JPS6113611A - Manufacture of insulated coil - Google Patents

Manufacture of insulated coil

Info

Publication number
JPS6113611A
JPS6113611A JP13287184A JP13287184A JPS6113611A JP S6113611 A JPS6113611 A JP S6113611A JP 13287184 A JP13287184 A JP 13287184A JP 13287184 A JP13287184 A JP 13287184A JP S6113611 A JPS6113611 A JP S6113611A
Authority
JP
Japan
Prior art keywords
resin
parts
insulated coil
epoxy compound
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13287184A
Other languages
Japanese (ja)
Other versions
JPH0418448B2 (en
Inventor
Fumiyuki Miyamoto
宮本 文行
Hiroyuki Nakajima
博行 中島
Masakazu Murayama
村山 雅一
Seiji Oka
誠次 岡
Hideki Chidai
地大 英毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13287184A priority Critical patent/JPS6113611A/en
Publication of JPS6113611A publication Critical patent/JPS6113611A/en
Publication of JPH0418448B2 publication Critical patent/JPH0418448B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/127Encapsulating or impregnating

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Paints Or Removers (AREA)
  • Insulating Of Coils (AREA)

Abstract

PURPOSE:To obtain an insulated coil having excellent dielectric loss tangent-voltage characteristics by a method wherein an insulating sheet lined by a porous insulating material is wound around a coil conductor, the resin in which prescribed quantity of multifunctional vinyl monomer and phenoxy resin is contained in an epoxy compound is used as an impregnating resin when the insulated coil is formed by applying heat and pressure by impregnating low viscosity resin into the insulating sheet. CONSTITUTION:An insulating sheet is wound around a coil conductor, low viscosity resin is impregnated therein, a molding work is performed by applying heat and pressure, and an insulated coil is formed. According to this constitution, the resin consisting of an epoxy compound containing at least two epoxy groups in a molecule, 5-300pts.wt. of multifunctional vinyl monomer having two or more acrylic groups or a methacrylic group or an allyl group in a molecule for 100pts.wt. of the mixture of said epoxy compound and a hardening agent, is used as a low viscosity impregnating resin. Through these procedures, a crosslinking reticulation can be made uniform and, at the same time, the flexibility and the dimensional stability of the insulated coil can be improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は新規な低粘度含浸樹脂を用いた絶縁コイルの製
造方法KPAする。さらに詳しくは、タービン発電機や
水車発電、機など使用電圧の高い回転機用として好適な
絶縁コイルの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing an insulated coil using a novel low-viscosity impregnated resin. More specifically, the present invention relates to a method of manufacturing an insulated coil suitable for use in rotating machines that use high voltage, such as turbine generators, water turbine generators, and motors.

〔従来技術〕[Prior art]

タービン発電機や水車発電機などにおいては。 For turbine generators, water turbine generators, etc.

電力需要の増加に伴って単機容量を増大し、使用電圧を
上昇させる傾向が強まり、最近ではJ OkVに達する
高い使用電圧のものまで出現している。
As the demand for electric power increases, there is a growing tendency to increase the capacity of each unit and raise the operating voltage, and recently, products with operating voltages as high as JOkV have appeared.

このような使用電圧の上昇によって、絶縁コイルには起
動停止の反復に対するヒートサイクル性、湯度上昇によ
る耐熱劣化性、振動や短絡などに対する機械的性質など
多くの点でより厳しい性能が要求されるようになってい
る。
Due to this increase in working voltage, insulated coils are required to have stricter performance in many respects, including heat cycle resistance against repeated startup and stoppages, heat deterioration resistance due to rising hot water temperature, and mechanical properties against vibrations and short circuits. It looks like this.

回転機に組み込まれた絶縁コイルは一般的には気相中に
置かれるが、高電圧下ではコイル部分に存在する気体の
空気破壊に基づくコロナ放電が発生し、コイルの絶縁層
が破壊される恐れがあるため、絶縁材として古くから耐
熱性、耐コロナ性、耐電圧性などに優れたマイカ箔を用
いた絶縁シート(テープ状のものを含む、以下同様)が
使用されている。
Insulated coils built into rotating machines are generally placed in a gas phase, but under high voltage, corona discharge occurs due to air breakdown of the gas present in the coil, and the insulating layer of the coil is destroyed. Therefore, insulating sheets (including tape-shaped ones, hereinafter the same) using mica foil, which has excellent heat resistance, corona resistance, voltage resistance, etc., have been used as an insulating material for a long time.

通常の絶縁コイルは、所定の形状に成形してなるコイル
導体上に上記の絶縁シートを巻回し、この巻回層にエポ
キシ含浸樹脂を含浸せしめて絶縁層形成するものである
が、従来のエポキシ含浸樹脂の多くは室温で高粘度で、
かつポットライフも短いものが多い。
A normal insulated coil is made by winding the above-mentioned insulating sheet around a coil conductor formed into a predetermined shape, and impregnating this wound layer with epoxy-impregnated resin to form an insulating layer. Many impregnating resins have high viscosity at room temperature;
Moreover, many have short pot lives.

