JPS61136064A - Coupling for ceramic with metal - Google Patents

Coupling for ceramic with metal

Info

Publication number
JPS61136064A
JPS61136064A JP25891784A JP25891784A JPS61136064A JP S61136064 A JPS61136064 A JP S61136064A JP 25891784 A JP25891784 A JP 25891784A JP 25891784 A JP25891784 A JP 25891784A JP S61136064 A JPS61136064 A JP S61136064A
Authority
JP
Japan
Prior art keywords
metal
ceramic
shrink
titanium
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25891784A
Other languages
Japanese (ja)
Inventor
Kenji Yamane
健司 山根
Takashi Sugano
菅野 俊
Seiji Kawaguchi
河口 聖次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP25891784A priority Critical patent/JPS61136064A/en
Publication of JPS61136064A publication Critical patent/JPS61136064A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3496Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member use of special materials

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Sealing (AREA)

Abstract

PURPOSE:To minimize use of metal with low expansion coefficient by affixing a metal member having a low expansion coefficient to the mother material of metal as coupling part for a ceramic member. CONSTITUTION:A base metal 1 made of SUS 304L and a pure titanium ring 3 of JIS2 type are ultrasonic cleaned in athetone and laid one over another concentrically by their joint faces 4 to be followed by diffusive jointing. There after the fastening part 3a at the time when a seal ring 2 of SiC is hot fitted is machined. Seal ring 2 is hot fitted on this part at a temp. of 120 deg.C. Besides lesser use of titanium, most of the machining process is made at the base metal 1 to minimize machining of the titanium part, which will ensure that a mechani cal seal is manufactured very cheaply.

Description

【発明の詳細な説明】 (発明の利用分野) この発明は、セラミックス製部品を金属製母材に焼きば
めしてなるセラミックスと金属との接合体の改良に関す
るものであり、水中ポンプなどのメカニカルシール、一
般の軸受や回転軸などの製作に利用できる。
[Detailed Description of the Invention] (Field of Application of the Invention) This invention relates to the improvement of a ceramic-metal joint formed by shrink-fitting a ceramic part to a metal base material, and is applicable to mechanical devices such as submersible pumps. It can be used to make seals, general bearings, rotating shafts, etc.

(従来の技術) 水中ポンプ等のメカニカルシール、一般の軸受け、回転
軸ガどは耐摩耗性を要求されることから、近年では次第
にセラミックス化が行われつつある。
(Prior Art) In recent years, mechanical seals such as submersible pumps, general bearings, and rotating shaft gaskets are required to have wear resistance, so ceramics have been increasingly used in recent years.

しかし々から、セラミックスは一般に高価であるは極力
減少させねばならない。このためメカニカルシールを例
にとると従来は、第1図の様に金属製台金1. a、1
 bにセラミックス製シールリング2a、2bを焼きば
めして摺動部のみをセラミックス化することが行われて
いた。
However, since ceramics are generally expensive, the cost must be reduced as much as possible. For this reason, taking a mechanical seal as an example, conventionally, as shown in Fig. 1, a metal base 1. a, 1
Ceramic seal rings 2a and 2b were shrink-fitted to the seal ring 2a and 2b to make only the sliding part made of ceramic.

しかしながら、両者の焼ばめには、加工及び使用時の温
度変化に対してセラミックスに作用する圧縮力を必要以
下として破壊を防止するため、金属製台金には、低膨張
係数の金属が使用されている。そして、低膨張係数の金
属としては、チタンおよびその合金、超硬合金、鉄・ニ
ッケル・コバルト合金があるが、超硬合金は極度に機械
加工困難であり、鉄・ニッケル・コバルト合金は耐食性
に劣ることから、水中ポンプ等のメカニカルシールのよ
うに耐食性が要求されることもあり、チタンおよびその
合金が使用されることが多い。
However, in order to shrink fit the two, a metal with a low expansion coefficient is used for the metal base metal in order to prevent destruction by reducing the compressive force that acts on the ceramic to less than necessary due to temperature changes during processing and use. has been done. Metals with low expansion coefficients include titanium and its alloys, cemented carbide, and iron-nickel-cobalt alloys, but cemented carbide is extremely difficult to machine, and iron-nickel-cobalt alloys have poor corrosion resistance. Since corrosion resistance is sometimes required for mechanical seals such as submersible pumps, titanium and its alloys are often used.

(解決しようとする問題点) ところで低膨張係数の金属は一般に高価であり、殊にチ
タンおよびその合金はステンレス等の金属と比較して非
常に高価でありかっ、旋盤、フライス、孔あけ、ねじ切
りなどの機械加工は困難で手間を要すことから、セラミ
ックスを低膨張係数の金属に焼きばめしてなる接合体と
してのメカニカルシール、軸受、回転軸などは非常に高
価なものになっていた。そこでこのような接合体が安価
に得られることが望まれていた。
(Problem to be solved) Metals with low expansion coefficients are generally expensive, and titanium and its alloys are particularly expensive compared to metals such as stainless steel. Because machining is difficult and time-consuming, mechanical seals, bearings, rotating shafts, and other joints made by shrink-fitting ceramics to low-expansion-coefficient metals have become extremely expensive. Therefore, it has been desired to obtain such a bonded body at low cost.

(問題点を解決するための手段) 金属製母材にセラミックス製部品を焼きばめするに当り
、安価で機械加工容易な金属製台金に低膨張係数の金属
を接合した後、セラミックス製部品を焼きばめする。
(Means for solving the problem) When shrink-fitting a ceramic part to a metal base material, after joining a metal with a low coefficient of expansion to a metal base metal that is inexpensive and easy to machine, the ceramic part is Shrink fit.

(作用) 金属製台金の、焼きばめ時の締付部分だけが、機械加工
困難な低膨張係数の金属となり、他は安価で機械加工容
易な金属となるので素材価格及び加工の容易さの両面か
らみて安価な接合体が得られる。
(Function) Only the tightening part of the metal base metal during shrink fitting is made of a metal with a low coefficient of expansion that is difficult to machine, and the rest is made of cheap and easy-to-machine metal, reducing material costs and ease of processing. An inexpensive joined body can be obtained from both sides.

(実施例1) 水中ポンプのメカニカルシールへの一つの実施羨 5 例について第2図を用いて説明する。(Example 1) One implementation envy for mechanical seals of submersible pumps 5 An example will be explained using FIG. 2.

5USz1304L製台金1(外径94、チタンリング
接合部外径72、内径50、厚さ20 tab )とJ
I82種の純チタンリング3(外径94、内径74、厚
さ10祁)をアセトン中で超音波洗浄後、0分間で拡散
接合した。この後、SiC製シールリング2を焼きばめ
したときの締付部分3aを切削加工した。そしてこの部
分にシールリング2(外径90、内径76、厚さ7間)
を120℃で焼きばめした。チタンの使用量は非常に少
なく、かつ大部分の機械加工は台金1で行われチタン部
分の機械加工は最小限に抑えられているので、メカニカ
ルシールは非常に安価に製作できる。
5USz1304L base metal 1 (outer diameter 94, titanium ring joint outer diameter 72, inner diameter 50, thickness 20 tab) and J
A pure titanium ring 3 of type I82 (outer diameter 94, inner diameter 74, thickness 10) was ultrasonically cleaned in acetone and then diffusion bonded for 0 minutes. Thereafter, the tightening portion 3a when the SiC seal ring 2 was shrink-fitted was cut. And seal ring 2 (outer diameter 90, inner diameter 76, thickness 7) is attached to this part.
were shrink-fitted at 120°C. Since the amount of titanium used is very small and most of the machining is done on the base metal 1 and the machining of the titanium part is kept to a minimum, the mechanical seal can be manufactured at a very low cost.

(実施例2) 水中ポンプのメカニカルシールへのモラ一つの実施例に
ついて第3図を用いて説明する。
(Embodiment 2) An embodiment in which one mole is attached to a mechanical seal of a submersible pump will be described with reference to FIG.

実施例1と同様の台金1に、JIS2種の純チタンリン
グ5(外径94、内径88、厚さ7■)扁 6 を超音波洗浄後、接合面4で同心的に重ね合わせ拡散接
合し、その後焼きばめの締め付は部分5aを切削加工し
て、S I C製シールリング6(外径90、内径76
、厚さ7關)を焼きばめした。この実施例の効果は実施
例1と同じである。
After ultrasonic cleaning, a JIS Class 2 pure titanium ring 5 (outer diameter 94, inner diameter 88, thickness 7 mm) flat 6 was placed on the same base metal 1 as in Example 1, concentrically stacked on the bonding surface 4, and diffusion bonded. After that, the shrink fit is tightened by cutting the part 5a and using an SIC seal ring 6 (outer diameter: 90 mm, inner diameter: 76 mm).
, thickness 7 mm) were shrink-fitted. The effects of this embodiment are the same as those of the first embodiment.

(実施例3) 回転軸への一実施例について第4図を用いて説明する。(Example 3) An example of a rotating shaft will be described using FIG. 4.

5US804L製回転軸7(外径30鯛)と焼きばめの
締付部9(内径20、深さ10■)を機械加工によって
設けたJI82種チタン軸8(外径30、長さ15祁)
をアセトン中で超音波洗浄後、同心的に接合面10で重
ね合わせ、約1O−4Torrの真空中、温度960℃
、圧力0.5 ky / ma、時間30分間で拡散接
合した。その後、SiC製摺動回転軸11(外径30■
、焼きばめ部外径20、同長さ10箭)を120℃で焼
きはめした。
5 JI class 82 titanium shaft 8 (outer diameter 30, length 15) with machined US804L rotating shaft 7 (outer diameter 30 mm) and shrink-fit tightening part 9 (inner diameter 20 mm, depth 10 mm)
After ultrasonic cleaning in acetone, they were stacked concentrically at the bonding surface 10 and heated at a temperature of 960°C in a vacuum of about 1O-4 Torr.
Diffusion bonding was performed at a pressure of 0.5 ky/ma and a time of 30 minutes. After that, the SiC sliding rotating shaft 11 (outer diameter 30mm
, the outer diameter of the shrink-fit portion was 20 mm, and the same length was 10 mm), and the shrink-fit portion was shrink-fitted at 120°C.

この実施例の効果もまた先の実施例と同様である。The effect of this embodiment is also similar to the previous embodiment.

(他の実施例) 本発明に用いる低膨張係数金属としては、耐食扁 7 性が要求される場合チタン及びその合金が望しいが、耐
食性が要求されないならばニッケル及びその合金及び鉄
、ニッケル、コバルト等の合金とすることができる。
(Other Examples) As the low expansion coefficient metal used in the present invention, titanium and its alloys are preferable when corrosion resistance and flatness are required, but when corrosion resistance is not required, nickel and its alloys, iron, nickel, etc. It can be an alloy of cobalt or the like.

又、安価な合金用金属としては、ステンレス、鉄、等の
一般鋼材が用いられる。
In addition, common steel materials such as stainless steel and iron are used as inexpensive alloy metals.

セラミックスとしては、シリコンカーバイトのほかシリ
コンナイトライド、サイアロン、アルミナ、ジルコニア
等の一般的セラミックスが用いられる。
As the ceramic, general ceramics such as silicon nitride, sialon, alumina, and zirconia are used in addition to silicon carbide.

又、接合法としては、拡散接合のほかろう付け、はんだ
付は溶接、その他圧接が用いられるが、精密接合及び耐
食性等が要求される場合は特に拡散接合法が望寸しい。
In addition to diffusion bonding, brazing, soldering, welding, and other pressure welding methods are used as bonding methods, but the diffusion bonding method is particularly desirable when precision bonding and corrosion resistance are required.

又、インサート材を用いる拡散接合法も当然適用される
ものである。
Naturally, a diffusion bonding method using an insert material is also applicable.

(発明の効果) 以上の通りであるから、この発明によれば、チタン及び
チタン合金のよう々高価外材料である低膨張係数の金属
の使用量を最小限にし、大部分の金属を安価で加工容易
な金属とすることができるので素材価格面で安価になる
ばかりでなく、合金全体をチタン製とした場合のような
著しい切削加工、孔あけ加工、ねじ切り加工等の機械加
工が省略できて加工面からも安価になる、従って非常に
安価な接合体が得られる。
(Effects of the Invention) As described above, according to the present invention, the amount of metals with low expansion coefficients that are expensive materials such as titanium and titanium alloys can be minimized, and most of the metals can be made inexpensive. Since it can be made from a metal that is easy to process, it is not only cheaper in terms of material cost, but also eliminates the need for extensive machining such as cutting, drilling, and threading, which would be required if the entire alloy was made of titanium. It is also cheaper in terms of processing, so a very inexpensive joined body can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

略側面図である。 図面において、1は5US304L製台金(金属製母材
)、3および5は純チタンリング(低膨張係数の金属製
部品)、2および6はSiC製シールリング(セラミッ
クス製部品)、7は回転軸(金属製母材)、8はチタン
軸(低膨張金属製部品)、11は摺動回転軸(セラミッ
クス製部品)である。
It is a schematic side view. In the drawing, 1 is a 5US304L base metal (metal base material), 3 and 5 are pure titanium rings (low expansion coefficient metal parts), 2 and 6 are SiC seal rings (ceramic parts), and 7 is a rotating part. The shaft (metal base material), 8 is a titanium shaft (low expansion metal part), and 11 is a sliding rotation shaft (ceramic part).

Claims (5)

【特許請求の範囲】[Claims] (1)金属製母材にセラミックス製部品を焼きばめして
なるセラミックスと金属との接合体において、前記金属
製母材に低膨張係数の金属部品を接合し、前記セラミッ
クス製部品の締付部を形成してなる前記接合体。
(1) In a ceramic-metal bonded body formed by shrink-fitting a ceramic component to a metal base material, a metal component with a low coefficient of expansion is joined to the metal base material, and the tightening portion of the ceramic component is bonded to the metal base material. The above-mentioned joined body formed by forming.
(2)前記接合体は、前記金属製母材を台金とし、この
台金に前記低膨張係数の金属製リングを接合して前記締
付部を形成し、この締付部にセラミックス製シールリン
グを焼きばめしてなるメカニカルシールである特許請求
の範囲第1項記載の接合体。
(2) The joined body has the metal base material as a base metal, the low expansion coefficient metal ring is joined to the base metal to form the tightening part, and a ceramic seal is attached to the tightening part. The joined body according to claim 1, which is a mechanical seal formed by shrink-fitting a ring.
(3)前記接合体は、前記金属製母材を台金とし、この
台金に前記低膨張係数の金属製リングを接合して前記締
付部を形成し、この締付部に、セラミックス製リングを
焼きばめしてなる軸受である特許請求の範囲第1項記載
の接合体。
(3) In the joined body, the metal base material is used as a base metal, the low expansion coefficient metal ring is joined to the base metal to form the fastening part, and the fastening part is made of a ceramic material. The joined body according to claim 1, which is a bearing formed by shrink-fitting rings.
(4)前記接合体は、前記金属製母材を回転軸とし、こ
の回転軸に前記低膨張係数の金属部品を接合して前記締
付部を形成し、この締付部にセラミックス製摺動回転軸
を焼きばめしてなる回転軸である特許請求の範囲第1項
記載の接合体。
(4) The joined body has the metal base material as a rotating shaft, the metal component with a low expansion coefficient is joined to the rotating shaft to form the fastening part, and a ceramic sliding member is attached to the fastening part. The joined body according to claim 1, which is a rotating shaft formed by shrink-fitting a rotating shaft.
(5)前記低膨張係数の金属はチタンまたはその合金で
ある特許請求の範囲第1項、第2項、第3項および第4
項記載の接合体。
(5) Claims 1, 2, 3, and 4, wherein the metal with a low expansion coefficient is titanium or an alloy thereof.
Zygote as described in section.
JP25891784A 1984-12-06 1984-12-06 Coupling for ceramic with metal Pending JPS61136064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25891784A JPS61136064A (en) 1984-12-06 1984-12-06 Coupling for ceramic with metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25891784A JPS61136064A (en) 1984-12-06 1984-12-06 Coupling for ceramic with metal

Publications (1)

Publication Number Publication Date
JPS61136064A true JPS61136064A (en) 1986-06-23

Family

ID=17326821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25891784A Pending JPS61136064A (en) 1984-12-06 1984-12-06 Coupling for ceramic with metal

Country Status (1)

Country Link
JP (1) JPS61136064A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01173573U (en) * 1988-05-30 1989-12-08
DE102022123163B3 (en) 2022-09-12 2024-02-15 Eagleburgmann Germany Gmbh & Co. Kg Mechanical seal arrangement and method for cleaning a mechanical seal arrangement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01173573U (en) * 1988-05-30 1989-12-08
DE102022123163B3 (en) 2022-09-12 2024-02-15 Eagleburgmann Germany Gmbh & Co. Kg Mechanical seal arrangement and method for cleaning a mechanical seal arrangement

Similar Documents

Publication Publication Date Title
JPH037367Y2 (en)
JP2529910B2 (en) Shrink fit combination of ceramics member and metal member
JP4625035B2 (en) Shaft assembly
JPS62191478A (en) Ceramics-metal bonded body
JPS61136064A (en) Coupling for ceramic with metal
JPH0444631B2 (en)
JPS6311242A (en) Method of bonding ceramic and metal
JPH046679B2 (en)
JPS61219534A (en) Composite material of ceramic and metal
JP2002096222A (en) Drill shank
JPH0351319Y2 (en)
JPS61219765A (en) Composite body of ceramic and metal
JPH08108459A (en) Cap for extruder and production thereof
JPH0351321Y2 (en)
JPS6197174A (en) Diffusion bonding method for ceramics and metals
JP2526885B2 (en) Composite ring made of ceramic ring and metal ring
JPS60231471A (en) Metal ceramic composite body
JPS61215273A (en) Method of bonding ceramic and metal
JPH02149477A (en) Method for joining ceramic rotor and metallic shaft
JPS6092025A (en) Coupled structure of ceramics shaft and metallic shaft
JPH0329299Y2 (en)
JPH01141882A (en) Method for bonding ceramic to metallic member
JPS6121984A (en) Method of bonding silicon nitride, carbide base ceramic member and different kind member
JPS60255678A (en) Method of bonding ceramic rotator and metal rotating axis
JPS61155268A (en) Diffusion bonding method