JP4560982B2 - Method for manufacturing insulation coil for high-pressure rotating machine - Google Patents

Method for manufacturing insulation coil for high-pressure rotating machine Download PDF

Info

Publication number
JP4560982B2
JP4560982B2 JP2001103260A JP2001103260A JP4560982B2 JP 4560982 B2 JP4560982 B2 JP 4560982B2 JP 2001103260 A JP2001103260 A JP 2001103260A JP 2001103260 A JP2001103260 A JP 2001103260A JP 4560982 B2 JP4560982 B2 JP 4560982B2
Authority
JP
Japan
Prior art keywords
resin composition
liquid thermosetting
thermosetting resin
epoxy resin
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001103260A
Other languages
Japanese (ja)
Other versions
JP2002003582A (en
Inventor
茂之 山本
文行 宮本
隆光 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001103260A priority Critical patent/JP4560982B2/en
Publication of JP2002003582A publication Critical patent/JP2002003582A/en
Application granted granted Critical
Publication of JP4560982B2 publication Critical patent/JP4560982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電気機器の絶縁に用いられる液状熱硬化性樹脂組成物に関するものであり、更に詳しくは低粘度で非常に長い可使寿命を有し、その硬化物が機械特性と電気特性とに優れ、コイル含浸用、積層用または注型用などに用いられる液状熱硬化性樹脂組成物に関する。
また、上記液状熱硬化性樹脂組成物を用いた絶縁コイルの製造方法に関するものであり、更に詳しくは、タービン発電機や水車発電機など使用電圧の高い回転電機用として好適な絶縁コイルの製造方法に関する。
【0002】
【従来の技術】
タービン発電機や水車発電機などにおいては、電力需要の増加による単機容量の増大に伴い、使用電圧を上昇させる傾向が強まり、最近では50KVに達する高い電圧のものまで出現している。このような使用電圧の上昇によって、絶縁コイルには起動停止の反復に対するヒートサイクル性、温度上昇による耐熱劣化性、振動や短絡などに対する機械的性質などの多くの点で、より厳しい性能が要求されるようになっている。
【0003】
回転機に組み込まれた絶縁コイルは、一般的には気相中に置かれるが、高電圧下では、コイル部分に存在する気体の空気破壊に基づくコロナ放電が発生し、コイル絶縁層が破壊される恐れがあるため、絶縁材として古くから耐熱性、耐コロナ性、耐電圧性などに優れたマイカ箔を用いた絶縁シート(テープ状のものを含む。以下同様)が使用されている。
【0004】
通常の絶縁コイルは、所定の形状に成形してなるコイル導体上に上記の絶縁シートを巻回し、この巻回層にエポキシ含浸樹脂を含浸せしめて絶縁層を形成するものであるが、従来のエポキシ含浸樹脂の多くは、室温で高粘度でかつポットライフの短いものが多い。
【0005】
以上のことから、高圧回転機のコイル含浸用に用いられるエポキシ系液状熱硬化性樹脂組成物としては、含浸性の面から、低粘度性が要求されている。低粘度化を図ったエポキシ系液状熱硬化性樹脂組成物としては、従来、硬化剤に、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸または無水メチルハイミック酸などの低粘度の脂環式酸無水物を配合したエポキシ系液状熱硬化性樹脂組成物や、反応性希釈剤を配合したエポキシ系液状熱硬化性樹脂組成物が知られている。
【0006】
しかし、低粘度の脂環式酸無水物を硬化剤として配合したエポキシ系液状熱硬化性樹脂組成物は、保管時および含浸作業時等に大気中の水分を吸湿することにより、エポキシ樹脂と酸無水物との反応が促進され、エポキシ系液状熱硬化性樹脂組成物を増粘させ、その可使寿命が短くなるという問題があった。それと、吸湿したエポキシ系液状熱硬化性樹脂組成物の硬化物は、機械特性と電気特性とが低下するという問題もあった。
【0007】
また、低粘度化という方向では、希釈剤の添加が一般的であるが、反応性希釈剤を添加したエポキシ系液状熱硬化性樹脂組成物は、通常の反応性希釈剤には毒性の高いものが多いので、十分な防護対策が必要であり、作業性が劣るという問題があった。それと、反応性希釈剤を添加したエポキシ系液状熱硬化性樹脂組成物は、その硬化物の耐熱性が大きく低下し、耐湿性や電気特性等も低下するという問題点があった。
【0008】
脂環式酸無水物硬化剤や反応性希釈剤を使用しない低粘度のエポキシ系液状熱硬化性樹脂組成物であり、硬化物の耐熱性と電気特性とが優れているものして、環状脂肪族エポキシ樹脂に硬化触媒を配合したものが知られている。
【0009】
【発明が解決しようとする課題】
しかしながら、環状脂肪族エポキシ樹脂に硬化触媒を配合したエポキシ系液状熱硬化性樹脂組成物は、その可使寿命が短いという課題があった。
さらに、その硬化物の耐熱性や電気特性は優れているが、接着性や機械特性が劣っており、高圧回転機の絶縁コイルの含浸樹脂に用いた場合、絶縁部にクラックが入り、絶縁性が低下するという課題があった。
【0010】
本発明は、かかる課題を解決するためになされたものであり、高圧回転機の絶縁コイル等に対し良好な含浸性を有し、しかも硬化触媒が潜在性を有し、高温に長時間おかれてもエポキシ樹脂の重合反応の進行が遅く、液状熱硬化性樹脂組成物の粘度上昇を抑制することができ、かつ硬化性が低下する事なく、優れた耐熱性、電気絶縁性、機械強度などを具備する液状熱硬化性樹脂組成物を得ることを目的とする。
また、電気特性、特に劣化後の誘電正接―電圧特性(以下単にΔTanδと記す)に優れた絶縁コイルの製造方法を提供する事を目的とする。
【0011】
【課題を解決するための手段】
本発明に係わる第1の高圧回転機用絶縁コイルの製造方法は、コイル導体上に、多孔質絶縁材を裏打材とした絶縁シートを巻回する工程と、巻回した上記絶縁シートに環状脂肪族エポキシ樹脂と、芳香族エポキシ樹脂および複素環式エポキシ樹脂のうち少なくとも一種類のエポキシ樹脂と、カチオン系硬化触媒とからなる液状熱硬化性樹脂組成物であって、上記環状脂肪族エポキシ樹脂は、4―ビニルシクロヘキセン―1,2―エポキシドを含み、上記環状脂肪族エポキシ樹脂の配合量は、上記液状熱硬化性樹脂組成物の全エポキシ樹脂の20〜85重量%である液状熱硬化性樹脂組成物を含浸する工程と、上記液状熱硬化性樹脂組成物を加熱加圧する工程とを備えたものである。
【0013】
本発明に係わる第3の液状熱硬化性樹脂組成物は、上記第1または第2の液状熱硬化性樹脂組成物において、カチオン系硬化触媒の配合量が、液状熱硬化性樹脂組成物中に0.05〜20重量%である。
【0018】
本発明に係わる第2の高圧回転機用絶縁コイルの製造方法は、上記第1の絶縁コイルの製造方法において、加熱温度100℃〜250℃、加圧圧力5〜100Kg/cmで、4〜24時間加熱加圧して成形する方法である。
【0019】
【発明の実施の形態】
実施の形態1.
本発明の実施の形態1における液状熱硬化性樹脂組成物は、全エポキシ樹脂中に20〜85重量%の環状脂肪族エポキシ樹脂と、全エポキシ樹脂中に15〜80重量%の芳香族エポキシ樹脂および複素環式エポキシ樹脂の少なくとも1種類と、エポキシ樹脂100重量部に対して、0.05〜20重量部のカチオン系硬化触媒からなる液状熱硬化性樹脂組成物である。
【0020】
本発明に係る液状熱硬化性樹脂組成物を調合する方法としては、始めに所定量のエポキシ樹脂とカチオン系硬化触媒とを容器に採取し、撹拌機で撹拌し均一化し、得る事が出来る。
【0021】
このようにして得られた液状熱硬化性樹脂組成物は誘導電動機、タービン発電機等の高圧回転機のステータに組み込まれる絶縁コイルに含浸される樹脂、または積層体用ガラスクロスや有機不織布等の絶縁基材に含浸される樹脂として用いられるが、特に高圧回転機用の絶縁コイルの含浸樹脂として好適に用いられる。
【0022】
本実施の形態に用いられる環状脂肪族エポキシ樹脂としては、1分子中に少なくとも1個以上のエポキシ基と、1分子中に少なくとも1個以上の脂肪族の6員環を有するもので、例えば、アリサイクリック ジエポキシ アジフェート、アリサイクリック ジエポキシ カルボキシレート、ビニル シクロヘキセン ジオキサイド、4―ビニルシクロヘキセン―1,2―エポキシドが単独または混合して用いられる。その配合量は、エポキシ樹脂中に20〜85重量%であり、環状脂肪族エポキシ樹脂の配合量が20重量%未満では、液状熱硬化性樹脂組成物の粘度が高くなり、含浸性が低下し、配合量が85重量%を超えると、液状熱硬化性樹脂組成物の硬化物の機械特性や接着性が低下する。
【0023】
本発明の実施の形態に用いられる芳香族エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ブロム化ビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂が単独または混合して用いられ、特に、液状のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂またはビスフェノールAD型エポキシ樹脂が液状熱硬化性樹脂組成物の粘度を低く抑えることと、液状熱硬化性樹脂組成物の硬化物の機械強度と接着性とを向上させるので好ましい。
【0024】
本発明の実施の形態に用いられる複素環式エポキシ樹脂としては、トリアジン環のエポキシ樹脂またはヒダントイン型エポキシ樹脂が用いられ、特に、トリアジン環のエポキシ樹脂のトリグリシジルイソシアネートが、液状熱硬化性樹脂組成物の硬化物の耐熱性を一層向上させるので好ましい。
【0025】
本発明に使用されるカチオン系硬化触媒は、潜在性のカチオン系硬化触媒である4フッ化ホウ素、6フッ化リン、6フッ化ヒ素、6フッ化アンチモンまたは4ペンタフルオロベンゼンのいずれかのジアゾニウム塩、ヨードニウム塩またはスルホニウム塩等のオニウム塩である。これら触媒は1種類または2種類以上を混合して用いてもよい。カチオン系硬化触媒の添加量としては、エポキシ樹脂100重量部に対して0.05〜20重量部、好ましくは0.1〜10重量部が推奨される。添加量が0.05重量部未満では液状熱硬化性樹脂組成物の硬化物の耐熱性や機械強度が著しく低下し、20重量部より多いと、液状熱硬化性樹脂組成物の可使寿命が短くなり、好ましくない。
【0026】
実施の形態2.
本発明の実施の形態2の絶縁コイルの製造方法は、コイル導体上に、絶縁シートを巻回し、この巻回層に上記実施の形態1の液状熱硬化性樹脂組成物を公知の条件で真空加圧含浸した後、金型に挿入し、加熱加圧成形せしめて絶縁コイルを製造する方法であり、電気的、熱的性質に優れ、従来のエポキシ含浸樹脂を用いて形成した絶縁コイルに比べ、電気特性、特に熱劣化後の誘電正接―電圧特性(以下単にΔTanδと記す)に優れた絶縁コイルの製造が可能である。
また、上記成形条件としては、加熱温度100℃〜250℃、加圧圧力5〜100Kg/cmで、4〜24時間成形されるのが望ましく、成形条件が上記範囲をはずれると得られる絶縁コイルの層間接着力が弱く、その結果熱劣化時の電気特性が著しく低下し、また絶縁層に浮きや剥がれが生じやすくなる。
【0027】
【実施例】
以下に実施例を掲げ、本発明をさらに詳しく説明する。
【0028】
実施例1.
ビスフェノールA型エポキシ樹脂(商品名「MY―790―1」、チバ・スペシャリティ・ケミカルズ社製)20重量部、環状脂肪族エポキシ樹脂のアリサイクリック ジエポキシ カルボキシレート(商品名「セロキサイド2021P、ダイセル化学社製)50重量部、環状脂肪族エポキシ樹脂の4―ビニルシクロヘキセン―1,2―エポキシド(商品名「セロキサイド2000」、ダイセル化学社製)30重量部、6フッ化リンのスルホニウム塩硬化触媒(商品名「CI―2639」日本曹達社製)6重量部からなる液状熱硬化性樹脂組成物を調製した。
この液状熱硬化性樹脂組成物の初期粘度は、40℃で15m Pa・sと低粘度であった。また、得られた液状熱硬化性樹脂組成物の可使寿命を求める加速試験として、温度40℃、相対湿度35%の恒温恒湿槽に液状熱硬化性樹脂組成物を放置し、粘度の経時変化を測定した。可使寿命は、粘度が400m Pa・sに達するまでの日数とした。本実施例における液状熱硬化性樹脂組成物の粘度の経時変化を図1に示した。図1に示すように、本実施例の液状熱硬化性樹脂組成物は90日以上の長い可使寿命を有している。
【0029】
次に、この液状熱硬化性樹脂組成物を電気機器の絶縁に用いるに必要な特性として、その硬化物(硬化条件:110℃で6時間硬化後、さらに150℃で16時間硬化)のJIS―C2103に基づく電気特性(誘電正接、体積抵抗率)と接着特性とを測定し、その結果を表1に示した。表1より、本実施例の液状熱硬化性樹脂組性成物の硬化物は、室温における電気特性と接着強度とが優れているとともに、100℃における電気特性と接着強度とが優れており、耐熱性にも優れていることがわかる。
【0030】
【表1】