樹脂の低粘度化という方向では、希釈剤の添加が一般的
な方法であるが、通常の希釈剤は皮膚刺激性が大きく、
かつ特性の低下の激しいものが多く、十分な特性が得ら
れないという欠点がある。
Adding diluents is a common method for reducing the viscosity of resins, but regular diluents are highly irritating to the skin.
In addition, there are many cases in which the properties deteriorate sharply, and there is a drawback that sufficient properties cannot be obtained.

〔発明の概要〕[Summary of the invention]

本発明者らは叙上の欠点を克服するべく鋭意偵知な重ね
た結果、分子内に少なくとも一個のエポキシ基を含むエ
ポキシ化合物とこのエポキシ化合物の硬化剤との混合物
100重量部(以下単に部と記す)に対し、1分子中に
一個以上のアクリル基若しくはメタクリル基またはアリ
ル基を有する多官能ビニルモノマー5〜.300部およ
びフェノキ樹脂0.7〜70部を配合することぼり、低
粘度でかつポットライフの長い新規な低粘度含浸樹脂が
得られるとともに、この低粘度含浸樹脂を用いた絶縁コ
イルの製造においては、室温含浸が十分可能で含浸不良
が全くおこらないため、初期破壊電圧の向上につながり
、また熱劣化後の電気特性についても極めて安定である
ことを見い出し1本発明を完成するに至った。
In order to overcome the above-mentioned drawbacks, the inventors of the present invention made extensive research and found that they obtained 100 parts by weight (hereinafter simply "parts") of a mixture of an epoxy compound containing at least one epoxy group in the molecule and a curing agent for this epoxy compound. ), polyfunctional vinyl monomers having one or more acrylic, methacrylic, or allyl groups in one molecule. By blending 300 parts and 0.7 to 70 parts of fenoki resin, a new low viscosity impregnated resin with low viscosity and a long pot life can be obtained, and in the production of insulated coils using this low viscosity impregnated resin. The present inventors have discovered that impregnation at room temperature is sufficiently possible and impregnation failure does not occur at all, leading to an improvement in the initial breakdown voltage, and that the electrical properties after thermal deterioration are also extremely stable, leading to the completion of the present invention.

(J) すなわち本発明は、コイル導体上に多孔質絶縁材を裏打
材とした絶縁シートを巻回し、この巻回層に低粘度含浸
樹脂を含浸して加熱加圧成形させた絶縁J−を有する絶
縁コイルの製造方法において、゛上記低粘度含浸樹脂と
して、1分子中に少なくとも一個のエポキシ基を含むエ
ポキシ化合物と、このエポキシ化合物の硬化剤との混合
物10θ重量部に対し、7分子中に一個以上のアクリル
基若しくはメタクリル基またはアリル基を有する多官能
ビニルモノマーjA−,300重量部およびフェノキシ
樹脂o、t−1oxx部を配合することにより製造され
る低粘度含浸樹脂を用いることを特徴とする絶縁コイル
の製造方法である。
(J) That is, the present invention provides insulation J-, which is obtained by winding an insulating sheet with a porous insulating material as a backing material around a coil conductor, impregnating this wound layer with a low-viscosity impregnated resin, and molding it under heat and pressure. In the method for manufacturing an insulated coil having ``a mixture of an epoxy compound containing at least one epoxy group in one molecule and a curing agent for this epoxy compound as the low-viscosity impregnated resin, and 10θ parts by weight of the mixture, It is characterized by using a low-viscosity impregnating resin produced by blending 300 parts by weight of a polyfunctional vinyl monomer jA-, which has one or more acrylic groups, methacrylic groups, or allyl groups, and o, t-1oxx parts of a phenoxy resin. This is a method of manufacturing an insulated coil.

本発明の特徴は、エポキシ化合物に対し、低粘度のアク
リル(メタクリル)あるいはアリルモノマーを配合して
含浸樹脂を低粘度化するとともに、相互に反応し合わな
いエポキシ硬化網目とビニル架橋網目な相溶性よく均一
化させることにより。
The features of the present invention are that the epoxy compound is blended with low-viscosity acrylic (methacrylic) or allyl monomer to lower the viscosity of the impregnated resin, and that the epoxy cured network and vinyl crosslinked network are compatible with each other so that they do not react with each other. By homogenizing well.

エポキシ系樹脂の可撓性1寸法安定性の長所と。Epoxy resin has the advantages of flexibility and dimensional stability.

ビニル系樹脂の熱変形湯度を上げる効果を両立(4′) させ、バランスのとれた硬化物とすることにある。Achieves the effect of increasing heat deformation temperature of vinyl resin (4') The purpose is to make a well-balanced cured product.

さらにまた、高分子量成分としてのフェノキシ樹脂を添
加することにより、非架橋性のリニアー(線状)な成分
としてフェノキシ樹脂を架橋網目中に介在させることに
より、含浸樹脂に可撓性を付与することも本発明の特徴
の一つである。
Furthermore, by adding phenoxy resin as a high molecular weight component, flexibility can be imparted to the impregnated resin by intervening the phenoxy resin as a non-crosslinking linear component in the crosslinked network. This is also one of the features of the present invention.

以下、本発明による絶縁コイルの製法を説明する。Hereinafter, a method for manufacturing an insulated coil according to the present invention will be explained.

まず1本発明に用いることのできるエポキシ化合物とし
ては、1分子中に少なくとも一個のエポキシ基をもつ化
合物であればよく、例えばビスフェノールAタイプのD
ER−332(ダウ社商品名)。
First, the epoxy compound that can be used in the present invention may be any compound having at least one epoxy group in one molecule, such as bisphenol A type D
ER-332 (Dow Company product name).

エピコートtxt<シェル社店品名)、GY−aSZ(
チバ社商品名)など、ノボラックタイプのDEN−4!
3t (ダウ社商品名)、脂環族タイプのCY−/り9
(チパ社商品名)などがあり、これらを単独あるいは混
合して用いることができる。
Epicote txt<Shell store product name), GY-aSZ(
Novolac type DEN-4 such as Ciba (product name)!
3t (Dow Company product name), alicyclic type CY-/RI9
(trade name of Chipa Co., Ltd.), and these can be used alone or in combination.

また、本発明で用いることのできるエポキシ硬化剤とし
ては、環状の酸無水物であればよく、例えばメチルテト
ラヒドロフタル酸無水物[HN−コ一〇〇さらに硬化促
進剤として、トリクレジルボレート、トリエタノールア
ミンチタネート、コバルトアセチルアセトネート、オク
チル酸亜鉛などの金属埴、金属キレート化合物、BF、
y、 BCJ−a、 PFs、AsFy等のルイス酸お
よびそのアミン錯体などを用いることができ、これらは
必要に応じ混合して用いても差し支えない。
In addition, the epoxy curing agent that can be used in the present invention may be any cyclic acid anhydride, such as methyltetrahydrophthalic anhydride [HN-co100, and as a curing accelerator, tricresyl borate, Metal clays such as triethanolamine titanate, cobalt acetylacetonate, zinc octylate, metal chelate compounds, BF,
Lewis acids such as y, BCJ-a, PFs, and AsFy, and their amine complexes can be used, and these may be mixed and used if necessary.

さらに、本発明で用いることのできる一分子中にアクリ
ル(メタクリル)基またはアリル基を有する多官能ビニ
ルモノマーとしては、ジアリルフタレート、ジアリルイ
ソフタレート、トリアリルトリメリテート、トリアリル
イソシアヌレート、ビスフェノール人ジグリシジルエー
テルジ(メタ)アクリレート、トリメチロールプロパン
トリ(メタ)アクリレート、トリヒドロキシエチルイソ
シアヌレートトリ(メタ)アクリレートなどがある。
Furthermore, examples of polyfunctional vinyl monomers having an acrylic (methacrylic) group or an allyl group in one molecule that can be used in the present invention include diallyl phthalate, diallyl isophthalate, triallyl trimellitate, triallyl isocyanurate, and bisphenol group. Examples include diglycidyl ether di(meth)acrylate, trimethylolpropane tri(meth)acrylate, and trihydroxyethyl isocyanurate tri(meth)acrylate.

エポキシ化合物の硬化剤は、エポキシ化合物loO部に
対し50〜ISO部の割合で配合することが望ましい。
The curing agent for the epoxy compound is desirably blended in a ratio of 50 to ISO parts to loO parts of the epoxy compound.

配合量がこの範囲をはずれると、エポキシ成分と硬化剤
成分との橋かけが十分でなく、熱変形温度及び機械的、
電気的性質が低下し、いずれも好ましくない。1分子中
にアクリル(メタクリル)基またはアリル基を有する多
官能ビニルモノマーは、エポキシ化合物と硬化剤との混
合物io部部に対し5〜300部の範囲で配合すること
が望ましい。配合量が3部に満たないとビニル化合物の
添加効果(低粘度化など)が得られず、300部を越え
ると硬化収縮率が大きくなりすぎ含浸樹脂としての性質
が低下しいずれも好ましくない。
If the blending amount is out of this range, the cross-linking between the epoxy component and the curing agent component will not be sufficient, and the heat distortion temperature and mechanical
Electrical properties deteriorate, which is not desirable. The polyfunctional vinyl monomer having an acrylic (methacrylic) group or an allyl group in one molecule is desirably blended in an amount of 5 to 300 parts based on io parts of the mixture of the epoxy compound and the curing agent. If the amount is less than 3 parts, the effect of adding the vinyl compound (lower viscosity, etc.) cannot be obtained, and if it exceeds 300 parts, the curing shrinkage rate will be too large and the properties as an impregnated resin will deteriorate, both of which are not preferred.

また、フェノキシ樹脂は分子量is、ooo〜60.θ
00の範囲のものをエポキシ化合物100部に対し。
Furthermore, the phenoxy resin has a molecular weight of ooo to 60. θ
00 for 100 parts of epoxy compound.

0、/−10部配合することが望ましく、配合量が0.
1部に満たないと可撓性付与の効果が十分でなく、io
部を越えると含浸樹脂の粘度が上昇しすぎ実用上好まし
くない。
It is desirable to mix 0./-10 parts, and the blending amount is 0./-10 parts.
If the amount is less than 1 part, the effect of imparting flexibility will not be sufficient, and the io
If the amount exceeds 1.0 parts, the viscosity of the impregnated resin will increase too much, which is not practical.

さらに1本発明で用いる含浸樹脂の反応を促進する目的
で、触媒の添加が効果的である。この触(り  ) 媒としてはジクミルパーオキサイド、ベンゾイルパーオ
キサイド、ジ−t−ブチルハイドロパーオキサイド、ア
ゾビスイソブチロニトリルなどビニル重合開始触媒があ
げられる。
Furthermore, for the purpose of promoting the reaction of the impregnated resin used in the present invention, it is effective to add a catalyst. Examples of the catalyst include vinyl polymerization initiation catalysts such as dicumyl peroxide, benzoyl peroxide, di-t-butyl hydroperoxide, and azobisisobutyronitrile.

なお、との含浸樹脂の粘度をさらに下げる目的で、−官
能ビニルモノマー例えばスチレン、ビニルトルエン、α
−メチルスチレン、アクリロニトリル、N−ビニルピロ
リドンなどな含汗樹脂lθθ部に対し、−00部を越え
ない範囲で加えることもできるが、これらは緒特性の低
下を招くので必要最小量にする必要がある。
In addition, in order to further lower the viscosity of the resin impregnated with -functional vinyl monomers such as styrene, vinyltoluene, α
- Methylstyrene, acrylonitrile, N-vinylpyrrolidone, etc. can be added in an amount not exceeding -00 parts to the lθθ part of a sweat-containing resin, but since these will lead to a decrease in the properties, it is necessary to keep the amount to the minimum necessary. be.

本発明の絶縁コイルは、コイル導体上に絶縁シートを巻
回し、この巻回層に上記新規な低粘度含浸樹脂を公知の
条件で真空加圧含浸した後金型に挿入し、加熱加圧成形
せしめて絶縁コイルを製造するものである。加熱加圧成
形条件としては、加熱湯度/ 00−1 、t 0℃、
加圧圧力5−io部製、加熱時間v〜コダ時間が採用さ
れ、それにより電気的、熱的性質に優れた絶縁コイルが
得られる。
The insulated coil of the present invention is produced by winding an insulating sheet around a coil conductor, impregnating this wound layer with the above-mentioned novel low-viscosity impregnated resin under vacuum and pressure under known conditions, and then inserting it into a mold and forming it under heat and pressure. At the very least, an insulated coil is manufactured. The heating and pressure molding conditions are: heating temperature / 00-1, t 0°C,
A pressurization pressure of 5-io parts and a heating time of v to koda hours are used, thereby obtaining an insulated coil with excellent electrical and thermal properties.

成形条件が上記範囲をはずれると、得られる絶縁(f) コイルの層間接着力が弱く、その結果熱劣化時の電気特
性が著しく低下し、また絶縁層にウキやハガレが生じ好
ましくない。
If the molding conditions are out of the above range, the resulting insulating (f) coil will have weak interlayer adhesion, resulting in a significant decrease in electrical properties during thermal deterioration, and undesirable flaking or peeling of the insulating layer.

このように本発明によれば、従来のエボギシ含浸樹脂を
用いて形成した結像コイルに比べ、電気特性特に熱劣化
後の誘電圧接−電圧特性(以下単にΔtaOδと記す)
に優れた佑縁コイルの製造が可能になった。
As described above, according to the present invention, the electrical properties, especially the dielectric contact-voltage properties (hereinafter simply referred to as ΔtaOδ) after thermal deterioration, are better than the imaging coil formed using the conventional Evogishi impregnated resin.
It has become possible to manufacture Yuen coils with excellent quality.

〔発明の実施例〕[Embodiments of the invention]

以下に実施例および比較例をあげて本発明の絶縁コイル
の製造方法を詳細に説明する。
The method for manufacturing an insulated coil of the present invention will be described in detail below with reference to Examples and Comparative Examples.

実施例 l エポキシ化合物としてエピコートt−ざ(シェル社製品
名)gO部に対し、)IN−ココ00(日立化成商品名
)65部、トリフチロールプロパントリアクリレート2
0部、分子量約30.θooのフェノ−+ シW脂0.
2部、触媒としてジクミルパーオキtイドo、o3:部
、オクチル酸亜釦O0,2部を添加し。
Example 1 As an epoxy compound, 65 parts of IN-Coco 00 (Hitachi Chemical product name), 2 parts of triphthyrolpropane triacrylate per part of Epicoat t-za (product name of Shell Co., Ltd.) gO
0 parts, molecular weight approximately 30. θoo pheno-+ ShiW fat 0.
2 parts of dicumyl peroxidide as a catalyst, 3 parts of dicumyl peroxidide, and 0.2 parts of substituent octylic acid were added.

低粘度含浸樹脂を得た。A low viscosity impregnated resin was obtained.

との含浸樹脂の初期粘度は、23℃で/θθCp5(セ
ンチボイズ)であった。
The initial viscosity of the impregnated resin was /θθCp5 (centivoids) at 23°C.

次に、コxtx 、2ooo鱈の二重ガラス巻き平角銅
線を2列、20段に組み合せた<IO×10mの断面を
持つコイル導体上にガラスクロス(有沢製作所製、厚さ
θ、Oxtsog)を裏代材として得られる集成マイカ
テープを半重ね巻きにて71回巻回し。
Next, a glass cloth (manufactured by Arisawa Seisakusho, thickness θ, Oxtsog) was placed on a coil conductor with a cross section of <IO x 10 m, which was made by combining double glass-wrapped rectangular copper wires of 2 ooo cod in 2 rows and 20 stages. The laminated mica tape obtained as a backing material is wound 71 times in a half-overlap manner.

さらに保護層としてテトロンテープ(量大製、厚さo、
tazwm)を1回巻回し、上記で得られた低粘度含浸
樹脂にて圧力0./1mHy以下で7時間の真空含浸を
行ない、ついで圧力3製でV時間加圧含浸した後、金型
に挿入し調度t、3z℃、圧カー〇t″c′6時間加熱
加圧成形を行なった後、さらに730℃、76時間の条
件で重合を行なって絶縁コイルを得た。この絶縁コイル
の特性な藺べるため、初期のΔ−δおよび破壊電圧、1
70℃で16日後のΔ−δをそれぞれ測定した。これら
の結果を第1表に示す。なお、上記低粘度含浸樹脂のポ
ットライフ(可使時間)は、樹脂を温度コj℃、相対湿
度35%の恒温恒湿槽中に放置し、粘度を定期的に測定
することにより追跡した。即ち、この測定で、25℃の
粘度が(100(:、pBに達するまでの日数をポット
ライフとした。粘度がII 00 cpsより高くなる
と、絶縁コイルを完全に含浸させるのが難かしくなり好
ましくない。
In addition, as a protective layer, Tetron tape (manufactured in large quantities, thickness o,
tazwm) is wound once, and the pressure is 0. /1mHy or less, vacuum impregnation was carried out for 7 hours, and then pressure impregnation was carried out for V hours at pressure 3, and then inserted into a mold and heated and pressure molded at temperature t, 3z℃, and pressure car 〇t''c' for 6 hours. After that, polymerization was further carried out at 730°C for 76 hours to obtain an insulated coil.In order to understand the characteristics of this insulated coil, initial Δ-δ and breakdown voltage, 1
Δ-δ was measured after 16 days at 70°C. These results are shown in Table 1. The pot life (pot life) of the above-mentioned low-viscosity impregnated resin was tracked by leaving the resin in a constant temperature and humidity chamber at a temperature of 10°C and a relative humidity of 35%, and periodically measuring the viscosity. That is, in this measurement, the number of days until the viscosity at 25° C. do not have.

この結果、上記の含浸樹脂はコj℃で6ケ月経過しても
、粘度はp o o cpsを越えず非常に良好であっ
た。
As a result, the viscosity of the above-mentioned impregnated resin did not exceed 0.0 cps even after 6 months at 10° C. and was very good.

次に、この低粘度含浸樹脂を770℃で6時間硬化後、
さらに730℃で76時間硬化させて硬化物を得た。こ
の硬化物の曲げ強度なII8に7X)JK基づき測定し
た。その結果、コ3℃でtakg/dという結果が得ら
れ非常に良好であった。また。
Next, after curing this low viscosity impregnated resin at 770°C for 6 hours,
Further, it was cured at 730° C. for 76 hours to obtain a cured product. The bending strength of this cured product was measured based on II8 (7X) JK. As a result, a very good result was obtained, takg/d at 3°C. Also.

加熱重量減少をJIS C,ztOy に基づき測定し
た。
The heating weight loss was measured based on JIS C, ztOy.

その結果、110℃で16日後の加熱重量減少はコ、θ
%と良好な値を示した。
As a result, the weight loss after heating at 110℃ for 16 days was
%, which was a good value.

以上の初期粘度、ポットライフ曲げ強度加熱重量減少の
結果を第2表にまとめて示す。
The results of the above initial viscosity, pot life bending strength, heating weight loss are summarized in Table 2.

実施例 コ エポキシ化合物としてGY−:Lsg(チバ社商品名)
100部に対し、HN−ssoθ(日立化成商品名)t
b部、トリヒドロキシエチルイソシアヌL/−) J 
0部、分子量約、70,000のフェノキシ樹脂0.3
部、スチレンIO部を加え、触媒としてベンゾイルパー
オキサイド002部、コバルトアセチルアセトネート0
.!を添加し、低粘度含浸樹脂を得た。この含浸樹脂の
初期粘度はコj ℃でざ0cpsであった。
Example GY-:Lsg (Ciba brand name) as a coepoxy compound
For 100 parts, HN-ssoθ (Hitachi Chemical brand name) t
b part, trihydroxyethyl isocyanu L/-) J
0 parts, phenoxy resin with a molecular weight of approximately 70,000 0.3
parts, IO parts of styrene, 0.02 parts of benzoyl peroxide and 0.0 parts of cobalt acetylacetonate as catalysts.
.. ! was added to obtain a low viscosity impregnated resin. The initial viscosity of this impregnated resin was 0 cps at ℃.

次に、実施例1と同様の条件により絶縁コイルを製造し
、−一および初期破壊電圧を測定したところ、実施例1
と同様に非常に良好であった。これらの結果を第1表に
示す。
Next, an insulated coil was manufactured under the same conditions as in Example 1, and the -1 and initial breakdown voltages were measured.
It was also very good. These results are shown in Table 1.

