. Here, tritium is ionized, migrates through the proton conductor 1 according to the potential difference applied between the two electrodes, and reaches the electrode 3.

トリチウムは電極3で再び原子状となり、電極中を透過
した後トリチウムガスとなって5へと放出されろ。この
一連の過程によりトリチウムは4かも互へと移送され、
土の媒体からの分離抽出と互の純トリチウムガスへの精
製、昇圧が行なわれる。
Tritium becomes atomic again at electrode 3, becomes tritium gas after passing through the electrode, and is released to 5. Through this series of processes, tritium is transferred to each other,
Separation and extraction from the soil medium, purification into pure tritium gas, and pressurization are performed.

本発明の実施にあたっては、対象媒体、使用温度によっ
てプロトン導電体および電極の組合せχ適宜質えること
ができる。プロトン導電体としてイオン交換樹脂、電極
として無電解めっきにより樹脂表面に形成した白金膜ケ
使用した場合では室温、また濃水酸化カリウム水溶液と
パラジウムはくを用いたときは200°Cで、それぞれ
水素の移送動作ビ確認した。このとき水素の移送は回路
中を流れる電流に対応して行なわれ、逆方向への移送も
可能であった。水素の圧力差は電位差に対応し、両電極
上の水素圧力比10倍につき室温で約40へvしか要し
なかった。
In implementing the present invention, the combination of proton conductors and electrodes can be selected as appropriate depending on the target medium and operating temperature. When using an ion exchange resin as a proton conductor and a platinum film formed on the resin surface by electroless plating as an electrode, the temperature was at room temperature, and when a concentrated potassium hydroxide aqueous solution and palladium foil were used, the temperature was 200°C. The transfer operation was confirmed. At this time, hydrogen was transferred in accordance with the current flowing in the circuit, and transfer in the opposite direction was also possible. The hydrogen pressure difference corresponded to the potential difference and required only about 40 V at room temperature for 10 times the hydrogen pressure ratio on both electrodes.

本発明でトリチウムを抽出する対象となる媒体としては
、低圧または真空に近い純トリチウムガス、トリチウム
を含む混合ガスの他、溶融金属や塩などの液体、あるい
はトリチウムの溶存する固体などが考えられ、そのいず
れに対しても不法は原理的には実施可能である。またト
リチウムがH2O、NH3などのように化合物となって
いる場合でも、十分な電圧をかけた場合には電気分解に
より化合物中からトリチウムのみを回収することもでき
る。プロトン導電体としては前述の実施例で用いた物質
の他、β″−アルミナ、モンモリロナイト、水素化リン
酸ウラニル水和物などの固体電解質が応用可能であり、
電極材としてはパラジウム、白金の他に条件によっては
ニオブ、バナジウム、ニッケルなどが考えられろ0 本発明はまた以上に述べた用途の他にも、4と5馨王力
差の比較的小さいトリチウムガスとした場合には移送ポ
ンプとして、またFl密封容器とした場合はトリチウム
の回収、貯蔵、供給装置として使用できろ他、5側を固
体表面とした場合は固体のトリチウム透過漏洩防止方法
として適用することも可能と思われる。
Possible media from which tritium can be extracted in the present invention include pure tritium gas at low pressure or near vacuum, mixed gases containing tritium, liquids such as molten metals and salts, and solids in which tritium is dissolved. In principle, illegality can be enforced against any of them. Furthermore, even if tritium is a compound such as H2O or NH3, only tritium can be recovered from the compound by electrolysis if a sufficient voltage is applied. In addition to the substances used in the above-mentioned examples, solid electrolytes such as β''-alumina, montmorillonite, and hydrogenated uranyl phosphate hydrate can be used as proton conductors.
In addition to palladium and platinum, the electrode material may also include niobium, vanadium, nickel, etc. depending on the conditions. In addition to the above-mentioned applications, the present invention is also applicable to tritium, which has a relatively small difference in power between 4 and 5. When used as a gas, it can be used as a transfer pump, when used as a Fl sealed container, it can be used as a tritium recovery, storage, and supply device, and when the 5 side is a solid surface, it can be used as a method to prevent tritium permeation leakage in solids. It seems possible to do so.

(発明の効果) 本発明によれば、複雑な装置や操作によることなしに構
造の簡単な電気化学セル構造の装置を用いて媒体中の低
分圧のトリチウムを純粋で利用しやすい圧力のトリチウ
ムガスへと抽出または移送することが可能になる0
(Effects of the Invention) According to the present invention, tritium at a low partial pressure in a medium can be converted into pure tritium at a pressure that is easy to use by using a device with a simple electrochemical cell structure without using complicated devices or operations. 0 that can be extracted or transferred into gas

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明によりトリチウムを抽出、移送する装置の
構成を示す。 図中の番号は次のもの?あられす。 ■・・・プロトン導電体  2・・・水素抽出電極3・
・・水素放出電極 4・・・低分圧水素を含む媒体 5・・・純水素    6・・・電源 特許出願人  日本原子力研究所 十   −
FIG. 1 shows the configuration of an apparatus for extracting and transporting tritium according to the present invention. What is the number in the diagram? Hail. ■... Proton conductor 2... Hydrogen extraction electrode 3.
・Hydrogen release electrode 4 ・Medium containing low partial pressure hydrogen 5 ・Pure hydrogen 6 ・Power source patent applicant Japan Atomic Energy Research Institute 10 −

Claims (1)

【特許請求の範囲】[Claims] 主として水素イオンを電荷担体とする物質を水素透過性
金属膜電極ではさんだ隔膜を用い、両電極間に電流を通
じて一方の電極に接したトリチウムを含む媒体からトリ
チウムを連続的に分離抽出する一方、他方の電極より当
該隔膜により媒体から隔てられた空間に純トリチウムガ
スを放出することを特徴とするトリチウム抽出・移送方
法。
Using a diaphragm in which a substance whose charge carrier is mainly hydrogen ions is sandwiched between hydrogen-permeable metal membrane electrodes, tritium is continuously separated and extracted from a tritium-containing medium in contact with one electrode by passing an electric current between the two electrodes, while the other A tritium extraction and transfer method characterized by releasing pure tritium gas from an electrode into a space separated from a medium by the diaphragm.
JP5010086A 1986-03-07 1986-03-07 Method for extracting and transferring tritium Granted JPS62210039A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5010086A JPS62210039A (en) 1986-03-07 1986-03-07 Method for extracting and transferring tritium
CA000531421A CA1311213C (en) 1986-03-07 1987-03-06 Method of extracting and transporting tritium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5010086A JPS62210039A (en) 1986-03-07 1986-03-07 Method for extracting and transferring tritium

Publications (2)

Publication Number Publication Date
JPS62210039A true JPS62210039A (en) 1987-09-16
JPH0566167B2 JPH0566167B2 (en) 1993-09-21

Family

ID=12849656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5010086A Granted JPS62210039A (en) 1986-03-07 1986-03-07 Method for extracting and transferring tritium

Country Status (2)

Country Link
JP (1) JPS62210039A (en)
CA (1) CA1311213C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003067145A1 (en) * 2002-01-18 2003-08-14 Sony Corporation Electrochemical device and gas storage apparatus
CN106251912A (en) * 2016-08-15 2016-12-21 中国科学院合肥物质科学研究院 Self-loopa tritium containment system based on proton conductor ceramic membrane
JP2019526446A (en) * 2016-09-09 2019-09-19 スカイヤ インコーポレイテッドSkyre,Inc. Apparatus and method for concentrating hydrogen isotopes
JP2020505218A (en) * 2017-01-26 2020-02-20 スカイヤ インコーポレイテッドSkyre,Inc. Method and apparatus for providing high purity hydrogen isotope diatomic molecules
US11649165B2 (en) 2017-03-09 2023-05-16 Sustainable Innovations, Inc. In situ apparatus and method for providing deuterium oxide or tritium oxide in an industrial apparatus or method
WO2024071106A1 (en) * 2022-09-26 2024-04-04 京都フュージョニアリング株式会社 Hydrogen isotope transport device and hydrogen isotope transport method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003067145A1 (en) * 2002-01-18 2003-08-14 Sony Corporation Electrochemical device and gas storage apparatus
CN106251912A (en) * 2016-08-15 2016-12-21 中国科学院合肥物质科学研究院 Self-loopa tritium containment system based on proton conductor ceramic membrane
JP2019526446A (en) * 2016-09-09 2019-09-19 スカイヤ インコーポレイテッドSkyre,Inc. Apparatus and method for concentrating hydrogen isotopes
JP2020505218A (en) * 2017-01-26 2020-02-20 スカイヤ インコーポレイテッドSkyre,Inc. Method and apparatus for providing high purity hydrogen isotope diatomic molecules
US11649165B2 (en) 2017-03-09 2023-05-16 Sustainable Innovations, Inc. In situ apparatus and method for providing deuterium oxide or tritium oxide in an industrial apparatus or method
WO2024071106A1 (en) * 2022-09-26 2024-04-04 京都フュージョニアリング株式会社 Hydrogen isotope transport device and hydrogen isotope transport method

Also Published As

Publication number Publication date
JPH0566167B2 (en) 1993-09-21
CA1311213C (en) 1992-12-08

Similar Documents

Publication Publication Date Title
JP5429658B2 (en) Lithium isotope separation and concentration method and apparatus, and 6Li isotope or 7Li isotope highly concentrated recovery system and recovery method
US4692390A (en) Method and system for hydrogen thermal-electrochemical conversion
JP6818334B2 (en) Lithium selective permeable membrane, lithium recovery device, lithium recovery method, hydrogen production method
US4818638A (en) System for hydrogen thermal-electrochemical conversion
RU2146406C1 (en) Fuel cell with fiber-reinforced membrane
JP5897512B2 (en) Method for electrolytic concentration of heavy water
CN109200822A (en) A kind of method of field coupling crown ether graft polymers perforated membrane separation lithium isotope
US20160310898A1 (en) Advanced tritium system and advanced permeation system for separation of tritium from radioactive wastes
EP0463542B1 (en) Gas-recirculating electrode for electrochemical system
Honda et al. Lithium isotope enrichment by electrochemical pumping using solid lithium electrolytes
JPS62210039A (en) Method for extracting and transferring tritium
US3620844A (en) System for the activation of hydrogen
US3553092A (en) Electrodialysis process and cell
CA1231669A (en) Recovery method of tritium from tritiated water
JPH02311302A (en) Purification apparatus for hydrogen gas to be supplied to fuel cell
RU2733726C2 (en) Electrolytic cell for producing hydrogen
US3445292A (en) Thermally regenerable hydrogen halide fuel cell
WO2024071106A1 (en) Hydrogen isotope transport device and hydrogen isotope transport method
GB2040899A (en) Spent plasma reprocessing system
CA3240086A1 (en) Advanced tritium system and advanced permeation system for separation of tritium from radioactive wastes
Nishikawa et al. Enrichment and volume reduction of tritiated water using electrolysis cell having hydrogen permeable cathode
DiMascio et al. Electrochemical module configuration for the continuous acidification of alkaline water sources and recovery of CO2 with continuous hydrogen gas production
US20240233972A9 (en) Combined corrosion mitigation and hydrogen isotope extraction from molten salts
JP2019514190A (en) Rechargeable electrochemical device for electrical energy generation
JPH05802A (en) Separation of hydrogen isotope

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term