Figure 0004560982
【0031】
次に上記硬化物の曲げ強度特性を把握するため、JIS―K7203に基づき測定したところ、曲げ強度は、25℃で110Mpaという結果が得られ、非常に良好であった。また、加熱重量減少を把握するためJIS―C2103に基づき測定した。その結果、180℃で16日後の加熱重量減少は0.8%と良好な値を示した。表2に、結果を示す。
【0032】
【表2】
Figure 0004560982
【0033】
次に絶縁コイルでの特性を把握するため、2×5×2000mmの2重ガラス巻き平角銅線を2列20段に組み合わせた40×10mmの断面を持つコイル導体上に厚さ0.025mmのガラスクロス(有沢製作所製)を裏打材として得られる集成マイカテープを半重ね巻きにして12回巻回し、さらに保護テープとして厚さ0.13mmのテトロンテープ(帝人製)を1回巻回し、本実施例の液状熱硬化性樹脂組成物にて圧力0.1mmHg以下で120分の真空含浸を行い、次いで圧力3Kg/cmで180分加圧した後、金型に挿入し、温度135℃、圧力20Kg/cmで、6時間加熱加圧成形を行った後、さらに150℃で16時間の条件で重合を行って絶縁コイルを得、初期のΔTanδおよび破壊電圧、さらに180℃で16日熱劣化した後のΔTanδを測定し、結果を表2に示した。表2より、電気特性、特に劣化後の誘電正接―電圧特性が優れていることがわかる。
【0034】
実施例2.
ビスフェノールA型エポキシ樹脂(商品名「MY―790―1」、チバ・スペシャリティ・ケミカルズ社製)20重量部、ビスフェノールF型エポキシ樹脂(商品名「EP―1750」油化シェルエポキシ社製)10重量部、環状脂肪族エポキシ樹脂のアリサイクリック ジエポキシ カルボキシレート(商品名「セロキサイド2021P、ダイセル化学社製)40重量部、環状脂肪族エポキシ樹脂の4―ビニルシクロヘキセン―1,2―エポキシド(商品名「セロキサイド2000、ダイセル化学社製)30重量部、6フッ化リンのスルホニウム塩硬化触媒(商品名「CI―2639」日本曹達社製)6重量部からなる液状熱硬化性樹脂組成物を調製した。この液状熱硬化性樹脂組成物の初期粘度は、40℃で18m Pa・sと低粘度であった。また、得られた液状熱硬化性樹脂組成物の可使寿命を求める加速試験を実施例1と同様にして行った。可使寿命は、実施例1と同様の、粘度が400m Pa・sに達するまでの日数とした。本実施例の液状熱硬化性樹脂組成物の結果も図1に示したが、90日以上の長い可使寿命を有している。
【0035】
次に、本実施例の液状熱硬化性樹脂組成物を実施例1と同様の硬化条件で硬化した硬化物について、実施例1と同様にして電気特性と接着特性とを測定し表1に示した。本実施例の液状熱硬化性樹脂組成物の硬化物は、室温における電気特性と接着強度とが優れているとともに100℃における電気特性と接着強度とが優れており、耐熱性にも優れている。
また、実施例1と同様に、上記硬化物の曲げ強度特性と、加熱重量減少を測定し、表2に、結果を示すが、実施例1と同様に非常に良好であった。
【0036】
次に、絶縁コイルでの特性を把握するため、実施例1と同様の条件により絶縁コイルを製造し、ΔTanδ、破壊電圧を測定したところ、実施例1と同様に非常に良好であった。絶縁コイルの特性を表2に示すが、電気特性、特に劣化後の誘電正接―電圧特性が優れている。
【0037】
実施例3.
ビスフェノールA型エポキシ樹脂(商品名「MY―790―1」、チバ・スペシャリティ・ケミカルズ社製)30重量部、ビスフェノールF型エポキシ樹脂(商品名「EP―1750」油化シェルエポキシ社製)5重量部、環状脂肪族エポキシ樹脂のアリサイクリック ジエポキシ カルボキシレート(商品名「セロキサイド2021P、ダイセル化学社製)40重量部、環状脂肪族エポキシ樹脂の4―ビニルシクロヘキセン―1,2―エポキシド(商品名「セロキサイド2000、ダイセル化学社製)25重量部、6フッ化リンのスルホニウム塩硬化触媒(商品名「CI―2639」日本曹達社製)6重量部からなる液状熱硬化性樹脂組成物を調製した。この液状熱硬化性樹脂組成物の初期粘度は、40℃で25m Pa・sと低粘度であった。また、得られた液状熱硬化性樹脂組成物の可使寿命を求める加速試験を実施例1と同様にして行った。可使寿命は実施例1と同様の粘度が400m Pa・sに達するまでの日数とした。本実施例の液状熱硬化性樹脂組成物の結果も図1に示したが、90日以上の長い可使寿命を有している。
【0038】
次に、本実施例の液状熱硬化性樹脂組成物を実施例1と同様の硬化条件で硬化した硬化物について、実施例1と同様にして電気特性と接着特性とを測定し表1に示した。本実施例の液状熱硬化性樹脂組成物の硬化物は、室温における電気特性と接着強度とが優れているとともに100℃における電気特性と接着強度とが優れており、耐熱性にも優れている。
また、実施例1と同様に、上記硬化物の曲げ強度特性と、加熱重量減少を測定し、表2に、結果を示すが、実施例1と同様に非常に良好であった。
【0039】
次に、絶縁コイルでの特性を把握するため、実施例1と同様の条件により絶縁コイルを製造し、ΔTanδ、破壊電圧を測定したところ、実施例1と同様に非常に良好であった。絶縁コイルの特性を表2に示すが、電気特性、特に劣化後の誘電正接―電圧特性が優れている。
【0040】
実施例4.
ビスフェノールA型エポキシ樹脂(商品名「MY―790―1」、チバ・スペシャリティ・ケミカルズ社製)25重量部、環状脂肪族エポキシ樹脂のアリサイクリック ジエポキシ カルボキシレート(商品名「セロキサイド2021P、ダイセル化学社製)47.5重量部、多価アルコール(商品名「プラクセル305」ダイセル化学社製)2.5重量部、環状脂肪族エポキシ樹脂の4―ビニルシクロヘキセン―1,2―エポキシド(商品名「セロキサイド2000、ダイセル化学社製)25重量部、6フッ化アンチモンのスルホニウム塩硬化触媒(商品名「SI―100L」三井化学工業社製)5重量部からなる液状熱硬化性樹脂組成物を調製した。この液状熱硬化性樹脂組成物の初期粘度は、40℃で20m Pa・sと低粘度であった。また、得られた液状熱硬化性樹脂組成物の可使寿命を求める加速試験を実施例1と同様にして行った。可使寿命は実施例1と同様の粘度が400m Pa・sに達するまでの日数とした。本実施例の液状熱硬化性樹脂組成物の結果も図1に示したが、90日以上の長い可使寿命を有している。
【0041】
次に本実施例の液状熱硬化性樹脂組成物を実施例1と同様の硬化条件で硬化した硬化物について、実施例1と同様にして電気特性と接着特性とを測定し、表1に示した。本実施例の液状熱硬化性樹脂組成物の硬化物は、室温における電気特性と接着強度とが優れているとともに100℃における電気特性と接着強度とが優れており、耐熱性にも優れている。
また、実施例1と同様に、上記硬化物の曲げ強度特性と、加熱重量減少を測定し、表2に、結果を示すが、実施例1と同様に非常に良好であった。
【0042】
次に、絶縁コイルでの特性を把握するため、実施例1と同様の条件により絶縁コイルを製造し、ΔTanδ、破壊電圧を測定したところ、実施例1と同様に非常に良好であった。絶縁コイルの特性を表2に示すが、電気特性、特に劣化後の誘電正接―電圧特性が優れている。
【0043】
実施例5.
トリアジン環エポキシ樹脂のトリグリシジルイソシアネート(商品名「MA―DGIC」、四国化成社製)22重量部、環状脂肪族エポキシ樹脂のアリサイクリック ジエポキシ カルボキシレート(商品名「セロキサイド2021P、ダイセル化学社製)48重量部、環状脂肪族エポキシ樹脂の4―ビニルシクロヘキセン―1,2―エポキシド(商品名「セロキサイド2000」、ダイセル化学社製)30重量部、6フッ化リンのスルホニウム塩硬化触媒(商品名「CI―2639」日本曹達社製)6重量部からなる液状樹脂組成物を調製した。この樹脂組成物の初期粘度は、40℃で26m Pa・sと低粘度であった。また、得られた液状熱硬化性樹脂組成物の可使寿命を求める加速試験を実施例1と同様にして行った。可使寿命は実施例1と同様の粘度が400m Pa・sに達するまでの日数とした。本実施例の液状熱硬化性樹脂組成物の結果も図1に示したが90日以上の長い可使寿命を有している。
【0044】
次に本実施例の液状熱硬化性樹脂組成物を実施例1と同様の硬化条件で硬化した硬化物について、実施例1と同様にして電気特性と接着特性とを測定し、表1に示した。本実施例の液状熱硬化性樹脂組成物の硬化物は室温における電気特性と接着強度とが優れているとともに、100℃における電気特性と接着強度とが優れており、耐熱性にも優れている。
また、実施例1と同様に、上記硬化物の曲げ強度特性と、加熱重量減少を測定し、表2に、結果を示すが、実施例1と同様に非常に良好であった。
【0045】
次に、絶縁コイルでの特性を把握するため、実施例1と同様の条件により絶縁コイルを製造し、ΔTanδ、破壊電圧を測定したところ、実施例1と同様に非常に良好であった。絶縁コイルの特性を表2に示すが、電気特性、特に劣化後の誘電正接―電圧特性が優れている。
【0046】
比較例1.
ビスフェノールA型エポキシ樹脂(商品名「MY―790―1」、チバ・スペシャリティ・ケミカルズ社製)40重量部、環状脂肪族エポキシ樹脂のアリサイクリック ジエポキシ カルボキシレート(商品名「セロキサイド2021P、ダイセル化学社製)12重量部、メチルテトラヒドロ無水フタル酸(商品名「QH―200」、日本ゼオン社製)48重量部、6フッ化リンのスルホニウム塩硬化触媒(商品名「CI―2639」日本曹達社製)5重量部からなる液状熱硬化性樹脂組成物を調製した。この液状熱硬化性樹脂組成物の40℃初期粘度は180m Pa・sと高く、硬化剤に酸無水物を用いているので、実施例1と同様にして求めた可使寿命も、40日と非常に短いものであった。
【0047】
また、この液状熱硬化性樹脂組成物を実施例1と同様の硬化条件で硬化した硬化物について、実施例1と同様にして電気特性と接着特性とを測定し、表1に示した。本比較例では、室温および高温(100℃)の電気特性と接着強度が、本発明の実施例より劣っている。
【0048】
次に、絶縁コイルでの特性を把握するため、実施例1と同様の条件により絶縁コイルを製造し、ΔTanδ、破壊電圧を測定したところ、非常に悪いものであった。これらの結果を表2に示す。
【0049】
【発明の効果】
本発明によれば、低粘度で長い可使寿命があり、好な含浸作業性を有し、優れた絶縁コイルの電気特性、特に劣化後の誘電正接−電圧特性を得ることができる。
【図面の簡単な説明】
【図1】 実施例と比較例との液状熱硬化性樹脂組成物の可使寿命を求める加速試験における粘度の経時変化を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid thermosetting resin composition used for insulation of electrical equipment. More specifically, the present invention has a low viscosity and a very long service life, and the cured product has mechanical and electrical properties. The present invention relates to a liquid thermosetting resin composition which is excellent and used for coil impregnation, lamination or casting.
The present invention also relates to a method for producing an insulating coil using the liquid thermosetting resin composition, and more specifically, a method for producing an insulating coil suitable for use in a rotating electrical machine having a high working voltage such as a turbine generator or a water turbine generator. About.
[0002]
[Prior art]
In turbine generators and water turbine generators, etc., the tendency to increase the operating voltage has increased with the increase in single-unit capacity due to an increase in power demand, and recently, even those with a high voltage reaching 50 KV have appeared. Due to this increase in operating voltage, insulation coils are required to have stricter performance in many respects, such as heat cycle characteristics against repeated start and stop, heat resistance deterioration due to temperature rise, and mechanical properties against vibration and short circuit. It has become so.
[0003]
Insulating coils incorporated in rotating machines are generally placed in the gas phase, but under high voltage, corona discharge based on air destruction of gas present in the coil part occurs, and the coil insulating layer is destroyed. Insulation sheets (including tape-like ones; the same applies hereinafter) using mica foil with excellent heat resistance, corona resistance, voltage resistance, etc. have long been used as insulating materials.
[0004]
A normal insulating coil is one in which the insulating sheet is wound on a coil conductor formed into a predetermined shape, and this wound layer is impregnated with an epoxy-impregnated resin to form an insulating layer. Many epoxy-impregnated resins have a high viscosity at room temperature and a short pot life.