また、上記含浸樹脂のポットライフはコ5℃で6ケ月経
過してもy o o cpgを越えず非常に良好であっ
た。
Further, the pot life of the above-mentioned impregnated resin was very good and did not exceed y o o cpg even after 6 months at 5°C.

さらにまた1曲げ強度およびコOO℃で14日後の加熱
重量減少についても、それぞれlコに9/−および1.
7%と良好な値が得られた。これらの結果を第2表に示
す。
Furthermore, the bending strength and weight loss after heating at 00°C for 14 days were 9/- and 1.1%, respectively.
A good value of 7% was obtained. These results are shown in Table 2.

実施例 3 エポキシ化合物としてGY−コ5よ(チバ社商(l2) 品名)100部に対し、分子量約30,000のフェノ
キシ樹脂2.0部、無水メチルハイミック酸(日立化成
商品名)9−2部、トリメチロールプロパントリアクリ
レート70部、トリヒドロキシエチルイソシアヌレート
トリメタクリレート70部。
Example 3 2.0 parts of phenoxy resin with a molecular weight of about 30,000 and 9 parts of methylhimic anhydride (Hitachi Chemical product name) were added to 100 parts of GY-Co5 (product name, Ciba Co., Ltd. (l2)) as an epoxy compound. -2 parts, 70 parts of trimethylolpropane triacrylate, 70 parts of trihydroxyethyl isocyanurate trimethacrylate.

触媒としてジ−t−ブチルハイドロパーオキサイドQ、
一部、オクチル酸亜鉛0.3部を加えた以外は、実施例
1と同様にして低粘度含浸樹脂を製造した。
di-t-butyl hydroperoxide Q as a catalyst,
A low-viscosity impregnated resin was produced in the same manner as in Example 1, except that 0.3 parts of zinc octylate was added to a portion.

この含浸樹脂の初期粘度はコ5℃で/ 00 Cpsで
あった。
The initial viscosity of this impregnated resin was /00 Cps at 5°C.

さらに実施例1と同様に絶縁コイルを製造し。Furthermore, an insulated coil was manufactured in the same manner as in Example 1.

Δ鴫δおよび初期破壊電圧を測定したところ、実施例1
と同様非常圧良好であった。これらの結果を第7表に示
す。
When the ΔS and δ and the initial breakdown voltage were measured, it was found that Example 1
The emergency pressure was also good. These results are shown in Table 7.

また、上記含浸樹脂のポットライフはコz℃で6ケ月経
過してもp o o cpsを越えず非常圧良好であっ
た。これらの結果を第−表に示す。
Further, the pot life of the above-mentioned impregnated resin did not exceed po cps even after 6 months at z°C and was excellent under extreme pressure. These results are shown in Table 1.

実施例 弘 エポキシ化合物としてDwR−33x(ダウ社商品名)
100部、エビコー) 1009 (シェル社商品名)
10部に対し1分子量約30.000のフェノキシ樹脂
O,コ部、トリヒドロキシエチルイソシアヌレートトリ
アクリレートシθ部、スチレンIO部、HN−2−〇〇
(日立化成商品名)tS部を加え触媒としてジクミルパ
ーオキサイド0,1部、オクチル酸亜鉛06.2部を加
えた以外は、実施例/と同様にして低粘度含浸樹脂を製
造した。この含浸樹脂の初期粘度は2部℃で/ 、20
 Cpsであった。
Example DwR-33x (trade name of Dow Company) as a Hiro epoxy compound
100 copies, Ebiko) 1009 (Shell company product name)
To 10 parts, add 1 part of phenoxy resin with a molecular weight of about 30.000, 0 part, θ part of trihydroxyethyl isocyanurate triacrylate, IO part of styrene, and tS part of HN-2-〇〇 (trade name of Hitachi Chemical) as a catalyst. A low-viscosity impregnated resin was produced in the same manner as in Example, except that 0.1 part of dicumyl peroxide and 06.2 parts of zinc octylate were added. The initial viscosity of this impregnated resin is 2 parts at °C/, 20
It was Cps.

さらに実施例1と同様に絶縁コイルを製造し。Furthermore, an insulated coil was manufactured in the same manner as in Example 1.

ΔIAIIδおよび初期破壊電圧を測定したところ、実
施例1と同様非常に良好であった。これらの結果を第1
表に示す。
When ΔIAIIδ and initial breakdown voltage were measured, they were very good as in Example 1. These results are the first
Shown in the table.

また、−ヒ記含浸樹脂のポットライフは、2部℃で6ケ
月経過してもtl o o cpsを越えず非常に良好
であった。これらの結果を第−表に示す。
Moreover, the pot life of the impregnated resin described in -H was very good and did not exceed tlo o cps even after 6 months at 2 parts C. These results are shown in Table 1.

比較例 l エポキシ化合物としてGY−,2部g(チバ社商品名)
100部に対し5分子量約、? 0,000のフェノキ
シ樹脂lj部、HN−コ2OO(日立化成商品名)go
@、トリヒドロキシエチルイソシアヌレートトリアクリ
レート3!rO部、スチレン100部、触媒としてジク
ミルパーオキサイドO0一部、オクチル酸亜鉛0.3部
を加えた以外は、実施例1と同様にして低粘度含浸樹脂
を製造した。
Comparative example l GY-, 2 parts g (Ciba brand name) as an epoxy compound
Approximately 5 molecular weight per 100 parts? 0,000 phenoxy resin lj part, HN-co2OO (Hitachi Chemical brand name) go
@, trihydroxyethyl isocyanurate triacrylate 3! A low-viscosity impregnated resin was produced in the same manner as in Example 1, except that part rO, 100 parts of styrene, part of dicumyl peroxide O0 as a catalyst, and 0.3 parts of zinc octylate were added.

この含浸樹脂の特性および絶縁コイルの特性を測定した
ところ、含浸樹脂の初期粘度は25℃で/ j Ocp
sとまずまずであったが、含浸樹脂に用いるフェノキシ
樹脂の使用範囲を越えるため、ポットライフ特性の非常
圧悪いものであった(30日経過でダθOcpsを越え
た)。
When the properties of this impregnated resin and the properties of the insulated coil were measured, the initial viscosity of the impregnated resin was 25°C / j Ocp
However, the pot life characteristics were extremely poor (exceeded θOcps after 30 days) because it exceeded the usage range of the phenoxy resin used for the impregnating resin.

また、硬化特性及び絶縁コイルの特性についても多官能
ビニルモノマーが使用範囲を越えるため。
In addition, the curing properties and properties of the insulated coil exceed the range of use for polyfunctional vinyl monomers.

曲げ強度、加熱重量減少、絶縁コイルでの電気特性とも
非常に悪いものであった。
The bending strength, heating weight loss, and electrical properties of the insulated coil were all very poor.

これらの結果を第1表および第2表に合せて示す・ 比較例 コ エポキシ化合物としてGy−,2部g(チバ社商品名)
100部に対し、HN−コλθO(日立化成商品名)g
s部を加え、触媒としてコーエチル、すCIり −メチルイミダゾール(四国化成商品名)Ol一部を加
えた以外は、実施例1と同様にして低粘度含浸@j脂を
製造した。
These results are shown in Tables 1 and 2. Comparative Example Coepoxy compound: Gy-, 2 parts g (Ciba brand name)
For 100 parts, HN-koλθO (Hitachi Chemical brand name)g
A low viscosity impregnated @j fat was produced in the same manner as in Example 1, except that part s was added and a part of coethyl and SuCI ly-methylimidazole (Shikoku Kasei brand name) Ol were added as catalysts.

この含浸樹脂の特性および絶縁コイルの特性を測定した
ところ、初期粘度は、2部℃ですでにbs。
When the properties of this impregnated resin and the properties of the insulated coil were measured, the initial viscosity was already BS at 2 parts °C.

cpsを示したため、室温含浸樹脂として不適当であっ
た。
cps, it was unsuitable as a room temperature impregnating resin.

また、絶縁コイルの製造段階でも初期粘度が高いため、
含浸不良がおこり電気特性の非常に悪いものであった。
In addition, since the initial viscosity is high even at the manufacturing stage of insulated coils,
Poor impregnation occurred and the electrical properties were very poor.

これらの結果を第1表および第4表に合せて示す・ @/表  絶縁コイルの特性 熱劣化、3)/kV/抄?−冗弁I:P−運良で禰甲に
t測芝l) 25℃でBL型粘度針にて測定 〔発明の効果〕 以上のように1本発明による絶縁コイルは新規な低粘度
含浸樹脂を用いることにより、電気的、特性特に熱劣化
後の一誘電圧接一電圧特性(Δ鴫δ)および熱的特性の
いずれにおいても極めて優秀であり、高電圧回転機用と
しての適性に優れ、工業的は極めて大きいものである。
These results are shown in Tables 1 and 4. @/Table Characteristic thermal deterioration of insulated coils, 3)/kV/sheet? - Redundancy I:P-Measurement using a BL type viscosity needle at 25°C By using the The target is extremely large.

Claims (4)

【特許請求の範囲】[Claims] (1)コイル導体上に多孔質絶縁材を裏打材とした絶縁
シートを巻回し、この巻回層に低粘度含浸樹脂を含浸し
て加熱加圧成形させた絶縁層を有する絶縁コイルの製造
方法において、上記低粘度含浸樹脂として、1分子中に
少なくとも2個のエポキシ基を含むエポキシ化合物と、
このエポキシ化合物の硬化剤との混合物100重量部に
対し、1分子中に2個以上のアクリル基若しくはメタク
リル基またはアリル基を有する多官能ビニルモノマー5
〜300重量部およびフェノキシ樹脂0.1〜10重量
部を配合することにより製造される低粘度含浸樹脂を用
いることを特徴とする絶縁コイルの製造方法。
(1) A method for producing an insulated coil having an insulating layer formed by winding an insulating sheet with a porous insulating material as a backing material on a coil conductor, impregnating the wound layer with a low-viscosity impregnated resin, and forming the insulating layer under heat and pressure. , the low-viscosity impregnating resin is an epoxy compound containing at least two epoxy groups in one molecule;
For 100 parts by weight of this mixture of epoxy compound and curing agent, 5 parts of a polyfunctional vinyl monomer having two or more acrylic groups, methacrylic groups, or allyl groups in one molecule
A method for producing an insulated coil, characterized by using a low-viscosity impregnating resin produced by blending ~300 parts by weight and 0.1 to 10 parts by weight of a phenoxy resin.
(2)低粘度含浸樹脂が、エポキシ化合物とエポキシ化
合物の硬化剤との混合物100重量部に対し、1分子中
に1個のビニル基を持つビニルモノマーを200重量部
を越えない範囲で配合してなる特許請求の範囲1項記載
の絶縁コイルの製造方法。
(2) The low-viscosity impregnating resin contains a vinyl monomer having one vinyl group in one molecule in an amount not exceeding 200 parts by weight per 100 parts by weight of a mixture of an epoxy compound and a curing agent for the epoxy compound. A method for manufacturing an insulated coil according to claim 1.
(3)フェノキシ樹脂として、分子量が15,000〜
60,000の範囲のフェノキシ樹脂を用いる特許請求
の範囲1項記載の絶縁コイルの製造方法。
(3) As a phenoxy resin, the molecular weight is 15,000~
The method of manufacturing an insulated coil according to claim 1, using a phenoxy resin in the range of 60,000.
(4)加熱加圧成形条件が、加熱温度100〜250℃
、加圧圧力5〜100kg/cm^2、加熱時間4〜2
4時間である特許請求の範囲1項または3項記載の絶縁
コイルの製造方法。
(4) Heating pressure molding conditions are heating temperature 100-250℃
, Pressure: 5-100kg/cm^2, Heating time: 4-2
The method for manufacturing an insulated coil according to claim 1 or 3, wherein the heating time is 4 hours.
JP13287184A 1984-06-29 1984-06-29 Manufacture of insulated coil Granted JPS6113611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13287184A JPS6113611A (en) 1984-06-29 1984-06-29 Manufacture of insulated coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13287184A JPS6113611A (en) 1984-06-29 1984-06-29 Manufacture of insulated coil

Publications (2)

Publication Number Publication Date
JPS6113611A true JPS6113611A (en) 1986-01-21
JPH0418448B2 JPH0418448B2 (en) 1992-03-27

Family

ID=15091497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13287184A Granted JPS6113611A (en) 1984-06-29 1984-06-29 Manufacture of insulated coil

Country Status (1)

Country Link
JP (1) JPS6113611A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2675943A1 (en) * 1991-04-25 1992-10-30 Sagem Allumage METHOD OF SEALING A WORKPIECE SUCH AS AN INDUCTION COIL AND MOLD FOR IMPLEMENTING THE PROCESS
JP2009278074A (en) * 2008-04-15 2009-11-26 Denso Corp Ignition coil for internal combustion engine and method of making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682503A (en) * 1979-12-08 1981-07-06 Nippon Soda Co Resin composition for electric insulation
JPS5814730A (en) * 1981-07-20 1983-01-27 Shin Etsu Polymer Co Ltd Silicone rubber molded body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682503A (en) * 1979-12-08 1981-07-06 Nippon Soda Co Resin composition for electric insulation
JPS5814730A (en) * 1981-07-20 1983-01-27 Shin Etsu Polymer Co Ltd Silicone rubber molded body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2675943A1 (en) * 1991-04-25 1992-10-30 Sagem Allumage METHOD OF SEALING A WORKPIECE SUCH AS AN INDUCTION COIL AND MOLD FOR IMPLEMENTING THE PROCESS
JP2009278074A (en) * 2008-04-15 2009-11-26 Denso Corp Ignition coil for internal combustion engine and method of making the same

Also Published As

Publication number Publication date
JPH0418448B2 (en) 1992-03-27

Similar Documents

Publication Publication Date Title
GB2165251A (en) Low viscosity epoxy resin compositions
EP0336360A2 (en) Process for producing prepreg and laminated sheet
JP5202284B2 (en) Thermosetting resin composition
JPS6113611A (en) Manufacture of insulated coil
JP4560982B2 (en) Method for manufacturing insulation coil for high-pressure rotating machine
JPS6257650B2 (en)
JPS6317849B2 (en)
EP0353103A2 (en) Low viscosity epoxy resin compositions
JPS5936651B2 (en) thermosetting resin composition
JPS6113610A (en) Manufacture of insulated coil
JP2874501B2 (en) Electrically insulated wire loop, method for manufacturing electrically insulated wire loop, rotating electric machine, and insulating sheet
JPH0412562B2 (en)
US3557246A (en) Half ester of a polyepoxide with a saturated and unsaturated dicarboxylic acid anhydride and a vinyl monomer
JPH0452063B2 (en)
JP7378438B2 (en) Liquid thermosetting resin composition, method for curing liquid thermosetting resin composition, stator coil, and rotating electric machine
JPS59226642A (en) Manufacture of insulated coil
JPH1180324A (en) Impregnable thermosetting resin composition and electric rotating machine insulated coil
JPS602061A (en) Manufacture of insulated coil
JPS6026442A (en) Insulated coil and manufacture thereof
JPS617513A (en) Method of producing mica prepreg insulator
JPS6257648B2 (en)
JPS595209B2 (en) epoxy resin composition
Rogers Synthetic resins as applied to large rotating apparatus
JPWO2016117398A1 (en) Resin composition, paint, electronic parts, mold transformer, motor coil, cable
JPS61248306A (en) Electric insulation composition and heating of armature

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term