JPH0418448B2 - - Google Patents

Info

Publication number
JPH0418448B2
JPH0418448B2 JP59132871A JP13287184A JPH0418448B2 JP H0418448 B2 JPH0418448 B2 JP H0418448B2 JP 59132871 A JP59132871 A JP 59132871A JP 13287184 A JP13287184 A JP 13287184A JP H0418448 B2 JPH0418448 B2 JP H0418448B2
Authority
JP
Japan
Prior art keywords
parts
resin
viscosity
weight
epoxy compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59132871A
Other languages
Japanese (ja)
Other versions
JPS6113611A (en
Inventor
Fumyuki Myamoto
Hiroyuki Nakajima
Masakazu Murayama
Seiji Oka
Hideki Chidai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13287184A priority Critical patent/JPS6113611A/en
Publication of JPS6113611A publication Critical patent/JPS6113611A/en
Publication of JPH0418448B2 publication Critical patent/JPH0418448B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/127Encapsulating or impregnating

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は新規な低粘度含浸樹脂を用いた絶縁コ
イルの製造方法に関する。さらに詳しくは、ター
ビン発電機や水車発電機など使用電圧の高い回転
機用として好適な絶縁コイルの製造方法に関す
る。 〔従来技術〕 タービン発電機や水車発電機などにおいては、
電力需要の増加に伴つて単機容量を増大し、使用
電圧を上昇させる傾向が強まり、最近では30kv
に達する高い使用電圧のものまで出現している。 このような使用電圧の上昇によつては、絶縁コ
イルには起動停止の反復に対するヒートサイクル
性、温度上昇による耐熱劣化性、振動や短絡など
に対する機械的性質など多くの点でより厳しい性
能が要求されるようになつている。 回転機に組み込まれた絶縁コイルは一般的には
気相中に置かれるが、高電圧下ではコイル部分に
存在する気体の空気破壊に基づくコロナ放電が発
生し、コイルの絶縁層が破壊される恐れがあるた
め、絶縁材として古くから耐熱性、耐コロナ性、
耐電圧性などに優れたマイカ箔を用いた絶縁シー
ト(テープ状のものを含む、以下同様)が使用さ
れている。 通常の絶縁コイルは、所定の形状に成形してな
るコイル導体に上記の絶縁シートを巻回し、この
巻回層にエポキシ含浸樹脂を含浸せしめて絶縁層
形成するものであるが、従来のエポキシ含浸樹脂
の多くは室温で高粘度で、かつポツトライフも短
いものが多い。 樹脂の低粘度化という方向では、希釈剤の添加
が一般的な方法であるが、通常の希釈剤は皮膚刺
激性が大きく、かつ特性の低下の激しいものが多
く、十分な特性が得られないという欠点がある。 〔発明の概要〕 本発明者らは叙上の欠点を克服するべく鋭意研
究を重ねた結果、分子内に少なくとも2個のエポ
キシ基を含むエポキシ化合物とこのエポキシ化合
物の硬化剤との混合物100重量部(以下単に部と
記す)に対し、1分子中に2個以上のアクリル基
若しくはメタクリル基またはアリル基を有する多
官能ビニルモノマー5〜300部およびフエノキシ
樹脂0.1〜10部を配合することにより、低粘度で
かつポツトライフの長い新規な低粘度含浸樹脂が
得られるとともに、この低粘度含浸樹脂を用いた
絶縁コイルの製造においては、室温含浸が十分可
能で含浸不良が全くおこらないため、初期破壊電
圧の向上につながり、また熱劣化後の電気特性に
ついても極めて安定であることを見い出し、本発
明を完成するに至つた。 すなわち本発明は、コイル導体上に多孔質絶縁
材を裏打材とした絶縁シートを巻回し、この巻回
層に低粘度含浸樹脂を含浸して加熱加圧成形させ
た絶縁層を有する絶縁コイルの製造方法におい
て、上記低粘度含浸樹脂として、1分子中に少な
くとも2個のエポキシ基を含むエポキシ化合物
と、このエポキシ化合物の硬化剤との混合物100
重量部に対し、1分子中に2個以上のアクリル基
若しくはメタクリル基またはアリル基を有する多
官能ビニルモノマー5〜300重量部およびフエノ
キシ樹脂0.1〜10重量部を配合することにより製
造される低粘度含浸樹脂を用いることを特徴とす
る絶縁コイルの製造方法である。 本発明の特徴は、エポキシ化合物に対し、低粘
度のアクリル(メタクリル)あるいはアリルモノ
マーを配合して含浸樹脂を低粘度化するととも
に、相互に反応し合わないエポキシ硬化網目とビ
ニル架橋網目を相溶性よく均一化させることによ
り、エポキシ系樹脂の可撓性、寸法安定性の長所
と、ビニル系樹脂の熱変形温度を上げる効果を両
立させ、バランスのとれた硬化物とすることにあ
る。 さらにまた、高分子量成分としてのフエノキシ
樹脂を添加することにより、非架橋性のリニアー
(線状)な成分としてフエノキシ樹脂を架橋網目
中に介在させることにより、含浸樹脂に可撓性を
付与することも本発明の特徴の一つである。 以下、本発明による絶縁コイルの製法を説明す
る。 まず、本発明に用いることのできるエポキシ化
合物としては、1分子中に少なくとも2個のエポ
キシ基をもつ化合物であればよく、例えばビスフ
エノールAタイプのDER−332(ダウ社商品名)、
エピコート828(シエル社店品名)、GY−255(チ
バ社商品名)など、ノボラツクタイプのDEN−
431(ダウ社商品名)、脂環族タイプのCY−179(チ
バ社商品名)などがあり、これらを単独あるいは
混合して用いることができる。 また、本発明で用いることのできるエポキシ硬
化剤としては、環状の酸無水物であればよく、例
えばメチルテトラヒドロフタル酸無水物〔HN−
2200(日立化成商品名)〕、メチルヘキサヒドロフ
タル酸無水物〔HN−5500(日立化成商品名)〕、
無水メチルハイミツク酸(日立化成商品名)など
がある。 さらに硬化促進剤として、トリクレジルボレー
ト、トリエタノールアミンチタネート、コバルト
アセチルアセトネート、オクチル酸亜鉛などの金
属塩、金属キレート化合物、BF3、BCl3、PF3
AsF5等のルイス酸およびそのアミン錯体などを
用いることができ、これらは必要に応じ混合して
用いても差し支えない。 さらに、本発明で用いることのできる一分子中
にアクリル(メタクリル)基またはアリル基を有
する多官能ビニルモノマーとしては、ジアリルフ
タレート、ジアリルイソフタレート、トリアリル
トリメリテート、トリアリルイソシアヌレート、
ビスフエノールAジグリシジルエーテルジ(メ
タ)アクリレート、トリメチロールプロパントリ
(メタ)アクリレート、トリヒドロキシエチルイ
ソシアヌレートトリ(メタ)アクリレートなどが
ある。 エポキシ化合物の硬化剤は、エポキシ化合物
100部に対し50〜150部の割合で配合することが望
ましい。配合量がこの範囲をはずれると、エポキ
シ成分と硬化剤成分の橋かけが十分でなく、熱変
形温度及び機械的、電気的性質が低下し、いずれ
も好ましくない。1分子中にアクリル(メタクリ
ル)基またはアリル基を有する多官能ビニルモノ
マーは、エポキシ化合物と硬化剤との混合物100
部に対し5〜300部の範囲で配合することが望ま
しい。配合量が5部に満たないとビニル化合物の
添加効果(低粘度化など)が得られず、300部を
越えると硬化収縮率が大きくなりすぎ含浸樹脂と
しての性質が低下しいずれも好ましくない。 また、フエノキシ樹脂は分子量15000〜6000の
範囲のものをエポキシ化合物100部に対し、0.1〜
10部配合することが望ましく、配合量が0.1部に
満たないと可撓性付与の効果が十分でなく、10部
を越えると含浸樹脂の粘度が上昇しすぎ実用上好
ましくない。 さらに、本発明で用いる含浸樹脂の反応を促進
する目的で、触媒の添加が効果的である。この触
媒としてはジクミルパーオキサイド、ベンゾイル
パーオキサイド、ジーt−ブチルハイドロパーオ
キサイド、アゾビスイソブチロニトリルなどビニ
ル重合開始触媒があげられる。 なお、この含浸樹脂の粘度をさらに下げる目的
で、一官能ビニルモノマー例えばスチレン、ビニ
ルトルエン、α−メチルスチレン、アクリロニト
リル、N−ビニルピロリドンなどを含浸樹脂100
部に対し、200部を越えない範囲で加えることも
できるが、これらは諸特性の低下を招くので必要
最小量にする必要がある。 本発明の絶縁コイルは、コイル導体上に絶縁シ
ートを巻回し、この巻回層に上記新規な低粘度含
浸樹脂を公知の条件で真空加圧含浸した後金型に
挿入し、加熱加圧成形せしめて絶縁コイルを製造
するものである。加熱加圧条件としては、加熱温
度100〜250℃、加圧圧力5〜100Kg/cm2、加熱時
間4〜24時間が採用され、それにより電気的、熱
的性質に優れた絶縁コイルが得られる。成形条件
が上記範囲をはずれると、得られる絶縁コイルの
層間接着力が弱く、その結果熱劣化時の電気特性
が著しく低下し、また絶縁層にウキやハガレが生
じ好ましくない。 このように本発明によれば、従来のエポキシ含
浸樹脂を用いて形成した絶縁コイルに比べ、電気
特性特に熱劣化後の誘電正接−電圧特性(以下単
にΔtanδと記す)に優れた絶縁コイルの製造が可
能になつた。 〔発明の実施例〕 以下に実施例および比較例をあげて本発明の絶
縁コイルの製造方法を詳細に説明する。 実施例 1 エポキシ化合物としてエピコート828(シエル社
製品名)80部に対し、HN−2200(日立化成商品
名)65部、トリメチロールプロパントリアクリレ
ート20部、分子量約30000のフエノキシ樹脂0.2
部、触媒としてジクミルパーオキサイド0.05部、
オクチル酸亜鉛0.2部を添加し、低粘度含浸樹脂
を得た。 この含浸樹脂の初期粘度は25℃で100cps(セン
チポイズ)であつた。 次に、2×5×2000mmの2重ガラス巻き平角銅
線を2列20段に組み合せた40×10mmの断面を持つ
コイル導体上にガラスクロス(有沢製作所製、厚
さ0.025mm)を裏代材として得られる集成マイカ
テープを半重ね巻きにて12回巻回し、さらに保護
層としてテトロンテープ(帝人製、厚さ0.125mm)
を1回巻回し、上記で得られた低粘度含浸樹脂に
て圧力0.1mmHg以下で1時間の真空含浸を行な
い、ついで圧力3Kg/cm2で4時間加圧含浸した
後、金型に挿入し温度135℃、圧力20Kg/cm2で6
時間加熱加圧成形を行なつた後、さらに150℃、
16時間の条件で重合を行なつて絶縁コイルを得
た。この絶縁コイルの特性を調べるため、初期の
Δtanδおよび破壊電圧、180℃で16日後のΔtanδ
をそれぞれ測定した。これらの結果を第1表に示
す。なお、上記低粘度含浸樹脂のポツトライフ
(可使時間)は、樹脂を温度25℃、相対湿度35%
の恒温恒湿槽中に放置し、粘度を定期的に測定す
ることにより追跡した。即ち、この測定で25℃の
粘度が400cpsに達するまでの日数をポツトライフ
とした。粘度が400cpsより高くなると、絶縁コイ
ルを完全に含浸させるのが難かしくなり好ましく
ない。 この結果、上記の含浸樹脂は25℃で6ケ月経過
しても、粘度は400cpsを越えず非常に良好であつ
た。 次に、この低粘度含浸樹脂を110℃で6時間硬
化後、さらに150℃で16時間硬化させて硬化物を
得た。この硬化物の曲げ強度をJIS K7203に基づ
き測定した。その結果、25℃で12Kg/mm2という結
果が得られ非常に良好であつた。また、加熱重量
減少をJIS C2103に基づき測定した。その結果、
180℃で16日後の加熱重量減少は2.0%と良好な値
を示した。 以上の初期粘度、ポツトライフ曲げ強度加熱重
量減少の結果を第2表にまとめて示す。 実施例 2 エポキシ化合物としてGY−255(チバ社商品
名)100部に対し、HN−5500(日立化成商品名)
86部、トリヒドロキシエチルイソシアヌレート30
部、分子量約30000のフエノキシ樹脂0.3部、スチ
レン10部を加え、触媒としてベンゾイルパーオキ
サイド0.2部、コバルトアセチルアセトネート0.5
を添加し、低粘度含浸樹脂を得た。この含浸樹脂
の初期粘度は25℃で80cpsであつた。 次に、実施例1と同様の条件により絶縁コイル
を製造し、Δtanδおよび初期破壊電圧を測定した
ところ、実施例1と同様に非常に良好であつた。
これらの結果を第1表に示す。 また、上記含浸樹脂のポツトライフは25℃で6
ケ月間経過しても400cpsを越えず非常に良好であ
つた。 さらにまた、曲げ強度および200℃で16日後の
加熱重量減少についても、それぞれ12Kg/mm2およ
び1.7%と良好な値が得られた。これらの結果を
第2表に示す。 実施例 3 エポキシ化合物としてGY−255(チバ社商品
名)100部に対し、分子量約30,000のフエノキシ
樹脂2.0部、無水メチルハイミツク酸(日立化成
商品名)92部、トリメチロールプロパントリアク
リレート10部、トリヒドロキシエチルイソシアヌ
レートトリメタクリレート10部、触媒としてジー
t−ブチルハイドロパーオキサイド0.2部、オク
チル酸亜鉛0.3部を加えた以外は、実施例1と同
様にして低粘度含浸樹脂を製造した。この含浸樹
脂の初期粘度は25℃で100cpsであつた。 さらに実施例1と同様に絶縁コイルを製造し、
Δtanδおよび初期破壊電圧を測定したところ、実
施例1と同様非常に良好であつた。これらの結果
を第1表に示す。 また、上記含浸樹脂のポツトライフは25℃で6
ケ月経過しても400cpsを越えず非常に良好であつ
た。これらの結果を第2表に示す。 実施例 4 エポキシ化合物としてDER−332(ダウ社商品
名)100部、エピコート1004(シエル社商品名)10
部に対し、分子量約30000のフエノキシ樹脂0.2
部、トリヒドロキシエチルイソシアヌレートトリ
アクリレート40部、スチレン10部、HN−2200
(日立化成商品名)85部を加え触媒としてジクミ
ルパーオキサイド0.1部、オクチル酸亜鉛0.2部を
加えた以外は、実施例1と同様にして低粘度含浸
樹脂を製造した。この含浸樹脂の初期粘度は25℃
で120cpsであつた。 さらに実施例1と同様に絶縁コイルを製造し、
Δtanδおよび初期破壊電圧を測定したところ、実
施例1と同様非常に良好であつた。これらの結果
を第1表に示す。 また、上記含浸樹脂のポツトライフは25℃で6
ケ月経過しても400cpsを越えずに非常に良好であ
つた。これらの結果を第2表に示す。 比較例 1 エポキシ化合物としてGY−255(チバ社商品
名)100部に対し、分子量約30000のフエノキシ樹
脂15部、HN−2200(日立化商品名)80部、トリ
ヒドロキシエチルイソシアヌレートトリアクリレ
ート350部、スチレン100部、触媒としてジクミル
パーオキサイド0.2部、オクチル酸亜鉛0.3部を加
えた以外は、実施例1と同様にして低粘度含浸樹
脂を製造した。 この含浸樹脂の特性および絶縁コイルの特性を
測定したところ、含浸樹脂の初期粘度は25℃で
150cpsとまずまずであつたが、含浸樹脂に用いる
フエノキシ樹脂の使用範囲を越えるため、ポツト
ライフ特性の非常に悪いものであつた(30日経過
で400cpsを越えた)。 また、硬化特性及び絶縁コイルの特性について
も多官能ビニルモノマーが使用範囲を越えるた
め、曲げ強度、加熱重量減少、絶縁コイルでの電
気特性とも非常に悪いものであつた。 これらの結果を第1表および第2表に合せて示
す。 比較例 2 エポキシ化合物としてGY−255(チバ社商品
名)100部に対し、HN−2200(日立化成商品名)
85部を加えて、触媒として2−エチル、4−メチ
ルイミダゾール(四国化成商品名)0.2部を加え
た以外は、実施例1と同様にして低粘度含浸樹脂
を製造した。 この含浸樹脂の特性および絶縁コイルの特性を
測定したところ、初期粘度は25℃ですでに650cps
を示したため、室温含浸樹脂として不適当であつ
た。 また、絶縁コイルの製造階段でも初期粘度が高
いため、含浸不良がおこり電気特性の非常に悪い
ものであつた。 これらの結果を第1表および第2表に合せて示
す。
[Technical Field of the Invention] The present invention relates to a method for manufacturing an insulated coil using a novel low-viscosity impregnated resin. More specifically, the present invention relates to a method of manufacturing an insulated coil suitable for use in rotating machines that use high voltage, such as turbine generators and water turbine generators. [Prior art] In turbine generators, water turbine generators, etc.
As the demand for electricity increases, there is a growing trend to increase the capacity of individual units and raise the voltage used, and recently the voltage has increased to 30 kV.
Even products with high operating voltages reaching up to 100% have appeared. Due to this increase in working voltage, insulated coils are required to have stricter performance in many respects, such as heat cycle resistance against repeated starting and stopping, heat deterioration resistance due to temperature rise, and mechanical properties against vibrations and short circuits. It is becoming more and more common. Insulated coils built into rotating machines are generally placed in a gas phase, but under high voltage, corona discharge occurs due to air breakdown of the gas present in the coil, and the insulating layer of the coil is destroyed. Since ancient times, it has been used as an insulating material for heat resistance, corona resistance,
Insulating sheets (including tape-shaped ones, hereinafter the same) are used that use mica foil, which has excellent voltage resistance. A normal insulated coil is made by winding the above-mentioned insulating sheet around a coil conductor formed into a predetermined shape, and impregnating this wound layer with epoxy-impregnated resin to form an insulating layer. Many resins have high viscosity at room temperature and have short pot lives. Adding diluents is a common method for lowering the viscosity of resins, but regular diluents are highly irritating to the skin and often cause a drastic drop in properties, making it impossible to obtain sufficient properties. There is a drawback. [Summary of the Invention] As a result of extensive research to overcome the above-mentioned drawbacks, the present inventors have developed a mixture of 100% by weight of an epoxy compound containing at least two epoxy groups in the molecule and a curing agent for this epoxy compound. (hereinafter simply referred to as parts), by blending 5 to 300 parts of a polyfunctional vinyl monomer having two or more acrylic groups, methacrylic groups, or allyl groups in one molecule and 0.1 to 10 parts of a phenoxy resin. In addition to obtaining a new low-viscosity impregnating resin with a long pot life, this low-viscosity impregnating resin allows sufficient room-temperature impregnation without any impregnation defects, resulting in a low initial breakdown voltage. The present inventors have discovered that the electrical characteristics are extremely stable after thermal deterioration, leading to the completion of the present invention. That is, the present invention provides an insulated coil having an insulating layer in which an insulating sheet with a porous insulating material as a backing material is wound around a coil conductor, and this wound layer is impregnated with a low-viscosity impregnated resin and then formed under heat and pressure. In the manufacturing method, the low-viscosity impregnating resin is a mixture of an epoxy compound containing at least two epoxy groups in one molecule and a curing agent for this epoxy compound.
A low viscosity product produced by blending 5 to 300 parts by weight of a polyfunctional vinyl monomer having two or more acrylic groups, methacrylic groups, or allyl groups in one molecule and 0.1 to 10 parts by weight of a phenoxy resin based on the weight part. This is a method for manufacturing an insulated coil characterized by using an impregnated resin. The present invention is characterized by blending low-viscosity acrylic (methacrylic) or allyl monomer with the epoxy compound to lower the viscosity of the impregnating resin, and also by making the epoxy cured network and vinyl crosslinked network compatible, which do not react with each other. By uniformizing the resin well, it is possible to achieve both the flexibility and dimensional stability of the epoxy resin and the effect of increasing the heat distortion temperature of the vinyl resin, thereby producing a well-balanced cured product. Furthermore, by adding phenoxy resin as a high molecular weight component, flexibility can be imparted to the impregnated resin by interposing the phenoxy resin as a non-crosslinking linear component in the crosslinked network. This is also one of the features of the present invention. Hereinafter, a method for manufacturing an insulated coil according to the present invention will be explained. First, the epoxy compound that can be used in the present invention may be any compound having at least two epoxy groups in one molecule, such as bisphenol A type DER-332 (trade name of Dow Corporation),
Novolac type DEN- such as Epicote 828 (Ciel company product name), GY-255 (Ciba company product name)
431 (trade name of Dow Corporation), alicyclic type CY-179 (trade name of Ciba Corporation), and these can be used alone or in combination. Furthermore, the epoxy curing agent that can be used in the present invention may be any cyclic acid anhydride, such as methyltetrahydrophthalic anhydride [HN-
2200 (Hitachi Chemical brand name)], Methylhexahydrophthalic anhydride [HN-5500 (Hitachi Chemical brand name)],
Examples include methyl highmic acid anhydride (trade name of Hitachi Chemical). Further, as curing accelerators, metal salts such as tricresyl borate, triethanolamine titanate, cobalt acetylacetonate, zinc octylate, metal chelate compounds, BF 3 , BCl 3 , PF 3 ,
Lewis acids such as AsF 5 and their amine complexes can be used, and these may be mixed and used if necessary. Further, examples of the polyfunctional vinyl monomer having an acrylic (methacrylic) group or allyl group in one molecule that can be used in the present invention include diallyl phthalate, diallyl isophthalate, triallyl trimellitate, triallyl isocyanurate,
Examples include bisphenol A diglycidyl ether di(meth)acrylate, trimethylolpropane tri(meth)acrylate, and trihydroxyethyl isocyanurate tri(meth)acrylate. Epoxy compound curing agent is an epoxy compound
It is desirable to mix it in a ratio of 50 to 150 parts per 100 parts. If the blending amount is out of this range, the cross-linking between the epoxy component and the curing agent component will not be sufficient, and the heat distortion temperature and mechanical and electrical properties will decrease, both of which are unfavorable. A polyfunctional vinyl monomer having an acrylic (methacrylic) group or an allyl group in one molecule is a mixture of an epoxy compound and a curing agent.
It is desirable to mix in the range of 5 to 300 parts. If the blending amount is less than 5 parts, the effect of adding the vinyl compound (lower viscosity, etc.) cannot be obtained, and if it exceeds 300 parts, the curing shrinkage rate becomes too large and the properties as an impregnated resin deteriorate, which are both undesirable. In addition, the phenoxy resin has a molecular weight of 15,000 to 6,000 per 100 parts of the epoxy compound.
It is desirable to use 10 parts. If the amount is less than 0.1 part, the effect of imparting flexibility will not be sufficient, and if it exceeds 10 parts, the viscosity of the impregnated resin will increase too much, which is not preferred in practice. Furthermore, for the purpose of promoting the reaction of the impregnated resin used in the present invention, it is effective to add a catalyst. Examples of this catalyst include vinyl polymerization initiation catalysts such as dicumyl peroxide, benzoyl peroxide, di-t-butyl hydroperoxide, and azobisisobutyronitrile. In order to further reduce the viscosity of this impregnated resin, a monofunctional vinyl monomer such as styrene, vinyltoluene, α-methylstyrene, acrylonitrile, N-vinylpyrrolidone, etc. is added to the impregnated resin.
Although it is possible to add up to 200 parts per part, it is necessary to keep the amount to the minimum necessary since this will lead to deterioration of various properties. The insulated coil of the present invention is produced by winding an insulating sheet around a coil conductor, impregnating this wound layer with the above-mentioned novel low-viscosity impregnated resin under vacuum and pressure under known conditions, and then inserting it into a mold and forming it under heat and pressure. At the very least, an insulated coil is manufactured. The heating and pressing conditions are a heating temperature of 100 to 250°C, a pressure of 5 to 100 Kg/cm 2 , and a heating time of 4 to 24 hours, thereby obtaining an insulated coil with excellent electrical and thermal properties. . If the molding conditions are outside the above range, the interlayer adhesion of the obtained insulated coil will be weak, resulting in a marked decrease in electrical properties during thermal deterioration, and undesirable floating or peeling of the insulating layer. As described above, according to the present invention, it is possible to manufacture an insulated coil that has excellent electrical characteristics, particularly dielectric loss tangent-voltage characteristics (hereinafter simply referred to as Δtanδ) after thermal deterioration, compared to insulated coils formed using conventional epoxy-impregnated resin. became possible. [Examples of the Invention] The method for manufacturing an insulated coil of the present invention will be described in detail below with reference to Examples and Comparative Examples. Example 1 As an epoxy compound, 80 parts of Epicote 828 (product name of Ciel Corporation), 65 parts of HN-2200 (product name of Hitachi Chemical), 20 parts of trimethylolpropane triacrylate, and 0.2 parts of a phenoxy resin with a molecular weight of about 30,000 were added.
part, 0.05 part of dicumyl peroxide as a catalyst,
0.2 parts of zinc octylate was added to obtain a low viscosity impregnated resin. The initial viscosity of this impregnated resin was 100 cps (centipoise) at 25°C. Next, glass cloth (manufactured by Arisawa Seisakusho, thickness 0.025 mm) was placed on the coil conductor with a cross section of 40 x 10 mm, which was made by combining 2 x 5 x 2000 mm double glass-wound rectangular copper wires in 2 rows and 20 stages. The laminated mica tape obtained as a material is wound 12 times in a half-overlapping manner, and Tetron tape (manufactured by Teijin, thickness 0.125 mm) is added as a protective layer.
was wound once, vacuum impregnated with the low viscosity impregnating resin obtained above for 1 hour at a pressure of 0.1 mmHg or less, then pressure impregnated for 4 hours at a pressure of 3 kg/ cm2 , and then inserted into a mold. 6 at temperature 135℃ and pressure 20Kg/ cm2
After heating and pressure molding for a period of time, the temperature is further increased to 150°C.
Polymerization was carried out for 16 hours to obtain an insulated coil. In order to investigate the characteristics of this insulated coil, we investigated the initial Δtanδ and breakdown voltage, and the Δtanδ after 16 days at 180℃.
were measured respectively. These results are shown in Table 1. The pot life (pot life) of the above low viscosity impregnated resin is determined when the resin is heated at a temperature of 25°C and a relative humidity of 35%.
The sample was placed in a constant temperature and humidity chamber, and the viscosity was monitored periodically. That is, in this measurement, the number of days until the viscosity at 25°C reached 400 cps was defined as the pot life. If the viscosity is higher than 400 cps, it becomes difficult to completely impregnate the insulated coil, which is not preferable. As a result, the viscosity of the above-mentioned impregnated resin did not exceed 400 cps even after 6 months at 25°C, and was very good. Next, this low viscosity impregnated resin was cured at 110°C for 6 hours and then further at 150°C for 16 hours to obtain a cured product. The bending strength of this cured product was measured based on JIS K7203. As a result, a result of 12 Kg/mm 2 at 25°C was obtained, which was very good. In addition, weight loss on heating was measured based on JIS C2103. the result,
The weight loss after heating at 180°C for 16 days was 2.0%, which was a good value. The results of the above initial viscosity, pot life bending strength, heating weight loss are summarized in Table 2. Example 2 HN-5500 (Hitachi Chemical brand name) was added to 100 parts of GY-255 (Ciba brand name) as an epoxy compound.
86 parts, trihydroxyethyl isocyanurate 30
0.3 parts of phenoxy resin with a molecular weight of about 30,000, 10 parts of styrene, and 0.2 parts of benzoyl peroxide and 0.5 parts of cobalt acetylacetonate as catalysts.
was added to obtain a low viscosity impregnated resin. The initial viscosity of this impregnated resin was 80 cps at 25°C. Next, an insulated coil was manufactured under the same conditions as in Example 1, and the Δtanδ and initial breakdown voltage were measured, and as in Example 1, they were very good.
These results are shown in Table 1. In addition, the pot life of the above impregnated resin is 6 at 25℃.
Even after several months, the level remained very good and did not exceed 400 cps. Furthermore, good values of 12 Kg/mm 2 and 1.7% were obtained for bending strength and weight loss after heating at 200° C. for 16 days, respectively. These results are shown in Table 2. Example 3 As an epoxy compound, 2.0 parts of phenoxy resin with a molecular weight of about 30,000, 92 parts of methyl hymite anhydride (trade name of Hitachi Chemical), and trimethylolpropane triacrylate were added to 100 parts of GY-255 (trade name of Ciba Corporation). A low viscosity impregnated resin was produced in the same manner as in Example 1, except that 10 parts of trihydroxyethyl isocyanurate trimethacrylate, 0.2 parts of di-t-butyl hydroperoxide and 0.3 parts of zinc octylate were added as catalysts. . The initial viscosity of this impregnated resin was 100 cps at 25°C. Furthermore, an insulated coil was manufactured in the same manner as in Example 1,
When Δtanδ and initial breakdown voltage were measured, they were very good as in Example 1. These results are shown in Table 1. In addition, the pot life of the above impregnated resin is 6 at 25℃.
Even after several months, the level remained very good and did not exceed 400 cps. These results are shown in Table 2. Example 4 As epoxy compounds, 100 parts of DER-332 (trade name of Dow Corporation) and 10 parts of Epicote 1004 (trade name of Ciel Corporation) were used.
0.2 parts of phenoxy resin with a molecular weight of approximately 30,000
parts, trihydroxyethyl isocyanurate triacrylate 40 parts, styrene 10 parts, HN-2200
A low-viscosity impregnated resin was produced in the same manner as in Example 1, except that 85 parts of (Hitachi Chemical brand name) were added, and 0.1 part of dicumyl peroxide and 0.2 parts of zinc octylate were added as catalysts. The initial viscosity of this impregnated resin is 25℃
It was 120cps. Furthermore, an insulated coil was manufactured in the same manner as in Example 1,
When Δtanδ and initial breakdown voltage were measured, they were very good as in Example 1. These results are shown in Table 1. In addition, the pot life of the above impregnated resin is 6 at 25℃.
Even after several months, the level remained very good without exceeding 400 cps. These results are shown in Table 2. Comparative Example 1 15 parts of phenoxy resin with a molecular weight of about 30,000, 80 parts of HN-2200 (Hitachi Chemical product name), and 350 parts of trihydroxyethyl isocyanurate triacrylate to 100 parts of GY-255 (product name of Ciba Corporation) as an epoxy compound. A low-viscosity impregnated resin was produced in the same manner as in Example 1, except that 100 parts of styrene, 0.2 parts of dicumyl peroxide, and 0.3 parts of zinc octylate were added as catalysts. When we measured the properties of this impregnated resin and the properties of the insulated coil, we found that the initial viscosity of the impregnated resin was 25°C.
Although it was a reasonable 150 cps, it exceeded the usage range of the phenoxy resin used for the impregnating resin, so the pot life characteristics were very poor (over 400 cps after 30 days). Furthermore, since the polyfunctional vinyl monomer exceeds the usable range in terms of curing properties and properties of the insulated coil, the bending strength, weight loss upon heating, and electrical properties of the insulated coil were extremely poor. These results are also shown in Tables 1 and 2. Comparative Example 2 HN-2200 (Hitachi Chemical brand name) was added to 100 parts of GY-255 (Ciba brand name) as an epoxy compound.
A low-viscosity impregnated resin was produced in the same manner as in Example 1, except that 85 parts of 2-ethyl, 4-methylimidazole (trade name of Shikoku Kasei) was added as a catalyst. When we measured the properties of this impregnated resin and the properties of the insulated coil, we found that the initial viscosity was already 650 cps at 25°C.
Therefore, it was unsuitable as a room temperature impregnation resin. Furthermore, in the manufacturing process of insulated coils, the initial viscosity was high, resulting in poor impregnation and very poor electrical properties. These results are also shown in Tables 1 and 2.

【表】【table】

【表】 一定昇圧速度で油中にて測定
[Table] Measured in oil at constant pressure increase rate

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明による絶縁コイルは新規
な低粘度含浸樹脂を用いることにより、電気的、
特性特に熱劣化後の誘電正接−電圧特性
(Δtanδ)および熱的特性のいずれにおいても極
めて優秀であり、高電圧回転機用としての適性に
優れ、工業的は極めて大きいものである。
As described above, the insulated coil according to the present invention uses a novel low-viscosity impregnated resin to provide electrical and
It has extremely excellent properties, particularly both dielectric loss tangent-voltage properties (Δtanδ) and thermal properties after thermal deterioration, and is excellent in suitability for high-voltage rotating machines, making it extremely important in industrial applications.

Claims (1)

【特許請求の範囲】 1 コイル導体上に多孔質絶縁材を裏打材とした
絶縁シートを巻回し、この巻回層に低粘度含浸樹
脂を含浸して加熱加圧成形させた絶縁層を有する
絶縁コイルの製造方法において、上記低粘度含浸
樹脂として、1分子中に少なくとも2個のエポキ
シ基を含むエポキシ化合物と、このエポキシ化合
物の硬化剤との混合物100重量部に対し、1分子
中に2個以上のアクリル基若しくはメタクリル基
またはアリル基を有する多官能ビニルモノマー5
〜300重量部およびフエノキシ樹脂0.1〜10重量部
を配合することにより製造される低粘度含浸樹脂
を用いることを特徴とする絶縁コイルの製造方
法。 2 低粘度含浸樹脂が、エポキシ化合物とエポキ
シ化合物の硬化剤との混合物100重量部に対し、
1分子中に1個のビニル基を持つビニルモノマー
を200重量部を越えない範囲で配合してなる特許
請求の範囲1項記載の絶縁コイルの製造方法。 3 フエノキシ樹脂として、分子量が15000〜
60000の範囲のフエノキシ樹脂を用いる特許請求
の範囲1項記載の絶縁コイルの製造方法。 4 加熱加圧成形条件が、加熱温度100〜250℃、
加圧圧力5〜100Kg/cm2、加熱時間4〜24時間で
ある特許請求の範囲1項または3項記載の絶縁コ
イルの製造方法。
[Claims] 1. An insulation having an insulating layer formed by winding an insulating sheet with a porous insulating material as a backing material around a coil conductor, impregnating the wound layer with a low-viscosity impregnated resin, and molding the resultant under heat and pressure. In the coil manufacturing method, for 100 parts by weight of a mixture of an epoxy compound containing at least two epoxy groups in one molecule and a curing agent for this epoxy compound as the low-viscosity impregnating resin, two epoxy groups in one molecule are added. Polyfunctional vinyl monomer 5 having the above acrylic group, methacrylic group, or allyl group
A method for producing an insulated coil, characterized by using a low-viscosity impregnating resin produced by blending ~300 parts by weight and 0.1 to 10 parts by weight of a phenoxy resin. 2 The low viscosity impregnating resin is added to 100 parts by weight of the mixture of the epoxy compound and the curing agent for the epoxy compound,
2. The method for producing an insulated coil according to claim 1, wherein the vinyl monomer having one vinyl group per molecule is blended in an amount not exceeding 200 parts by weight. 3 As a phenoxy resin, the molecular weight is 15,000~
The method for manufacturing an insulated coil according to claim 1, using a phenoxy resin in the range of 60,000. 4 The heating and pressure molding conditions are heating temperature 100-250℃,
The method for manufacturing an insulated coil according to claim 1 or 3, wherein the applied pressure is 5 to 100 Kg/cm 2 and the heating time is 4 to 24 hours.
JP13287184A 1984-06-29 1984-06-29 Manufacture of insulated coil Granted JPS6113611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13287184A JPS6113611A (en) 1984-06-29 1984-06-29 Manufacture of insulated coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13287184A JPS6113611A (en) 1984-06-29 1984-06-29 Manufacture of insulated coil

Publications (2)

Publication Number Publication Date
JPS6113611A JPS6113611A (en) 1986-01-21
JPH0418448B2 true JPH0418448B2 (en) 1992-03-27

Family

ID=15091497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13287184A Granted JPS6113611A (en) 1984-06-29 1984-06-29 Manufacture of insulated coil

Country Status (1)

Country Link
JP (1) JPS6113611A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2675943B1 (en) * 1991-04-25 1994-10-21 Sagem Allumage PROCESS FOR SEALING A PART SUCH AS AN INDUCTION COIL AND MOLD FOR IMPLEMENTING THE PROCESS.
JP2009278074A (en) * 2008-04-15 2009-11-26 Denso Corp Ignition coil for internal combustion engine and method of making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682503A (en) * 1979-12-08 1981-07-06 Nippon Soda Co Resin composition for electric insulation
JPS5814730A (en) * 1981-07-20 1983-01-27 Shin Etsu Polymer Co Ltd Silicone rubber molded body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682503A (en) * 1979-12-08 1981-07-06 Nippon Soda Co Resin composition for electric insulation
JPS5814730A (en) * 1981-07-20 1983-01-27 Shin Etsu Polymer Co Ltd Silicone rubber molded body

Also Published As

Publication number Publication date
JPS6113611A (en) 1986-01-21

Similar Documents

Publication Publication Date Title
US3983289A (en) Electrically insulating prepreg
US4656090A (en) Low viscosity epoxy resin compositions
JPH0817060B2 (en) Electrically insulated coil, rotating electric machine, and manufacturing method thereof
JPH0418448B2 (en)
US4591623A (en) Thermosetting resin composition
EP0353103A2 (en) Low viscosity epoxy resin compositions
JPS5936651B2 (en) thermosetting resin composition
JP2874501B2 (en) Electrically insulated wire loop, method for manufacturing electrically insulated wire loop, rotating electric machine, and insulating sheet
JPH0452063B2 (en)
JPH0412562B2 (en)
JPS6113610A (en) Manufacture of insulated coil
JPS59226642A (en) Manufacture of insulated coil
JPS602061A (en) Manufacture of insulated coil
JP7378438B2 (en) Liquid thermosetting resin composition, method for curing liquid thermosetting resin composition, stator coil, and rotating electric machine
JPS617513A (en) Method of producing mica prepreg insulator
JPS6331489B2 (en)
JPH1180324A (en) Impregnable thermosetting resin composition and electric rotating machine insulated coil
Rogers Synthetic resins as applied to large rotating apparatus
JP2000026630A (en) Production of mica tape
JPH083337A (en) Prepreg
JPS5927516A (en) Manufacture of insulated coil
JPS6234252B2 (en)
CN113214602A (en) Insulating resin composite material, high-voltage insulating sleeve and preparation method and application thereof
JPS6079083A (en) Adhesive tape
JPS6026442A (en) Insulated coil and manufacture thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term