[0005]
From the above, the epoxy liquid thermosetting resin composition used for coil impregnation of a high-pressure rotating machine is required to have low viscosity from the viewpoint of impregnation. As an epoxy-type liquid thermosetting resin composition with a low viscosity, a conventional low-viscosity alicyclic type such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride or methylhymic anhydride has been used as a curing agent. An epoxy liquid thermosetting resin composition containing an acid anhydride and an epoxy liquid thermosetting resin composition containing a reactive diluent are known.
[0006]
However, an epoxy-based liquid thermosetting resin composition containing a low-viscosity alicyclic acid anhydride as a curing agent absorbs moisture in the atmosphere during storage and impregnation work, etc. There was a problem that the reaction with the anhydride was accelerated, the viscosity of the epoxy liquid thermosetting resin composition was increased, and the usable life was shortened. In addition, the cured product of the moisture-absorbing epoxy-based liquid thermosetting resin composition has a problem that mechanical properties and electrical properties are deteriorated.
[0007]
In addition, in the direction of lowering the viscosity, addition of a diluent is common, but an epoxy liquid thermosetting resin composition added with a reactive diluent is highly toxic to ordinary reactive diluents. As a result, there are problems that sufficient protective measures are required and workability is inferior. In addition, the epoxy liquid thermosetting resin composition to which a reactive diluent is added has a problem that the heat resistance of the cured product is greatly reduced, and the moisture resistance, electrical characteristics and the like are also reduced.
[0008]
A low-viscosity epoxy-based liquid thermosetting resin composition that does not use an alicyclic acid anhydride curing agent or reactive diluent, and has excellent heat resistance and electrical properties of the cured product. The thing which mix | blended the curing catalyst with the group epoxy resin is known.
[0009]
[Problems to be solved by the invention]
However, an epoxy liquid thermosetting resin composition in which a curing catalyst is blended with a cycloaliphatic epoxy resin has a problem that its usable life is short.
Furthermore, although the cured product has excellent heat resistance and electrical properties, it has poor adhesion and mechanical properties. When used as an impregnation resin for insulation coils of high-pressure rotating machines, the insulation part cracks and insulates. There has been a problem of lowering.
[0010]
The present invention has been made to solve such a problem, and has a good impregnation property with respect to an insulating coil of a high-pressure rotating machine, and further has a potential of a curing catalyst, and is kept at a high temperature for a long time. However, the progress of the polymerization reaction of the epoxy resin is slow, the viscosity increase of the liquid thermosetting resin composition can be suppressed, and the heat resistance, electrical insulation, mechanical strength, etc. can be suppressed without decreasing the curability. It aims at obtaining the liquid thermosetting resin composition which comprises this.
It is another object of the present invention to provide an insulating coil manufacturing method that is excellent in electrical characteristics, in particular, dielectric loss tangent-voltage characteristics after degradation (hereinafter simply referred to as ΔTanδ).
[0011]
[Means for Solving the Problems]
A first method for producing an insulating coil for a high-pressure rotating machine according to the present invention includes a step of winding an insulating sheet with a porous insulating material as a backing material on a coil conductor, and a cyclic fat on the wound insulating sheet. A liquid thermosetting resin composition comprising an aromatic epoxy resin, at least one epoxy resin among an aromatic epoxy resin and a heterocyclic epoxy resin, and a cationic curing catalyst, wherein the cyclic aliphatic epoxy resin is A liquid thermosetting resin containing 4-vinylcyclohexene-1,2-epoxide, and the amount of the cycloaliphatic epoxy resin is 20 to 85% by weight of the total epoxy resin of the liquid thermosetting resin composition A step of impregnating the composition and a step of heating and pressurizing the liquid thermosetting resin composition are provided.
[0013]
The third liquid thermosetting resin composition according to the present invention is the above-described first or second liquid thermosetting resin composition, wherein the amount of the cationic curing catalyst is in the liquid thermosetting resin composition. 0.05 to 20% by weight.
[0018]
A second method for manufacturing an insulating coil for a high-voltage rotating machine according to the present invention is the same as the first method for manufacturing an insulating coil described above, except that the heating temperature is 100 ° C. to 250 ° C. and the pressing pressure is 5 to 100 Kg / cm 2 . This is a method of forming by heating and pressing for 24 hours.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
The liquid thermosetting resin composition according to Embodiment 1 of the present invention includes 20 to 85% by weight of a cyclic aliphatic epoxy resin in all epoxy resins and 15 to 80% by weight of aromatic epoxy resin in all epoxy resins. And a liquid thermosetting resin composition comprising 0.05 to 20 parts by weight of a cationic curing catalyst with respect to at least one kind of heterocyclic epoxy resin and 100 parts by weight of the epoxy resin.
[0020]
As a method of preparing the liquid thermosetting resin composition according to the present invention, first, a predetermined amount of epoxy resin and a cationic curing catalyst are collected in a container, and stirred and homogenized with a stirrer.
[0021]
The liquid thermosetting resin composition obtained in this way is a resin impregnated in an insulating coil incorporated in a stator of a high-pressure rotating machine such as an induction motor or a turbine generator, or a glass cloth for laminates or an organic nonwoven fabric. Although used as a resin impregnated in an insulating base material, it is particularly suitably used as an impregnating resin for an insulating coil for a high-pressure rotating machine.
[0022]
The cycloaliphatic epoxy resin used in the present embodiment has at least one epoxy group in one molecule and at least one aliphatic 6-membered ring in one molecule. Alicyclic diepoxy adipate, alicyclic diepoxy carboxylate, vinyl cyclohexene dioxide, and 4-vinylcyclohexene-1,2-epoxide are used alone or in combination. The compounding amount is 20 to 85% by weight in the epoxy resin, and if the compounding amount of the cycloaliphatic epoxy resin is less than 20% by weight, the viscosity of the liquid thermosetting resin composition increases and impregnation decreases. When the blending amount exceeds 85% by weight, the mechanical properties and adhesiveness of the cured product of the liquid thermosetting resin composition are deteriorated.
[0023]
The aromatic epoxy resin used in the embodiment of the present invention includes bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, brominated bisphenol type epoxy resin, phenol novolak type epoxy resin, cresol novolak type. Epoxy resins, glycidyl ester type epoxy resins, and glycidyl amine type epoxy resins are used alone or in combination. In particular, liquid bisphenol A type epoxy resins, bisphenol F type epoxy resins or bisphenol AD type epoxy resins are liquid thermosetting resins. It is preferable because the viscosity of the composition is kept low and the mechanical strength and adhesiveness of the cured product of the liquid thermosetting resin composition are improved.
[0024]
As the heterocyclic epoxy resin used in the embodiment of the present invention, a triazine ring epoxy resin or a hydantoin type epoxy resin is used, and in particular, triglycidyl isocyanate of the triazine ring epoxy resin is a liquid thermosetting resin composition. This is preferable because the heat resistance of the cured product is further improved.
[0025]
The cationic curing catalyst used in the present invention is a diazonium of boron tetrafluoride, phosphorous hexafluoride, arsenic hexafluoride, antimony hexafluoride or tetrapentafluorobenzene which is a latent cationic curing catalyst. An onium salt such as a salt, iodonium salt or sulfonium salt. These catalysts may be used alone or in combination of two or more. The addition amount of the cationic curing catalyst is recommended to be 0.05 to 20 parts by weight, preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin. When the addition amount is less than 0.05 parts by weight, the heat resistance and mechanical strength of the cured product of the liquid thermosetting resin composition are remarkably lowered. When the addition amount is more than 20 parts by weight, the usable life of the liquid thermosetting resin composition is increased. It becomes shorter and is not preferable.
[0026]
Embodiment 2. FIG.
In the insulating coil manufacturing method according to the second embodiment of the present invention, an insulating sheet is wound on a coil conductor, and the liquid thermosetting resin composition according to the first embodiment is evacuated to the wound layer under known conditions. It is a method of manufacturing an insulated coil by impregnating it with pressure and then inserting it into a mold and molding it by heating and pressing. It has excellent electrical and thermal properties, compared to the conventional insulation coil formed using an epoxy-impregnated resin. It is possible to manufacture an insulating coil having excellent electrical characteristics, in particular, dielectric loss tangent-voltage characteristics (hereinafter simply referred to as ΔTanδ) after thermal degradation.
Moreover, as said shaping | molding conditions, it is desirable to shape | mold for 4 to 24 hours with the heating temperature of 100 to 250 degreeC, and the pressurization pressure of 5 to 100 kg / cm < 2 >, and the insulation coil obtained when a shaping | molding condition remove | deviates from the said range. As a result, the interlaminar adhesive strength is weak, and as a result, the electrical characteristics during thermal degradation are significantly lowered, and the insulating layer is liable to float or peel off.
[0027]
【Example】
The following examples further illustrate the present invention in more detail.
[0028]
Example 1.
Bisphenol A type epoxy resin (trade name “MY-790-1”, manufactured by Ciba Specialty Chemicals) 20 parts by weight, cycloaliphatic epoxy resin alicyclic diepoxy carboxylate (trade name “Celoxide 2021P, Daicel Chemical Industries, Ltd.” 50 parts by weight, cycloaliphatic epoxy resin 4-vinylcyclohexene-1,2-epoxide (trade name “Celoxide 2000”, manufactured by Daicel Chemical Industries), 30 parts by weight of phosphorus hexafluoride sulfonium salt curing catalyst (product) A liquid thermosetting resin composition comprising 6 parts by weight (name “CI-2539”, manufactured by Nippon Soda Co., Ltd.) was prepared.
The initial viscosity of this liquid thermosetting resin composition was as low as 15 mPa · s at 40 ° C. In addition, as an accelerated test for obtaining the usable life of the obtained liquid thermosetting resin composition, the liquid thermosetting resin composition is left in a constant temperature and humidity chamber at a temperature of 40 ° C. and a relative humidity of 35%, and the viscosity is changed over time. Changes were measured. The usable life was defined as the number of days until the viscosity reached 400 mPa · s. The change with time of the viscosity of the liquid thermosetting resin composition in this example is shown in FIG. As shown in FIG. 1, the liquid thermosetting resin composition of the present example has a long usable life of 90 days or more.
[0029]
Next, as a characteristic necessary for using this liquid thermosetting resin composition for insulation of electrical equipment, JIS- of the cured product (curing condition: cured at 110 ° C. for 6 hours and further cured at 150 ° C. for 16 hours) The electrical properties (dielectric loss tangent, volume resistivity) and adhesive properties based on C2103 were measured, and the results are shown in Table 1. From Table 1, the cured product of the liquid thermosetting resin composition of this example has excellent electrical characteristics and adhesive strength at room temperature, and excellent electrical characteristics and adhesive strength at 100 ° C., It turns out that it is excellent also in heat resistance.
[0030]
[Table 1]
Figure 0004560982
[0031]
Next, in order to grasp the bending strength characteristics of the cured product, the bending strength was measured based on JIS-K7203. As a result, the bending strength was 110 Mpa at 25 ° C., which was very good. Moreover, in order to grasp | ascertain heating weight reduction | decrease, it measured based on JIS-C2103. As a result, the weight loss after heating at 180 ° C. after 16 days showed a good value of 0.8%. Table 2 shows the results.
[0032]
[Table 2]
Figure 0004560982
[0033]
Next, in order to grasp the characteristics of the insulating coil, a 0.025 mm thick coil conductor having a 40 × 10 mm cross section in which 2 × 5 × 2000 mm double glass-wrapped rectangular copper wires are combined in two rows and 20 stages is used. The laminated mica tape obtained using glass cloth (Arisawa Seisakusho Co., Ltd.) as a backing material is wound in half layers and wound 12 times. Further, as a protective tape, a Tetron tape (made by Teijin) with a thickness of 0.13 mm is wound once. The liquid thermosetting resin composition of the example was subjected to vacuum impregnation at a pressure of 0.1 mmHg or less for 120 minutes, then pressurized at a pressure of 3 Kg / cm 2 for 180 minutes, and then inserted into a mold, at a temperature of 135 ° C., at a pressure 20 Kg / cm 2, after 6 hours hot pressing, to obtain an insulating coil performs further polymerized under the conditions of 16 hours at 0.99 ° C., initial ΔTanδ and breakdown voltage, an additional 180 ° C. 1 The ΔTanδ after deteriorated day heat is measured, and the results are shown in Table 2. From Table 2, it can be seen that the electrical characteristics, particularly the degraded dielectric loss tangent-voltage characteristics are excellent.
[0034]
Example 2
Bisphenol A type epoxy resin (trade name “MY-790-1”, manufactured by Ciba Specialty Chemicals) 20 parts by weight, bisphenol F type epoxy resin (trade name “EP-1750” manufactured by Yuka Shell Epoxy Co., Ltd.) Part, cycloaliphatic epoxy resin alicyclic diepoxy carboxylate (trade name “Celoxide 2021P, manufactured by Daicel Chemical Industries, Ltd.) 40 parts by weight, cycloaliphatic epoxy resin 4-vinylcyclohexene-1,2-epoxide (trade name“ A liquid thermosetting resin composition comprising 30 parts by weight of Celoxide 2000 (manufactured by Daicel Chemical Industries) and 6 parts by weight of a sulfonium salt curing catalyst of phosphorus hexafluoride (trade name “CI-2939” manufactured by Nippon Soda Co., Ltd.) was prepared. The initial viscosity of this liquid thermosetting resin composition was as low as 18 mPa · s at 40 ° C. Moreover, the acceleration test which calculates | requires the usable life of the obtained liquid thermosetting resin composition was done like Example 1. FIG. The usable life was the number of days until the viscosity reached 400 mPa · s, as in Example 1. The result of the liquid thermosetting resin composition of this example is also shown in FIG. 1, and has a long usable life of 90 days or more.
[0035]
Next, for the cured product obtained by curing the liquid thermosetting resin composition of this example under the same curing conditions as in Example 1, the electrical properties and adhesive properties were measured in the same manner as in Example 1 and shown in Table 1. It was. The cured product of the liquid thermosetting resin composition of the present example has excellent electrical characteristics and adhesive strength at room temperature, as well as excellent electrical characteristics and adhesive strength at 100 ° C., and excellent heat resistance. .
Moreover, the bending strength characteristic and the weight loss by heating were measured in the same manner as in Example 1, and the results are shown in Table 2. As in Example 1, they were very good.
[0036]
Next, in order to grasp the characteristics of the insulating coil, the insulating coil was manufactured under the same conditions as in Example 1, and ΔTanδ and the breakdown voltage were measured. As a result, it was very good as in Example 1. The characteristics of the insulating coil are shown in Table 2. The electrical characteristics, particularly the dielectric loss tangent-voltage characteristics after deterioration, are excellent.
[0037]
Example 3 FIG.
30 parts by weight of bisphenol A type epoxy resin (trade name “MY-790-1”, manufactured by Ciba Specialty Chemicals), 5 weights of bisphenol F type epoxy resin (trade name “EP-1750”, manufactured by Yuka Shell Epoxy) Part, cycloaliphatic epoxy resin alicyclic diepoxy carboxylate (trade name “Celoxide 2021P, manufactured by Daicel Chemical Industries, Ltd.) 40 parts by weight, cycloaliphatic epoxy resin 4-vinylcyclohexene-1,2-epoxide (trade name“ A liquid thermosetting resin composition comprising 25 parts by weight of Celoxide 2000 (manufactured by Daicel Chemical Industries) and 6 parts by weight of a sulfonium salt curing catalyst of phosphorus hexafluoride (trade name “CI-2539” manufactured by Nippon Soda Co., Ltd.) was prepared. The initial viscosity of this liquid thermosetting resin composition was as low as 25 mPa · s at 40 ° C. Moreover, the acceleration test which calculates | requires the usable life of the obtained liquid thermosetting resin composition was done like Example 1. FIG. The usable life was defined as the number of days until the viscosity reached 400 mPa · s as in Example 1. The result of the liquid thermosetting resin composition of this example is also shown in FIG. 1, and has a long usable life of 90 days or more.
[0038]
Next, for the cured product obtained by curing the liquid thermosetting resin composition of this example under the same curing conditions as in Example 1, the electrical properties and adhesive properties were measured in the same manner as in Example 1 and shown in Table 1. It was. The cured product of the liquid thermosetting resin composition of the present example has excellent electrical characteristics and adhesive strength at room temperature, as well as excellent electrical characteristics and adhesive strength at 100 ° C., and excellent heat resistance. .
Moreover, the bending strength characteristic and the weight loss by heating were measured in the same manner as in Example 1, and the results are shown in Table 2. As in Example 1, they were very good.
[0039]
Next, in order to grasp the characteristics of the insulating coil, the insulating coil was manufactured under the same conditions as in Example 1, and ΔTanδ and the breakdown voltage were measured. As a result, it was very good as in Example 1. The characteristics of the insulating coil are shown in Table 2. The electrical characteristics, particularly the dielectric loss tangent-voltage characteristics after deterioration, are excellent.
[0040]
Example 4
25 parts by weight of bisphenol A type epoxy resin (trade name “MY-790-1”, manufactured by Ciba Specialty Chemicals), alicyclic diepoxy carboxylate of cyclic aliphatic epoxy resin (trade name “Celoxide 2021P, Daicel Chemical Industries, Ltd.” 47.5 parts by weight, polyhydric alcohol (trade name "Placcel 305" manufactured by Daicel Chemical Industries) 2.5 parts by weight, cycloaliphatic epoxy resin 4-vinylcyclohexene-1,2-epoxide (trade name "Celoxide") 2000, manufactured by Daicel Chemical Industries, Ltd.) A liquid thermosetting resin composition comprising 25 parts by weight of an antimony hexafluoride sulfonium salt curing catalyst (trade name “SI-100L” manufactured by Mitsui Chemicals, Inc.) was prepared. The initial viscosity of this liquid thermosetting resin composition was as low as 20 mPa · s at 40 ° C. Moreover, the acceleration test which calculates | requires the usable life of the obtained liquid thermosetting resin composition was done like Example 1. FIG. The usable life was defined as the number of days until the viscosity reached 400 mPa · s as in Example 1. The result of the liquid thermosetting resin composition of this example is also shown in FIG. 1, and has a long usable life of 90 days or more.
[0041]
Next, for the cured product obtained by curing the liquid thermosetting resin composition of this example under the same curing conditions as in Example 1, the electrical characteristics and adhesive characteristics were measured in the same manner as in Example 1, and the results are shown in Table 1. It was. The cured product of the liquid thermosetting resin composition of the present example has excellent electrical characteristics and adhesive strength at room temperature, as well as excellent electrical characteristics and adhesive strength at 100 ° C., and excellent heat resistance. .
Moreover, the bending strength characteristic and the weight loss by heating were measured in the same manner as in Example 1, and the results are shown in Table 2. As in Example 1, they were very good.
[0042]
Next, in order to grasp the characteristics of the insulating coil, the insulating coil was manufactured under the same conditions as in Example 1, and ΔTanδ and the breakdown voltage were measured. As a result, it was very good as in Example 1. The characteristics of the insulating coil are shown in Table 2. The electrical characteristics, particularly the dielectric loss tangent-voltage characteristics after deterioration, are excellent.
[0043]
Embodiment 5 FIG.
Triglycidyl isocyanate of triazine ring epoxy resin (trade name “MA-DGIC”, manufactured by Shikoku Kasei Co., Ltd.) 22 parts, cyclic aliphatic epoxy resin alicyclic diepoxy carboxylate (trade name “Celoxide 2021P, manufactured by Daicel Chemical Industries, Ltd.) 48 parts by weight, cycloaliphatic epoxy resin 4-vinylcyclohexene-1,2-epoxide (trade name “Celoxide 2000”, manufactured by Daicel Chemical Industries), phosphorous hexafluoride sulfonium salt curing catalyst (trade name “ A liquid resin composition comprising 6 parts by weight of CI-2639 (Nippon Soda Co., Ltd.) was prepared. The initial viscosity of this resin composition was as low as 26 mPa · s at 40 ° C. Moreover, the acceleration test which calculates | requires the usable life of the obtained liquid thermosetting resin composition was done like Example 1. FIG. The usable life was defined as the number of days until the viscosity reached 400 mPa · s as in Example 1. The results of the liquid thermosetting resin composition of this example are also shown in FIG. 1, and have a long usable life of 90 days or more.
[0044]
Next, for the cured product obtained by curing the liquid thermosetting resin composition of this example under the same curing conditions as in Example 1, the electrical characteristics and adhesive characteristics were measured in the same manner as in Example 1, and the results are shown in Table 1. It was. The cured product of the liquid thermosetting resin composition of this example has excellent electrical characteristics and adhesive strength at room temperature, and excellent electrical characteristics and adhesive strength at 100 ° C., and also excellent heat resistance. .
Moreover, the bending strength characteristic and the weight loss by heating were measured in the same manner as in Example 1, and the results are shown in Table 2. As in Example 1, they were very good.
[0045]
Next, in order to grasp the characteristics of the insulating coil, the insulating coil was manufactured under the same conditions as in Example 1, and ΔTanδ and the breakdown voltage were measured. As a result, it was very good as in Example 1. The characteristics of the insulating coil are shown in Table 2. The electrical characteristics, particularly the dielectric loss tangent-voltage characteristics after deterioration, are excellent.
[0046]
Comparative Example 1
Bisphenol A type epoxy resin (trade name “MY-790-1”, manufactured by Ciba Specialty Chemicals) 40 parts by weight, cycloaliphatic epoxy resin alicyclic diepoxy carboxylate (trade name “Celoxide 2021P, Daicel Chemical Industries, Ltd.” 12 parts by weight, 48 parts by weight of methyltetrahydrophthalic anhydride (trade name “QH-200”, manufactured by Nippon Zeon Co., Ltd.), sulfonium salt curing catalyst of phosphorous hexafluoride (trade name “CI-2639”, manufactured by Nippon Soda Co., Ltd.) ) A liquid thermosetting resin composition consisting of 5 parts by weight was prepared. The liquid thermosetting resin composition has an initial viscosity of 40 ° C. as high as 180 mPa · s, and an acid anhydride is used as the curing agent. Therefore, the usable life determined in the same manner as in Example 1 is 40 days. It was very short.
[0047]
Further, for the cured product obtained by curing this liquid thermosetting resin composition under the same curing conditions as in Example 1, electrical properties and adhesive properties were measured in the same manner as in Example 1 and are shown in Table 1. In this comparative example, the electrical characteristics and adhesive strength at room temperature and high temperature (100 ° C.) are inferior to those of the examples of the present invention.
[0048]
Next, in order to grasp the characteristics of the insulating coil, the insulating coil was manufactured under the same conditions as in Example 1, and ΔTanδ and the breakdown voltage were measured. These results are shown in Table 2.
[0049]
【The invention's effect】
According to the present invention has a long pot life with a low viscosity, has good good impregnation workability, electrical properties of excellent insulation coil, especially the dielectric loss tangent after degradation - can be obtained voltage characteristic.
[Brief description of the drawings]
FIG. 1 is a graph showing changes in viscosity over time in an accelerated test for determining the usable life of liquid thermosetting resin compositions of Examples and Comparative Examples.

Claims (3)

コイル導体上に、多孔質絶縁材を裏打材とした絶縁シートを巻回する工程と、
巻回した上記絶縁シートに
環状脂肪族エポキシ樹脂と、芳香族エポキシ樹脂および複素環式エポキシ樹脂のうち少なくとも一種類のエポキシ樹脂と、カチオン系硬化触媒とからなる液状熱硬化性樹脂組成物であって、上記環状脂肪族エポキシ樹脂は、4―ビニルシクロヘキセン―1,2―エポキシドを含み、上記環状脂肪族エポキシ樹脂の配合量は、上記液状熱硬化性樹脂組成物の全エポキシ樹脂の20〜85重量%である液状熱硬化性樹脂組成物を含浸する工程と、
上記液状熱硬化性樹脂組成物を加熱加圧する工程と
を備えたことを特徴とする高圧回転機用絶縁コイルの製造方法。
A step of winding an insulating sheet with a porous insulating material as a backing material on the coil conductor;
On the wound insulation sheet
A liquid thermosetting resin composition comprising a cycloaliphatic epoxy resin, at least one epoxy resin of an aromatic epoxy resin and a heterocyclic epoxy resin, and a cationic curing catalyst, wherein the cycloaliphatic epoxy The resin contains 4-vinylcyclohexene-1,2-epoxide, and the amount of the cycloaliphatic epoxy resin is 20 to 85% by weight of the total epoxy resin of the liquid thermosetting resin composition. A step of impregnating the conductive resin composition ;
And a step of heating and pressurizing the liquid thermosetting resin composition.
加熱温度100℃〜250℃、加圧圧力5〜100Kg/cmで、4〜24時間加熱加圧して成形することを特徴とする請求項に記載の高圧回転機用絶縁コイルの製造方法。The method for producing an insulating coil for a high-pressure rotating machine according to claim 1 , wherein the insulating coil is formed by heating and pressing at a heating temperature of 100 ° C to 250 ° C and a pressing pressure of 5 to 100 kg / cm 2 for 4 to 24 hours. カチオン系硬化触媒は4フッ化ホウ素、6フッ化リン、6フッ化ヒ素、4ペンタフルオロベンゼンのうち少なくともいずれかのジアゾニウム塩、ヨードニウム塩またはスルホニウム塩であることを特徴とする請求項に記載の高圧回転機用絶縁コイルの製造方法。 Cationic curing catalyst is boron tetrafluoride, hexafluorophosphate, hexafluoro arsenic, 4 at least one of the diazonium salt of pentafluorobenzene, to claim 1, wherein the iodonium salt or sulfonium salt der Rukoto The manufacturing method of the insulation coil for high voltage | pressure rotary machines of description.
JP2001103260A 2000-04-17 2001-04-02 Method for manufacturing insulation coil for high-pressure rotating machine Expired - Fee Related JP4560982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001103260A JP4560982B2 (en) 2000-04-17 2001-04-02 Method for manufacturing insulation coil for high-pressure rotating machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-114598 2000-04-17
JP2000114598 2000-04-17
JP2001103260A JP4560982B2 (en) 2000-04-17 2001-04-02 Method for manufacturing insulation coil for high-pressure rotating machine

Publications (2)

Publication Number Publication Date
JP2002003582A JP2002003582A (en) 2002-01-09
JP4560982B2 true JP4560982B2 (en) 2010-10-13

Family

ID=26590190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001103260A Expired - Fee Related JP4560982B2 (en) 2000-04-17 2001-04-02 Method for manufacturing insulation coil for high-pressure rotating machine

Country Status (1)

Country Link
JP (1) JP4560982B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5638812B2 (en) * 2010-02-01 2014-12-10 株式会社ダイセル Curable epoxy resin composition
WO2012093590A1 (en) * 2011-01-07 2012-07-12 株式会社ダイセル Curable epoxy resin composition
JP5764432B2 (en) * 2011-01-07 2015-08-19 株式会社ダイセル Curable epoxy resin composition
CN103154072B (en) * 2011-01-07 2015-11-25 株式会社大赛璐 Curable epoxy resin composition
CN103649218B (en) * 2011-07-13 2016-05-11 株式会社大赛璐 Curable epoxy resin composition
JP5703153B2 (en) * 2011-07-13 2015-04-15 株式会社ダイセル Curable epoxy resin composition
CN103649217B (en) * 2011-07-20 2017-02-15 株式会社大赛璐 Curable epoxy resin composition
JP2013023554A (en) * 2011-07-20 2013-02-04 Daicel Corp Thermosetting epoxy resin composition for fiber-reinforced composite material
CN109312054A (en) * 2016-06-24 2019-02-05 东丽株式会社 Fibre reinforced composites two-liquid type composition epoxy resin and fibre reinforced composites
WO2020171186A1 (en) * 2019-02-21 2020-08-27 デンカ株式会社 Composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026441A (en) * 1983-07-22 1985-02-09 Mitsubishi Electric Corp Manufacture of insulated coil
JPH04261421A (en) * 1991-02-15 1992-09-17 Asahi Denka Kogyo Kk Energy ray curable resin composition for casting
JPH04314721A (en) * 1991-04-12 1992-11-05 Asahi Denka Kogyo Kk Energy-ray-curable casting resin composition
JPH08213417A (en) * 1994-09-08 1996-08-20 Nippon Pelnox Corp Sealing method of semiconductor
JPH09286840A (en) * 1996-04-19 1997-11-04 Toshiba Chem Corp Epoxy resin composition
JPH101657A (en) * 1996-06-13 1998-01-06 Shinko Kagaku Kogyo Kk Low temperature-curing type adhesive resin composition and low temperature-curing type adhesive sheet formed by using the same
JPH1180324A (en) * 1997-09-02 1999-03-26 Toshiba Corp Impregnable thermosetting resin composition and electric rotating machine insulated coil
JPH11199651A (en) * 1998-01-12 1999-07-27 Sumitomo Bakelite Co Ltd Ultraviolet light-curable adhesive resin composition for sealing hollow package for device
JP2000239356A (en) * 1999-02-17 2000-09-05 Mitsubishi Electric Corp Thermosetting resin composition and insulated coil using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026441A (en) * 1983-07-22 1985-02-09 Mitsubishi Electric Corp Manufacture of insulated coil
JPH04261421A (en) * 1991-02-15 1992-09-17 Asahi Denka Kogyo Kk Energy ray curable resin composition for casting
JPH04314721A (en) * 1991-04-12 1992-11-05 Asahi Denka Kogyo Kk Energy-ray-curable casting resin composition
JPH08213417A (en) * 1994-09-08 1996-08-20 Nippon Pelnox Corp Sealing method of semiconductor
JPH09286840A (en) * 1996-04-19 1997-11-04 Toshiba Chem Corp Epoxy resin composition
JPH101657A (en) * 1996-06-13 1998-01-06 Shinko Kagaku Kogyo Kk Low temperature-curing type adhesive resin composition and low temperature-curing type adhesive sheet formed by using the same
JPH1180324A (en) * 1997-09-02 1999-03-26 Toshiba Corp Impregnable thermosetting resin composition and electric rotating machine insulated coil
JPH11199651A (en) * 1998-01-12 1999-07-27 Sumitomo Bakelite Co Ltd Ultraviolet light-curable adhesive resin composition for sealing hollow package for device
JP2000239356A (en) * 1999-02-17 2000-09-05 Mitsubishi Electric Corp Thermosetting resin composition and insulated coil using the same

Also Published As

Publication number Publication date
JP2002003582A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
EP1850460B1 (en) Winding insulation applied with a single vacuum pressure impregnation
EP0810249B1 (en) Thermosetting resin composition, electrically insulated coil, electric rotating machine and method for producing same
EP2602105A2 (en) Dry mica tape, electrically insulated coil using the same, and electrical rotating machine using the same
EP2418079B1 (en) Dry mica tape and instruction coils manufactured therewith
JPH0377203A (en) Electric insulated-coil, rotary machine and manufacture thereof
CN108028092B (en) Solid, in particular tape-shaped, insulating material, impregnating agent formulation for the production of an insulating system in a vacuum impregnation process, and machine having such an insulating system
JP6058169B2 (en) Insulating tape and manufacturing method thereof, stator coil and manufacturing method thereof, and rotating electric machine
JP4560982B2 (en) Method for manufacturing insulation coil for high-pressure rotating machine
CN107851481B (en) Solid insulating material, its purposes and the insulation system being produced from it
JP6266435B2 (en) Rotating electric machine
CN108780675A (en) Solid insulating material, its purposes and the insulation system being produced from it
JP3557938B2 (en) Thermosetting resin composition and insulating coil using the same
GB1574986A (en) Stator core and method of forming the same
JP5766352B2 (en) Liquid thermosetting resin composition for insulating a rotating electric machine stator coil, rotating electric machine using the same, and method for producing the same
JP3666287B2 (en) Thermosetting resin composition and insulated coil using the same
JPH11215753A (en) Insulating coil and insulating tape used with the same
JP7046280B1 (en) Insulation varnish composition, insulation varnish cured product, coil and method for manufacturing the coil
JPH0627182B2 (en) Liquid epoxy resin composition suitable for impregnation
JP7292525B2 (en) Rotating Machine Coil, Rotating Electric Machine, and Manufacturing Method of Rotating Machine Coil
JP2956218B2 (en) Insulation structure of rotating electric machine
JPH083337A (en) Prepreg
WO2023047439A1 (en) Rotary machine coil, method for manufacturing same, and rotary machine
JP2000034338A (en) Liquid thermosetting resin composition
CN111164126A (en) Impregnating resin mixture
JPS605208B2 (en) electrical insulation wire

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees