JPH05802A - Separation of hydrogen isotope - Google Patents

Separation of hydrogen isotope

Info

Publication number
JPH05802A
JPH05802A JP3020912A JP2091291A JPH05802A JP H05802 A JPH05802 A JP H05802A JP 3020912 A JP3020912 A JP 3020912A JP 2091291 A JP2091291 A JP 2091291A JP H05802 A JPH05802 A JP H05802A
Authority
JP
Japan
Prior art keywords
hydrogen
water
isotope
tritium
isotopes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3020912A
Other languages
Japanese (ja)
Other versions
JP2584902B2 (en
Inventor
Tetsuyuki Konishi
哲之 小西
Takumi Hayashi
巧 林
Yuji Naruse
雄二 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP3020912A priority Critical patent/JP2584902B2/en
Priority to CA002058054A priority patent/CA2058054C/en
Publication of JPH05802A publication Critical patent/JPH05802A/en
Application granted granted Critical
Publication of JP2584902B2 publication Critical patent/JP2584902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To separate and concentrate a hydrogen isotope with little power consumption by electrochemically transferring oxygen from heavy isotope water, such as tritium water to light isotope hydrogen. CONSTITUTION:A hydrogen isotope raw material (for example, tritium water) is supplied to a water-hydrogen isotope exchange reactor 11 where it is concentrated, and the concentrated water is introduced from a concentrated water outlet 13 to a water-hydrogen converter 17 (for example, that using an oxygen ion conductive solid electrolyte cell 18) where hydrogen is formed. Part of the hydrogen thus formed is taken off as a product and the other part is returned from a hydrogen inlet 14 to the exchange reactor 11 where the hydrogen transfers its tritium to water and the hydrogen thus formed is delivered from a hydrogen outlet 15 to the convertor 17. This causes a hydrogen isotope in tritium water to be continuously separated. To the converter 17, are fed the concentrated water of heavy isotope on one side of the cell 18 and the concentrated hydrogen of light isotope on the other side, permitting the exchange of water to hydrogen and vice versa to be spontaneously made.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は水素同位体の分離方法
に関するものである。さらに詳しくは、この発明は、核
融合炉におけるトリチウムの分離、濃縮、除去、重水炉
における重水のアップグレーディングやトリチウムの濃
縮、除去、核燃料再処理におけるトリチウムの分離、除
去、その他一般の試験、研究に使用したトリチウムの分
離、回収および除去、さらには、重水製造などトリチウ
ム以外の水素同位体の分離にも有用な、水素同位体の分
離方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for separating hydrogen isotopes. More specifically, the present invention relates to tritium separation, concentration and removal in a fusion reactor, heavy water upgrading and tritium concentration and removal in a heavy water reactor, tritium separation and removal in nuclear fuel reprocessing, and other general tests and research. The present invention relates to a method for separating a hydrogen isotope, which is useful for separating, recovering and removing the tritium used for the above, and further for separating a hydrogen isotope other than tritium such as heavy water production.

【0002】[0002]

【従来の技術とその課題】水と水素の同位体交換反応を
利用する水素同位体の分離方法は、平衡状態での分離係
数が大きく、向流型の反応塔を構成できるため極めて高
い分離性能を単一の装置で達成することができ、しかも
水と水素と言う化学的に扱いの容易な物質しか使用しな
いという長所を有している。この方法は、重水の製造
や、トリチウムの酸化物を含む水(以下、トリチウム水
と称する)からのトリチウムの除去、回収などに有望な
プロセスであるが、重同位体(たとえば軽水素に対する
重水素、トリチウム)が濃縮される水を再び水素に還元
する工程が不可欠であり、このために用いられる電気分
解のための電力消費が大きな問題となる。
2. Description of the Related Art A method for separating hydrogen isotopes using an isotope exchange reaction between water and hydrogen has a large separation coefficient in an equilibrium state, and a countercurrent type reaction tower can be constructed, resulting in extremely high separation performance. Can be achieved with a single device, and has the advantage of using only chemically handleable substances such as water and hydrogen. This method is a promising process for producing heavy water, removing tritium from water containing oxides of tritium (hereinafter referred to as tritium water), and recovering it. , Tritium) -concentrated water is reduced to hydrogen again, and power consumption for electrolysis used for this purpose becomes a big problem.

【0003】従来の向流型の同位体交換反応塔と電解槽
を組み合わせたトリチウム水の分離方法は、たとえば図
1に示すことができる。この図1に例示したように、原
料トリチウム水は、交換反応塔(1)に原料水入口
(2)より供給され、反応塔中で濃縮されて濃縮水出口
(3)より電解槽(8)に送られる。この電解槽(8)
で、トリチウム水はトリチウムを高濃度で含む水素と酸
素に分解され、水素は一部が製品として取り出され、一
部が交換反応塔に水素入口(4)より供給される。酸素
は、そのままではトリチウム水蒸気を含むため、水分離
器(10)を通してトリチウム水を除いた後、酸素供給
ラインより水素再結合器(7)に送られる。水素は交換
反応塔(1)でトリチウムを水に移し、水素出口(5)
より水素再結合器(7)に送られ、そこで酸化される。
生成した水は、一部が減損水、あるいは浄化された水と
して廃棄され、一部が減損水入口(6)より再び交換反
応塔に供給される。
A conventional method of separating tritium water by combining a countercurrent type isotope exchange reaction tower and an electrolytic cell can be shown in FIG. 1, for example. As illustrated in FIG. 1, the raw material tritium water is supplied to the exchange reaction tower (1) from the raw water inlet (2), concentrated in the reaction tower, and then concentrated in the concentrated water outlet (3) to the electrolytic cell (8). Sent to. This electrolyzer (8)
Then, the tritiated water is decomposed into hydrogen and oxygen containing a high concentration of tritium, part of the hydrogen is taken out as a product, and part of the hydrogen is supplied to the exchange reaction column through the hydrogen inlet (4). Oxygen, as it is, contains tritium water vapor, so after removing tritium water through the water separator (10), it is sent to the hydrogen recombiner (7) from the oxygen supply line. For hydrogen, transfer tritium to water in the exchange reaction tower (1), and then the hydrogen outlet (5)
More is sent to the hydrogen recombiner (7) where it is oxidized.
Part of the produced water is discarded as depleted water or purified water, and part of it is supplied again to the exchange reaction tower through the depleted water inlet (6).

【0004】たとえばこのような従来法においては、同
位体分離に必要な水素と水の流れを維持するために、水
素の酸化と水の分解を連続的に行わなければならず、特
に水の分解に大量の電力を必要とする欠点があり、その
実用化を妨げる最大の要因となっている。この発明は、
このように水と水素の同位体交換反応を利用する従来の
水素同位体の分離方法において不可避であった欠点を解
消し、重同位体が濃縮される水を再び水素に還元する工
程での電力消費を節約し、水の分解に電力を必要とさえ
しない方法を提供することを目的としている。
For example, in such a conventional method, in order to maintain the flow of hydrogen and water required for isotope separation, hydrogen oxidation and water decomposition must be carried out continuously, and especially water decomposition. Has the drawback of requiring a large amount of power, which is the biggest factor preventing its practical use. This invention
In this way, the disadvantages that were inevitable in the conventional method for separating hydrogen isotopes using the isotope exchange reaction between water and hydrogen were solved, and the power used in the process of reducing the water in which heavy isotopes were concentrated to hydrogen again. The aim is to provide a method that saves consumption and does not even require electricity to decompose water.

【0005】[0005]

【問題点を解決するための手段】この発明は、上記の課
題を解決するものとして、水と水素の同位体交換反応を
利用する水素同位体分離方法であって、重同位体の濃縮
される水から軽同位体の濃縮される水素への酸素の移動
を電気化学的に行う装置により水の分解に必要とされる
エネルギーを節約し、水から水素、水素から水への変換
を同時に行うことを特徴とする水素同位体の分離方法を
提供する。
Means for Solving the Problems The present invention is, in order to solve the above-mentioned problems, a hydrogen isotope separation method utilizing an isotope exchange reaction between water and hydrogen, wherein heavy isotopes are enriched. To save energy required for water decomposition by electrochemically transferring oxygen from water to light isotope-enriched hydrogen, and to convert water to hydrogen and hydrogen to water at the same time. A method for separating hydrogen isotopes is provided.

【0006】また、この発明は、軽同位体の濃縮される
水素を燃料電池発電に利用し、発生する電力を以て重同
位体の濃縮される水を分解する、あるいは、軽同位体の
濃縮される水素の酸化により製造する還元剤を以て重同
位体の濃縮される水を還元することにより、水と水素の
同位体交換反応を利用する水素同位体の分離方法におい
て、水の分解工程にほとんど電力を消費しないか、ある
いは場合によっては利得さえ生成しうるプロセスを構成
する。
In addition, the present invention utilizes light isotope-enriched hydrogen for fuel cell power generation, and decomposes water that is enriched in heavy isotopes with generated electric power or enriches light isotopes. In the method for separating hydrogen isotopes that utilizes the isotope exchange reaction between water and hydrogen by reducing the water in which the heavy isotopes are concentrated by using a reducing agent produced by the oxidation of hydrogen, almost no electric power is required for the water decomposition step. It constitutes a process that does not consume, or in some cases even gains.

【0007】以下、実施例を示し、さらに詳しくこの発
明について説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0008】[0008]

【実施例】この発明による水と水素の同位体交換反応を
利用する水素同位体の分離方法を、トリチウム水からの
トリチウムの抽出を例にとって図2、図3および図4に
よって説明する。図2は、重同位体の濃縮される水から
軽同位体の濃縮される水素への酸素の移動により水から
水素、水素から水への変換を同時に行う装置を水−水素
同位体交換反応塔と組み合わせた水素同位体分離方法を
例示している。水−水素変換器に酸素イオン電導性固体
電解質セルを用いてトリチウム水を濃縮する場合を例示
している。すなわち、原料トリチウム水は、水−水素同
位体交換反応塔(11)に原料水入口(12)より供給
され、反応塔中で濃縮されて濃縮水出口(13)より水
−水素変換器(17)に送られる。ここで生成した水素
は一部が製品として取り出され、一部が交換反応塔に水
素入口(14)より戻される。また、水素は交換反応塔
(11)でトリチウムを水に移し、水素出口(15)よ
り水−水素変換器(17)に送られ、減損水となって廃
棄または減損水入口(16)より再び交換反応塔(1
1)に供給される。以上の過程で、トリチウム水中の水
素同位体は連続的に分離される。水−水素変換器(1
7)は、酸素イオン電導性固体電解質隔膜(18)の片
側に重同位体の濃縮された水、他方に軽同位体の濃縮さ
れた水素を供給するものである。酸素を透過する性質を
持つ隔膜の一方に水、他方に水素を接すると、酸素ポテ
ンシャルの差により、水から水素への酸素の移動が起こ
る。これにより水から水素、水素から水への変換が同時
に行われ、しかも水素同位体は隔膜により隔離されてい
るため互いに混合することはない。この移動はある程度
自発的に起こるため特に電力を供給する必要はないが、
酸素の移動が不十分な場合は、隔膜の両側に電圧を供給
して強制的に酸素を水素側へ移動せしめることができ、
それに要する電力は電気分解に要するよりはるかに少な
い。すなわち、本法により、同位体交換反応と固体電解
質セルの組み合わせで、ほとんど電力を消費しないで、
水素同位体を分離することができる。
EXAMPLES A method for separating hydrogen isotopes using an isotope exchange reaction between water and hydrogen according to the present invention will be described with reference to FIGS. 2, 3 and 4 by taking tritium extraction from tritiated water as an example. FIG. 2 is a water-hydrogen isotope exchange reaction tower in which a device for simultaneously converting water to hydrogen and hydrogen to water by transferring oxygen from water enriched with heavy isotopes to hydrogen enriched with light isotopes is used. 2 illustrates an example of a hydrogen isotope separation method in combination with. The case of concentrating tritium water using an oxygen ion conductive solid electrolyte cell in a water-hydrogen converter is illustrated. That is, the raw material tritium water is supplied to the water-hydrogen isotope exchange reaction tower (11) through the raw water inlet (12), concentrated in the reaction tower, and concentrated through the concentrated water outlet (13) to the water-hydrogen converter (17). ) Sent to. Part of the hydrogen generated here is taken out as a product, and part of it is returned to the exchange reaction column through the hydrogen inlet (14). In addition, hydrogen transfers tritium to water in the exchange reaction tower (11) and is sent to the water-hydrogen converter (17) through the hydrogen outlet (15) to become depleted water or be discarded or re-injected through the depleted water inlet (16). Exchange reaction tower (1
1). Through the above process, hydrogen isotopes in tritium water are continuously separated. Water-hydrogen converter (1
In 7), heavy isotope-enriched water is supplied to one side of the oxygen ion conductive solid electrolyte membrane (18), and light isotope-enriched hydrogen is supplied to the other side. When water comes into contact with one of the diaphragms having the property of transmitting oxygen and hydrogen comes into contact with the other, oxygen moves from water to hydrogen due to the difference in oxygen potential. As a result, water is converted into hydrogen and hydrogen is converted into water at the same time, and the hydrogen isotopes are separated from each other by the diaphragm so that they are not mixed with each other. This movement occurs spontaneously to some extent, so it is not necessary to supply electric power,
If oxygen transfer is insufficient, a voltage can be applied to both sides of the diaphragm to force oxygen to move to the hydrogen side.
It requires far less power than electrolysis. That is, according to this method, the combination of the isotope exchange reaction and the solid electrolyte cell consumes almost no electric power,
Hydrogen isotopes can be separated.

【0009】上記の例は、電気分解と再結合反応を一つ
の装置で行う方法であるが、これを別々の装置で行うこ
とも可能である。これに対して、図3は、再結合反応を
燃料電池発電に利用し、それによる発生電力を以て水を
電気分解するプロセスを示している。図中、同位体交換
反応塔(11)の部分は図2と同じであるが、軽同位体
の濃縮された水素は水素出口(15)より酸水素燃料電
池(19)に、重同位体の濃縮された水は濃縮水出口
(13)より電解槽(20)にそれぞれ送られる。この
電解槽(20)に酸素イオン電導性固体電解質セルを利
用した場合、発生する酸素はきわめて純粋であるため、
それを燃料電池(19)に供給しても、水や水素をトリ
チウムで汚染する恐れは少ない。燃料電池での水素の酸
化は自発的に進行し、電力が取り出される。電解槽(2
0)はこの電力で運転される。電解槽(20)に供給さ
れる水と、燃料電池(19)に供給される水素の量はほ
とんど同じであるため、電気的な損失を無視した場合、
電気分解に必要な電力は、ほとんど燃料電池の発電量で
賄うことができる。さらに、電解槽を約900 度の高温で
運転した場合水の分解に必要な電圧が約0.9 Vなのに対
し、室温で運転する酸水素燃料電池の起電力は約1.2 V
なので、これらの運転温度を適切に設定することにより
電力の面で利得を得ることも理論的には可能である。
The above example is a method in which the electrolysis and the recombination reaction are carried out in one apparatus, but it is also possible to carry out this in separate apparatuses. On the other hand, FIG. 3 shows a process of utilizing the recombination reaction for fuel cell power generation and electrolyzing water with the generated power. In the figure, the part of the isotope exchange reaction column (11) is the same as that of FIG. 2, but the hydrogen enriched with light isotopes is fed from the hydrogen outlet (15) to the oxyhydrogen fuel cell (19) and the heavy isotopes The concentrated water is sent to the electrolytic cell (20) from the concentrated water outlet (13). When an oxygen ion conductive solid electrolyte cell is used in this electrolytic cell (20), the generated oxygen is extremely pure.
Even if it is supplied to the fuel cell (19), there is little risk of contaminating water or hydrogen with tritium. Oxidation of hydrogen in the fuel cell progresses spontaneously and electric power is taken out. Electrolyzer (2
0) is operated with this electric power. Since the amount of water supplied to the electrolytic cell (20) and the amount of hydrogen supplied to the fuel cell (19) are almost the same, when ignoring the electrical loss,
Most of the electric power required for electrolysis can be covered by the amount of power generated by the fuel cell. Furthermore, when the electrolyzer is operated at a high temperature of about 900 degrees, the voltage required for water decomposition is about 0.9 V, whereas the electromotive force of an oxyhydrogen fuel cell operating at room temperature is about 1.2 V.
Therefore, it is theoretically possible to obtain a gain in terms of electric power by appropriately setting these operating temperatures.

【0010】また、この発明による水素の酸化工程から
水の還元工程へのエネルギーの移動を、適当な酸化還元
剤を媒介して行う方法を例示したものが図4である。水
性ガス平衡(H2 O+CO=H2 +CO2)を例にとっ
て説明すると、同位体交換反応塔(11)からの軽同位
体の濃縮された水素は水素出口(15)より水素酸化反
応器(21)に、重同位体の濃縮された水は濃縮水出口
(13)より水還元反応器(22)にそれぞれ送られ
る。水性ガス平衡(H2 O+CO=H2 +CO2 )反応
は可逆な平衡反応なので、水還元反応器(22)に水と
一酸化炭素を供給した場合は水素と二酸化炭素が、水素
酸化反応器(21)に水素と二酸化炭素を供給したとき
には水と一酸化炭素が、それぞれ平衡に達するまで生成
する。これらの反応器から二酸化炭素、一酸化炭素を分
離、循環することによって、ほとんどエネルギーを消費
することなしに水素の酸化と水の還元を行い、水−水素
同位体交換反応塔に水と水素を供給することができる。
この方法の実施に際しては、反応器(21)と(22)
に図2に示した酸素イオン電導性固体電解質セルを用い
ることによって一酸化炭素及び二酸化炭素を水、水素か
ら分離する工程を省略することができる。
FIG. 4 illustrates a method of transferring energy from the hydrogen oxidation step to the water reduction step according to the present invention through a suitable redox agent. The water gas equilibrium (H 2 O + CO = H 2 + CO 2 ) will be described as an example. The light isotope-enriched hydrogen from the isotope exchange reaction column (11) is supplied from the hydrogen outlet (15) to the hydrogen oxidation reactor (21). ), The heavy isotope-enriched water is sent to the water reduction reactor (22) from the concentrated water outlet (13). Since the water-gas equilibrium (H 2 O + CO = H 2 + CO 2 ) reaction is a reversible equilibrium reaction, when water and carbon monoxide are supplied to the water reduction reactor (22), hydrogen and carbon dioxide are converted into a hydrogen oxidation reactor ( When hydrogen and carbon dioxide are supplied to 21), water and carbon monoxide are produced until equilibrium is reached. By separating and circulating carbon dioxide and carbon monoxide from these reactors, hydrogen is oxidized and water is reduced with little energy consumption, and water and hydrogen are fed to the water-hydrogen isotope exchange reaction tower. Can be supplied.
In carrying out this process, reactors (21) and (22)
By using the oxygen ion conductive solid electrolyte cell shown in FIG. 2, the step of separating carbon monoxide and carbon dioxide from water and hydrogen can be omitted.

【0011】もちろん、この発明の方法においては、そ
の構成の細部について様々な態様が可能であることはい
うまでもない。
Of course, in the method of the present invention, it is needless to say that various aspects are possible in the details of the configuration.

【0012】[0012]

【発明の効果】以上詳しく説明した通り、この発明によ
って、水の分解工程にほとんど電力を消費しないか、あ
るいは場合によっては利得され生成しうるプロセスとし
て、水素同位体の分離が可能となる。
As described in detail above, according to the present invention, hydrogen isotope separation can be performed as a process that consumes almost no electric power in the water decomposition step or, in some cases, can be gained and produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来法による向流型の同位体交換反応塔と電解
槽を組み合わせたトリチウム水の分離方法を示したプロ
セス構成図である。
FIG. 1 is a process configuration diagram showing a tritium water separation method in which a countercurrent type isotope exchange reaction tower and an electrolytic cell are combined by a conventional method.

【図2】この発明による水素同位体の分離法で、水から
水素への酸素の移動を行う装置を用いたプロセス構成図
である。
FIG. 2 is a process block diagram using an apparatus for transferring oxygen from water to hydrogen in the method for separating hydrogen isotopes according to the present invention.

【図3】再結合器として燃料電池を使用するこの発明の
実施例を示したプロセス構成図である。
FIG. 3 is a process block diagram showing an embodiment of the present invention using a fuel cell as a recombiner.

【図4】水の還元と水素の酸化のために酸化還元剤を媒
介するこの発明の実施例を示したプロセス構成図であ
る。
FIG. 4 is a process block diagram illustrating an embodiment of the present invention that mediates a redox agent for reduction of water and oxidation of hydrogen.

【符号の説明】[Explanation of symbols]

1 水−水素交換反応塔 2 原料水入口 3 濃縮水出口 4 水素入口 5 水素出口 6 減損水入口 7 水素再結合器 8 電解槽 9 回収水入口 10 水分離器 11 水−水素交換反応塔 12 原料水入口 13 濃縮水出口 14 水素入口 15 水素出口 16 減損水入口 17 水−水素変換器 18 電解質隔膜 19 酸水素燃料電池 20 電解槽 21 水素酸化反応器 22 水還元反応器 23 酸化剤循環ライン 24 還元剤循環ライン 1 Water-hydrogen exchange reaction tower 2 Raw water inlet 3 Concentrated water outlet 4 Hydrogen inlet 5 Hydrogen outlet 6 Impaired water inlet 7 Hydrogen recombiner 8 electrolyzer 9 Recovery water inlet 10 water separator 11 Water-hydrogen exchange reaction tower 12 Raw water inlet 13 Concentrated water outlet 14 Hydrogen inlet 15 Hydrogen outlet 16 Impaired water inlet 17 Water-hydrogen converter 18 Electrolyte diaphragm 19 Hydrogen-oxygen fuel cell 20 electrolyzer 21 Hydrogen Oxidation Reactor 22 Water reduction reactor 23 Oxidant circulation line 24 Reductant circulation line

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水と水素の同位体交換反応を利用する水
素同位体分離方法であって、重同位体の濃縮される水か
ら軽同位体の濃縮される水素へ酸素を電気化学的に移動
することを特徴とする水素同位体の分離方法。
1. A method for hydrogen isotope separation utilizing an isotope exchange reaction between water and hydrogen, wherein oxygen is electrochemically transferred from water enriched with heavy isotopes to hydrogen enriched with light isotopes. A method for separating hydrogen isotopes, the method comprising:
【請求項2】 水と水素の同位体交換反応を利用する水
素同位体分離方法であって、軽同位体の濃縮される水素
を燃料電池発電に利用し、発生する電力を以て重同位体
の濃縮される水を分解することを特徴とする水素同位体
の分離方法。
2. A hydrogen isotope separation method using an isotope exchange reaction between water and hydrogen, wherein hydrogen enriched with light isotopes is used for fuel cell power generation, and heavy isotopes are enriched with generated electric power. A method for separating hydrogen isotopes, which comprises decomposing water to be treated.
【請求項3】 水と水素の同位体交換反応を利用する水
素同位体分離方法であって、軽同位体の濃縮される水素
の酸化により製造する還元剤を以て重同位体の濃縮され
る水を還元することを特徴とする水素同位体の分離方
法。
3. A hydrogen isotope separation method utilizing an isotope exchange reaction between water and hydrogen, wherein water enriched in heavy isotope is produced by reducing agent produced by oxidation of hydrogen enriched in light isotope. A method for separating hydrogen isotopes, which comprises reducing.
JP3020912A 1991-02-14 1991-02-14 Hydrogen isotope separation method Expired - Fee Related JP2584902B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3020912A JP2584902B2 (en) 1991-02-14 1991-02-14 Hydrogen isotope separation method
CA002058054A CA2058054C (en) 1991-02-14 1991-12-19 Method of separating hydrogen isotope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3020912A JP2584902B2 (en) 1991-02-14 1991-02-14 Hydrogen isotope separation method

Publications (2)

Publication Number Publication Date
JPH05802A true JPH05802A (en) 1993-01-08
JP2584902B2 JP2584902B2 (en) 1997-02-26

Family

ID=12040435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3020912A Expired - Fee Related JP2584902B2 (en) 1991-02-14 1991-02-14 Hydrogen isotope separation method

Country Status (2)

Country Link
JP (1) JP2584902B2 (en)
CA (1) CA2058054C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071106A1 (en) * 2022-09-26 2024-04-04 京都フュージョニアリング株式会社 Hydrogen isotope transport device and hydrogen isotope transport method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6949749B2 (en) * 2018-02-07 2021-10-13 大陽日酸株式会社 Method for producing stable carbon monoxide isotope and method for producing stable carbon dioxide isotope
CN114414650B (en) * 2022-01-27 2023-07-14 中国科学院地质与地球物理研究所 Analysis method of hydrocarbon isotopes in methane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633323A (en) * 1979-08-21 1981-04-03 Dainippon Shoji Kk Load collapse-proof method
JPS581617A (en) * 1981-01-19 1983-01-07 エタブリスマン・カザ Device and method of sorting fixed-quantity filling integral vessel
JPH032236A (en) * 1989-04-03 1991-01-08 Warner Lambert Co Strucutre-modified starch and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633323A (en) * 1979-08-21 1981-04-03 Dainippon Shoji Kk Load collapse-proof method
JPS581617A (en) * 1981-01-19 1983-01-07 エタブリスマン・カザ Device and method of sorting fixed-quantity filling integral vessel
JPH032236A (en) * 1989-04-03 1991-01-08 Warner Lambert Co Strucutre-modified starch and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071106A1 (en) * 2022-09-26 2024-04-04 京都フュージョニアリング株式会社 Hydrogen isotope transport device and hydrogen isotope transport method

Also Published As

Publication number Publication date
CA2058054C (en) 2003-02-11
CA2058054A1 (en) 1992-08-15
JP2584902B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
US4818638A (en) System for hydrogen thermal-electrochemical conversion
US4692390A (en) Method and system for hydrogen thermal-electrochemical conversion
US4412895A (en) System using SO2 as an anode depolarizer in a solid oxide electrolyte electrolysis cell for H2 production from steam
US3401100A (en) Electrolytic process for concentrating carbon dioxide
US3318735A (en) Fuel cell employing internal primary oxidant regeneration
US4738760A (en) Electrochemical separation of oxygen
US20070007147A1 (en) Multiple phase SO3/SO2/H2O/H2SO4 electrolyzer
US4908113A (en) Apparatus for the electrochemical separation of oxygen
US3979225A (en) Nitrogen dioxide regenerative fuel cell
KR102272722B1 (en) An apparatus for producing hydrogen and a method of producing hydrogen using thereof
JP2584902B2 (en) Hydrogen isotope separation method
Townley et al. Flue gas desulfurization using an electrochemical sulfur oxide concentrator
CA1231669A (en) Recovery method of tritium from tritiated water
US4859296A (en) Electrochemical separation of oxygen
JP4416503B2 (en) Apparatus and method for supplying hydrogen to a fuel cell and use of the fuel cell for electrically driving a vehicle
US3445292A (en) Thermally regenerable hydrogen halide fuel cell
US3306832A (en) Multistage process for the concentration of heavy water in feed water comprising a mixture of water and heavy water
JPS5838207B2 (en) Method for removing impurities such as helium from a mixture containing deuterium and tritium
JPS6038174B2 (en) Hydrogen isotope separation equipment
JPH0566167B2 (en)
JPH1128331A (en) Method for electrochemically separating carbon dioxide
JP3369192B2 (en) Countercurrent electrolytic reactor
GB2206341A (en) Treatment of organically-based waste matter
JPS581617B2 (en) Water↓-hydrogen isotope exchange reactor with economizer
JPS5855799A (en) Hydrogen isotope separating device for atomic power plant

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees