JPS61135448A - Mold material for casting pure titanium and titanium alloy and production of casting mold - Google Patents

Mold material for casting pure titanium and titanium alloy and production of casting mold

Info

Publication number
JPS61135448A
JPS61135448A JP59257154A JP25715484A JPS61135448A JP S61135448 A JPS61135448 A JP S61135448A JP 59257154 A JP59257154 A JP 59257154A JP 25715484 A JP25715484 A JP 25715484A JP S61135448 A JPS61135448 A JP S61135448A
Authority
JP
Japan
Prior art keywords
silica
weight
casting
mold
mold material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59257154A
Other languages
Japanese (ja)
Other versions
JPH021586B2 (en
Inventor
Seizo Nakamura
精三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP59257154A priority Critical patent/JPS61135448A/en
Priority to GB08528772A priority patent/GB2168060B/en
Priority to US06/803,447 priority patent/US4709741A/en
Priority to IT48868/85A priority patent/IT1183034B/en
Priority to FR8517962A priority patent/FR2574010B1/en
Priority to DE19853542921 priority patent/DE3542921A1/en
Publication of JPS61135448A publication Critical patent/JPS61135448A/en
Priority to US07/097,019 priority patent/US4830083A/en
Publication of JPH021586B2 publication Critical patent/JPH021586B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a mold material for casting a Ti material which does not oxidize or deteriorate the Ti material in the mold material consisting essentially of silica and contg. a hardener composed of phosphate and basic metallic oxide by adding alumina to silica. CONSTITUTION:The mold material for casting pure Ti or Ti alloy consist of the main material consisting essentially of silica and alumina and the hardener composed of the phosphate and basic metallic oxide. The mold material is obtd. by kneading about 10-82wt% silica, about 10-82% alumina, about 5-15% phosphate and about 5-30% basic metallic oxide with the colloidal silica and calcining the mixture at >=about 1,000 deg.C after curing. Said material is produced by forming the refractory structure of >=1 kinds among mullite, spinel and cordierite in the mold material. The mold material permits casting of the pure Ti and Ti alloy having a high m.p. of 1,600-1,700 deg.C and permits the casting of the molten metal at an ordinary temp.

Description

【発明の詳細な説明】 本発明は、純チタン又はチタン合金鋳造用の鋳型材に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mold material for casting pure titanium or titanium alloys.

従来、各種金属用の金属鋳造用鋳型材として、シリカを
主成分とし、硬化剤としてリン酸塩並びに塩基性金属酸
化物を用いたものがある。このシリカとしては硅石や硅
砂、又はリン酸としてはリン酸アンモニウム、塩基性金
属酸化物としては電融マグネシア又はマグネンアクリン
カーなどが用いられたものである。
Conventionally, there have been metal casting mold materials for various metals that contain silica as a main component and use phosphates and basic metal oxides as hardening agents. Silica or silica sand is used as the silica, ammonium phosphate is used as the phosphoric acid, and fused magnesia or magnene aclinker is used as the basic metal oxide.

この従来の鋳型材にあっては、これらを混合成形した状
態で、常温から800℃又は900℃程度まで温度を上
昇させて焼却し、その温度の状態で対象とする溶融金属
を鋳込む方法がとられている。
With regard to this conventional molding material, there is a method of mixing and molding these materials, raising the temperature from room temperature to about 800°C or 900°C, incinerating it, and casting the target molten metal at that temperature. It is taken.

従来の金属、例えばコバルトクロム合金、ニッケルクロ
ム合金等の合金による鋳造の場合は、該金属の融点が1
300℃〜1400℃などで代表される如く、殆んどの
金属、とりわけ歯科用金属では約1400℃程度までで
あった為に、前記主成分とするシリカの融点が1550
℃〜1600℃である為に充分使用に耐え得る状態の鋳
型材として存在した。しかし、純チタン及びチタン合金
用鋳造材としては、これからのチタン並びにチタン合金
の融点が1600℃〜1700℃である為、前記シリカ
を主成分とする鋳型材を用いた場合にはその融点を充分
に超える為、溶融状態の物性的に不安定なチタンはシリ
カの組成中に含む酸素と結合し、チタン酸化物となって
、純チタン並びにチタン合金のもつその物性を利用でき
ず、酸化によるこれら金属の劣化、並びに鋳肌に焼き付
は等が発生して使用に耐え得なかった。
In the case of casting with conventional metals, such as alloys such as cobalt chromium alloys and nickel chromium alloys, the melting point of the metal is 1.
Most metals, especially dental metals, have a melting point of up to about 1400°C, as represented by 300°C to 1400°C, so the melting point of silica, the main component, is 1550°C.
℃~1600℃, it existed as a molding material in a condition that could be used sufficiently. However, as casting materials for pure titanium and titanium alloys, since the melting point of future titanium and titanium alloys is 1,600°C to 1,700°C, when using a molding material whose main component is silica, the melting point must be sufficiently lowered. Titanium, which is physically unstable in the molten state, combines with oxygen contained in the composition of silica to form titanium oxide, making it impossible to utilize the physical properties of pure titanium and titanium alloys. Deterioration of the metal and burning of the casting surface occurred, making it unusable.

本発明は、このような従来の鋳型材と純チタン並びにチ
タン合金の融点の関係において、これら純チタンやチタ
ン合金に対する鋳造可能な鋳型材を提供せんとするもの
であり、更にほこの鋳型材がこれら純チタン並びにチタ
ン合金を1600℃〜1700℃の高温で溶解しても、
その溶解途上鋳型材中の成分とこれら金属か反□  応
して金属を酸化させたり変質をおこさないような鋳型材
を提供せんとするものであり、更にはこの鋳型材の操作
並びに鋳込み時の取扱いを容易にする為に、従来の鋳型
材にあっては、数100℃の高温で保持しながらその中
に形成した鋳込み空間に溶融金属を鋳込んでぃたのを、
常温で該鋳型材を利用可能とすることを開発せんとする
ものである。
The present invention aims to provide a mold material that can be cast for pure titanium and titanium alloys in view of the relationship between the melting points of conventional mold materials and pure titanium and titanium alloys. Even if these pure titanium and titanium alloys are melted at high temperatures of 1600°C to 1700°C,
The purpose is to provide a mold material that does not cause oxidation or alteration of the metal by reacting with the components in the mold material during melting, and furthermore, it aims to provide a mold material that does not cause oxidation or alteration of the metal by reacting with the components in the mold material during melting. In order to make it easier to handle, in conventional mold materials, molten metal is poured into the casting space formed within the mold material while maintaining it at a high temperature of several hundred degrees Celsius.
The aim is to develop a mold material that can be used at room temperature.

本発明は、このような目的を前提に、純チタン並びにチ
タン合金の融点において、充分使用が可能でしかも常温
にて鋳造可能な材料を提供せんとして本発明を完成した
ものであ、す、その要旨とするところは、1つは従来の
鋳型材における主成分のシリカに対し、アルミナを添加
することで、鋳型材としての融点を上昇させる手段を与
えると同時に鋳型材の使用にあたっては、これらの練和
したものを1000℃以上の温度で焼成し、もって完成
された鋳型が高温における溶融金属に対する安定性を付
与せしめたものである。
The present invention was completed based on the above-mentioned objective, with the aim of providing a material that can be fully used at the melting point of pure titanium and titanium alloys and can be cast at room temperature. The main points are that, by adding alumina to silica, which is the main component in conventional mold materials, it provides a means to raise the melting point of the mold material, and at the same time, when using mold materials, these The kneaded mixture is fired at a temperature of 1000° C. or higher, and the resulting mold is made stable against molten metal at high temperatures.

以下、本発明の内容を更に詳細に説明する。Hereinafter, the content of the present invention will be explained in more detail.

本発明は、シリカとアルミナを主成分とする主材と、リ
ン酸塩と塩基性金属酸化物で構成される硬化剤とで構成
されるものであって、ここにシリカは従来も溶融金属の
鋳込み時の鋳型材として使用されているソリ力が利用さ
れるうこのシリカとしては、硅石、硅砂、粒状硅砂又は
クリストバライトなどから選んだ一種又は二種以上のも
のが利用され、夫々の純度は90%以上のものを用いる
のが望まれ、好ましくは純度95%以上のものを使用す
ることが求められる。
The present invention is composed of a main material mainly composed of silica and alumina, and a hardening agent composed of a phosphate and a basic metal oxide. The silica used as a mold material during casting, whose warping force is utilized, is one or more selected from silica stone, silica sand, granular silica sand, cristobalite, etc., each with a purity of 90%. It is desirable to use a purity of 95% or more, preferably a purity of 95% or more.

このシリカの純度90%以上ということはシリカの不純
物として、酸化第二鉄、酸化アルミニウム、酸化カルシ
ウム等が含まれ、この不純物中の酸化アルミニウム、即
ちアルミナは不純物として含まれていても鋳型材中で溶
融金属に対する影響がないが、不純物中の酸化第二鉄や
酸化カルシウムは、チタンとの反応が著しい為、最低純
度90%以上であることが規定される。
The purity of this silica is 90% or more, which means that silica contains impurities such as ferric oxide, aluminum oxide, calcium oxide, etc. Even if aluminum oxide, that is, alumina, is contained as an impurity in the mold material. However, impurities such as ferric oxide and calcium oxide react significantly with titanium, so a minimum purity of 90% or higher is specified.

又、アルミナは高純度アルミナや高アルミナ質鉱物か選
択され、純度80%以上のもの、好ましくは90%以上
のものを使用することが望まれる。このアルミナの場合
も不純物として酸化硅素、酸化カルシウム、酸化第二鉄
、酸化マンガン、酸化ナトリウム、酸化カリウムなどが
含まれ、この成分中酸化硅素であるシリカ以外はチタン
との反応が著しく、これら不純物の存在が多いと、前記
シリカの場合と同様に鋳型材とチタンとの反応がなされ
問題となる。
Further, the alumina is selected from high purity alumina and high alumina minerals, and it is desirable to use one with a purity of 80% or more, preferably 90% or more. In the case of this alumina, impurities such as silicon oxide, calcium oxide, ferric oxide, manganese oxide, sodium oxide, and potassium oxide are included. Among these components, other than silica, which is silicon oxide, there is a significant reaction with titanium, and these impurities If there is a large amount of titanium, the reaction between the molding material and titanium will occur, similar to the case with silica, causing a problem.

一般にはアルミナとしてダイアスポア、ベーマイトなど
純度85%以上の鉱物を用いるか、好ましくは高純度9
0%以上のアルミナを用いると溶融金属鋳込み時におけ
る金属と鋳型材との反応を最低限に落し得ることができ
る。
Generally, a mineral with a purity of 85% or higher, such as diaspore or boehmite, is used as alumina, or preferably with a high purity of 9.
If 0% or more alumina is used, the reaction between the metal and the mold material during molten metal casting can be minimized.

リン酸塩並びに塩基性金属酸化物は、前記主材に対する
硬化剤として用いられるものである。
Phosphates and basic metal oxides are used as hardening agents for the base material.

該硬化剤としてのリン酸塩は、リン酸アンモニウムを常
用される。しかし該リン酸アンモニウム以外にリン酸ナ
トリウム、リン酸アルミニウム、リン酸化カリウム、リ
ン酸カルシウム、リン酸カリウム等のものも適宜自由な
選択対象とされる。しかし、リン酸塩としてのリン酸ア
ンモニウムは、その硬化時に膨張する所要凝固膨張の性
質を保有し、チタン又はチタン合金か鋳込み時に硬化収
縮することから、鋳型材の膨張と溶融金属の硬化時の収
縮の度合いが近似することがその製造条件として要求さ
れる。同条件を勘案すると、凝固膨張の特性を有するリ
ン酸アンモニウムを本純チタン又はチタン合金鋳造用鋳
型材として用いることは好ましいのである。ただ、前記
した他の各種リン酸塩においては、このような凝固膨張
の特性を保有しないものがあるが、これらを採用すると
きには当然鋳込み空間の設計においてやや大きい状態で
設定し、且つ鋳型を作らなければならない。
As the phosphate as the curing agent, ammonium phosphate is commonly used. However, in addition to the ammonium phosphate, sodium phosphate, aluminum phosphate, potassium phosphate, calcium phosphate, potassium phosphate, etc. may also be freely selected. However, ammonium phosphate as a phosphate has the property of solidification expansion that expands when it hardens, and because titanium or titanium alloys harden and shrink during casting, the expansion of the mold material and the hardening of molten metal. It is required as a manufacturing condition that the degree of shrinkage be similar. Taking these conditions into consideration, it is preferable to use ammonium phosphate, which has the property of solidification and expansion, as a mold material for casting pure titanium or titanium alloys. However, some of the other various phosphates mentioned above do not have this solidification-expansion characteristic, but when using them, it is natural to design the casting space to be slightly larger, and also to make the mold. There must be.

次に、硬化剤としての塩基性金属酸化物としては、酸化
マグネシウム、電融マグネシア、マグネシアクリンカ−
などから選ばれたものが利用される。マグネシアは融点
が2800℃程度と高いので、純チタン並びにチタン合
金の鋳造用鋳型材として用いるには、その物性からして
耐火度は充分である。
Next, examples of basic metal oxides used as hardening agents include magnesium oxide, fused magnesia, and magnesia clinker.
Those selected from the following are used. Since magnesia has a high melting point of about 2800° C., it has sufficient refractory properties to be used as a mold material for casting pure titanium and titanium alloys.

尚、これらの主材並びに硬化剤を鋳型として用い製造す
るときには、ここに練和液を用いるが、この練和液とし
ては通常鋳型強度並びに凝固膨張をあげる為にコロイダ
ルシリカを用いる。
When manufacturing using these main materials and curing agent as a mold, a kneading liquid is used, and this kneading liquid is usually made of colloidal silica in order to increase mold strength and solidification expansion.

コロイダルシリカとしてはシリカ含有量が20%〜40
%のものを使用する。現在市販のコロイダルシリカとし
ては20呪〜40幅のものが市販されていることから、
これらを選ぶのがそのコスト上使用し易いものの、40
%以上のコロイダルシリカを用いることは同等制限事項
ではない。
As colloidal silica, the silica content is 20% to 40%.
% is used. Currently, commercially available colloidal silica ranges from 20 to 40, so
Although these are easy to use due to cost, 40
% or more of colloidal silica is not an equivalent limitation.

このような本発明に係る純チタン又はチタン合金鋳造用
鋳型材は、シリカとアルミナを主成分とする主材と、リ
ン酸塩と塩基性金属酸化物で構成される硬化剤とで構成
され、実際の使用時にはこれに練和液としてのコロイダ
ルシリカが用いられるものである。これらの配合比は主
材としての7リカ、アルミナの和は90〜50重量%と
し、硬化剤としてのリン酸塩は5〜15重量%、塩基性
金属酸化物は5〜30重量%とした巾の中で用いられる
ことか望まれる。主材としてのシリカ、アルミナの和が
90〜50重量%であることの意味は90重量%以上に
おいてはリン酸塩と塩基性金属酸化物は凝固膨張の制約
上最低5重量%づつは必要である0とからシリカ、アル
ミナの和が90重量%以下としなければならないことか
ら除去され、又50重量%以下の範囲についてはリン酸
と塩基性金属酸化物の和が45重量%以上は、凝固膨張
が出すぎ、又鋳肌荒れが著しくなるので、硬化剤が45
重量%以下となると主材としてのシリカ、アルミナは5
5重量%以下は考えられず不純物等を入れると50重量
%以下は除かれる。更に硬化剤としてのリン酸塩は、5
〜15重量%を使用するが、5重量幅以下の範囲につい
ては凝固膨張か不足し、寸法精度に問題が出ることから
、又、15重量%以上の範囲については凝固膨張が大き
くなり、異常膨張の原因となるとともに鋳肌荒れが著し
くなることから用いられず、更に塩基性金属酸化物は5
〜30重量%用いるが、この5重量%以下の範囲につい
てはリン酸塩との化学反応が不足し鋳−型強度の不足、
硬化時間が長くなるので作業性が悪くなり又、スピネル
の生成量にも影響することから、更に30重量%以上の
範囲については、硬化時間が短かくなり、リン酸塩との
化学反応が制御できなくなることから除外される。
Such a pure titanium or titanium alloy casting mold material according to the present invention is composed of a main material mainly composed of silica and alumina, and a hardening agent composed of a phosphate and a basic metal oxide, In actual use, colloidal silica is used as a kneading liquid. The blending ratio of these was 7 Lika as the main material, the sum of alumina was 90 to 50% by weight, the phosphate as a hardening agent was 5 to 15% by weight, and the basic metal oxide was 5 to 30% by weight. It is hoped that it will be used inside the bag. The fact that the sum of silica and alumina as the main materials is 90 to 50% by weight means that at 90% by weight or more, phosphate and basic metal oxide must be at least 5% by weight each due to restrictions on solidification expansion. Since the sum of silica and alumina must be 90% by weight or less from a certain 0%, it is removed, and in the range of 50% by weight or less, the sum of phosphoric acid and basic metal oxides is 45% by weight or more, it is removed by solidification. The hardening agent is 45% because the expansion will be too much and the casting surface will become rough.
When it is less than 5% by weight, silica and alumina as main materials are
5% by weight or less is unthinkable, and if impurities are included, 50% by weight or less will be removed. Furthermore, phosphate as a hardening agent is 5
~15% by weight is used, but if the weight range is less than 5% by weight, the solidification expansion will be insufficient, causing problems with dimensional accuracy, and if it is more than 15% by weight, the solidification expansion will be large and abnormal expansion may occur. Basic metal oxides are not used because they cause corrosion and seriously roughen the casting surface.Furthermore, basic metal oxides are
~30% by weight is used, but if it is less than 5% by weight, the chemical reaction with the phosphate is insufficient, resulting in insufficient mold strength.
As the curing time becomes longer, workability deteriorates and the amount of spinel produced is also affected, so in the range of 30% by weight or more, the curing time is shortened and the chemical reaction with the phosphate is controlled. excluded from being unable to do so.

而して、これらのシリカ、アルミナ並ひに硬化剤として
のリン酸塩、塩基性金属酸化物の組合せのものが純チタ
ン又はチタン合金鋳造用鋳型材として用いられる。
A combination of these silica, alumina, phosphate as a hardening agent, and basic metal oxide is used as a mold material for casting pure titanium or titanium alloys.

次に、主材としてのシリカ、アルミナは、両成分の和を
ioo部としたときに、この混合比中の一方は少なくと
も10部以上配合してなることが規定される。10部以
下のとき、例えばシリカが10部以下のときにおいては
、ワックスパターンを鋳型材中に埋没させ100〜15
0℃程度の加熱をして脱ローさせたときに、鋳型の鋳込
空間表面に面荒れをおこし鋳造品に表面荒れを与える原
因となることから、又、アルミナが10部以下のときに
おいてはシリカと反応してムライトやスピネルの組織を
作る為の原材料量として少なすぎ、作成された鋳型の耐
熱性について問題であることから、夫々が本鋳型材とし
ての使用目的から除去される。鋳型製造時の実際からす
るならば、シリカとアルミナの和を100部とし、一方
は少なくとも20部以上配合してなることが望まれる。
Next, it is specified that silica and alumina as the main materials are mixed in a mixing ratio of at least 10 parts or more, where the sum of both components is ioo parts. When the amount of silica is less than 10 parts, for example, when the amount of silica is less than 10 parts, the wax pattern is buried in the mold material and
When de-roasted by heating to about 0°C, it will cause surface roughness on the surface of the casting space of the mold, which will cause surface roughness on the cast product. The amount of raw materials required to react with silica to form mullite and spinel structures is too small, and the heat resistance of the created molds is a problem, so they are removed from the intended use as mold materials. From the practical point of view during mold production, it is desirable that the sum of silica and alumina be 100 parts, with one being at least 20 parts or more.

本発明においては、鋳型材の主材として、シリカとアル
ミナを用いていることから、両成分は熱処理をすること
によりチタンの融点1600℃〜1700℃よりも高い
融点であるムライト(融点:約1850℃)、スピネル
(融点:約2135℃)、コーディライト(融点:約2
000℃)の組織を作ることから、これらの組織の一種
以上のものが主材中、即ち鋳型材中に形成され、アルミ
ナが持つチタン又はチタン合金よりも高い融点、即ち2
050℃と相まって鋳型材が純チタン又はチタン合金の
鋳造用に用いてもこれXら金属が型材中の酸素分子と結
合して酸化したり又変色、鋳肌荒れなどをおこすことは
ないのである。この鋳型材を用いて鋳型を作成するとき
は、前記の如き組成を作る為に硬化後熱処理をしなけれ
ばならない。この熱処理をして前記の如き組織か形成さ
れた状態では、従来のシリカを主成分とする鋳型材の如
く溶融金属を鋳込む時の温度が約1400℃である。よ
ってムライト、スピネル、コーディライト等の生成物の
必要は全くないのである。したがって、純チタン並びに
チタン合金を溶融状態で鋳込む際の鋳型材料として本発
明のシリカ並びにアルミナを主成分とする主材と、リン
酸塩、塩基性金属酸化物の硬化剤とで構成するならば、
チタンの物性を変えることなく鋳込みすることができる
のである。又純チタン並ひにチタン合金は硬化時に体積
収縮するが、本発明の鋳型は加熱時の熱膨張と凝固時に
膨張して、その結果としての全体膨張率は純チタン並び
にチタン合金の冷却時の収縮率とほぼ同等となるから、
最終製品を形どったワックスパターンを該鋳型中に埋没
しておけば、一方の膨張率と他方の収縮率の相殺関係で
適正な鋳込み空間を得ることができる。
In the present invention, since silica and alumina are used as the main materials of the mold material, both components can be heated to mullite (melting point: approximately 1850°C), which has a melting point higher than titanium's melting point of 1600°C to 1700°C. ℃), spinel (melting point: approx. 2135℃), cordierite (melting point: approx. 2
000℃), one or more of these structures are formed in the main material, that is, in the mold material, and the melting point of alumina is higher than that of titanium or titanium alloy, that is, 2
Coupled with the temperature of 050°C, even if the mold material is used for casting pure titanium or titanium alloy, these metals will not combine with oxygen molecules in the mold material and oxidize, or cause discoloration or rough casting surfaces. When making a mold using this mold material, heat treatment must be performed after curing to create the composition described above. In the state where the above-mentioned structure has been formed through this heat treatment, the temperature at which molten metal is cast is about 1400° C., as in the case of conventional mold materials whose main component is silica. Therefore, there is no need for products such as mullite, spinel, cordierite, etc. Therefore, if the mold material for casting pure titanium or titanium alloy in a molten state is composed of the main material mainly composed of silica and alumina of the present invention, and a hardening agent of phosphate or basic metal oxide. Ba,
It is possible to cast titanium without changing its physical properties. In addition, pure titanium and titanium alloys shrink in volume during hardening, but the mold of the present invention expands thermally during heating and during solidification, and as a result, the overall expansion coefficient is equal to that of pure titanium and titanium alloys when cooled. Since it is almost the same as the shrinkage rate,
By embedding a wax pattern in the shape of the final product in the mold, an appropriate casting space can be obtained by compensating the expansion rate on one side and the contraction rate on the other side.

次に、本発明に係る純チタン並ひにチタン合金鋳造用鋳
型の製造について、実施例をあげながら説明する。
Next, the production of pure titanium and titanium alloy casting molds according to the present invention will be described with reference to examples.

先ず、本発明による鋳型材を用いて鋳型を作成する一般
的製法を述べる。
First, a general manufacturing method for making a mold using the mold material according to the present invention will be described.

主材としてのシリカ並ひにアルミナを計量し、シリカは
10〜82重量%の巾で、アルミナは10〜82重量%
の巾で計量するとともに、リン酸塩は5〜15重量%、
塩基性金属酸化物としては酸化マグネシウムを5〜30
重量%計量し、これらをコロイダルシリカ(シリカ含有
量=20〜40重量幅)のものと、又は水と練和し、鋳
型空間を構成するワックスパターンを容器中埋設した状
態で前記練和物を充填し、自然硬化させる。
Silica as the main material and alumina are weighed, silica is 10-82% by weight, alumina is 10-82% by weight.
5 to 15% by weight of phosphate,
As a basic metal oxide, magnesium oxide is used at 5 to 30%
Weigh % by weight, mix these with colloidal silica (silica content = 20 to 40 weight range) or water, and mix the kneaded product with the wax pattern constituting the mold space embedded in the container. Fill it and let it harden naturally.

この操作は従来の鋳型、例えば歯科関係の鋳型形成と同
様である。
This operation is similar to conventional molding, such as dental molding.

本発明においては、この硬化させた鋳型を加熱脱ロー後
、更に加熱焼成する為適宜な加熱方法、例えば電気炉に
入れて1000℃以上、好ましくは1200℃程度まで
焼成する。焼成された鋳型は常温まで冷却して鋳造に供
する。通常この鋳型は400℃以下であれば鋳造可能な
ものとして用いられる。従来の鋳型は、殆んと加熱状態
で鋳型に供されるか、本発明においてはこれを冷却して
常温状態で鋳造し得るもので、鋳型の強度が鋳込むべき
溶融金属の融点よりも高く且つ物性的に安定していなけ
ればならない。
In the present invention, after the hardened mold is heated and de-roasted, it is further heated and fired using an appropriate heating method, for example, placed in an electric furnace and fired to 1000°C or higher, preferably about 1200°C. The fired mold is cooled to room temperature and used for casting. Usually, this mold is used because it can be cast at temperatures below 400°C. Conventional molds are mostly used in a heated state, or in the present invention, they can be cooled and cast at room temperature, and the strength of the mold is higher than the melting point of the molten metal to be cast. In addition, it must be physically stable.

従来の鋳型製造時に5ooc〜900℃にて焼成して利
用していたが、従来の鋳型においては、先ず100℃〜
200℃でワックス型に対する脱ローを行い、400℃
程度〜700℃程度の巾でアンモニアガスの除去、即ち
揮撥を行い、700℃〜900℃程度で五酸化リンのガ
スを除去する工程をえていた。
Conventionally, molds were manufactured by firing at temperatures of 5ooc to 900°C, but in conventional molds, firing was first performed at temperatures of 100°C to 900°C.
De-waxing the wax mold at 200℃, then 400℃
Ammonia gas was removed, ie, volatilized, at a temperature of approximately 700°C to 700°C, and phosphorus pentoxide gas was removed at a temperature of approximately 700°C to 900°C.

しかし、本発明においては、このような温度以上、即ち
1000℃以上の温度で焼成することにより、シリカ、
アルミナ、アルミナマグネシア等これらが結合して、ム
ライト、スピネル、コーディライトの一種以上の耐火物
組織を鋳型中に作成することにより、この鋳型が前記融
点の純チタンやチタン合金に対する鋳型条件を備えせし
めることになる。当然、本鋳型番こおいては、これらの
耐火物組織が形成されると同時にこれに利用するアルミ
ナそのものの融点が純チタンやチタン合金の融点よりも
はるかに高く、又シリカも鋳込時間との関係では充分に
耐え得るところであり、且つ前記焼成時に鋳型表面や鋳
込空間表面にムライト等の耐熱組織が形成されシリカは
鋳型内部に位置することから耐熱1問題なくなり、ノリ
力とアルミナを主成分とする鋳型は、純チタン並びにチ
タン合金の鋳型材として充分使用に耐えるものである。
However, in the present invention, silica,
Alumina, alumina-magnesia, etc. are combined to create a refractory structure of one or more of mullite, spinel, and cordierite in the mold, so that the mold meets the molding conditions for pure titanium and titanium alloys having the above-mentioned melting point. It turns out. Naturally, in this mold number, at the same time as these refractory structures are formed, the melting point of the alumina itself used for this is much higher than that of pure titanium or titanium alloys, and the silica also In addition, during the firing process, a heat-resistant structure such as mullite is formed on the surface of the mold and the casting space, and silica is located inside the mold, so there is no problem with heat resistance, and the glue strength and alumina are the main components. The mold used as a component is sufficiently usable as a mold material for pure titanium and titanium alloys.

次に本発明に係る鋳型材を用いて鋳型を作成し、純チタ
ンとチタン合金を鋳造したところ以下の実験例のとおり
の結果を得た。
Next, a mold was created using the mold material according to the present invention, and pure titanium and titanium alloy were cast, and the results shown in the following experimental example were obtained.

実験例り 鋳型材中の主材が重量比で80%、硬化剤が重量比で2
0%のものを、水にて真空練和し、ワックスパターンを
埋没し通法通り鋳型を作り、硬化させた後電気炉にてこ
れを1200℃で焼成し、さらに常温に降下させた鋳型
に溶融した純チタンを鋳込んだところ表1のとおりの結
果であった。但し、シリカとアルミナの量は、両者の和
を100として、双方の配合比を示した、又硬化剤20
重量%中の配合各成分はリン酸アンモニウムが重量比で
12%、マグネシアが重量比で8%である。
Experimental example: The main material in the mold material is 80% by weight, and the hardening agent is 2% by weight.
0% was vacuum kneaded with water, the wax pattern was buried in it, a mold was made in the usual way, and after hardening, it was fired in an electric furnace at 1200℃, and then the mold was cooled to room temperature. When molten pure titanium was cast, the results are shown in Table 1. However, the amounts of silica and alumina are shown based on the sum of the two as 100, and the curing agent is 20%.
Regarding each component in the weight percentage, ammonium phosphate is 12% by weight, and magnesia is 8% by weight.

なお、判定中で○、Δ印は使用可能であり、x印は使用
困難なものを示す。実験例2以下においても同様である
Note that during the determination, ◯ and ∆ marks indicate usable items, and x marks indicate those that are difficult to use. The same applies to Experimental Example 2 and subsequent examples.

表L (注L) 引張強度は、直径2瓢、長さ20crnの実
験りによって得られた線材の引張 強度である。
Table L (Note L) The tensile strength is the tensile strength of a wire rod with a diameter of 2 gourds and a length of 20 crn obtained through an experiment.

(注2) 硬度は、厚み3fi、2 triの実験1に
よって得られた平板のブリネル硬度試 験結果である。
(Note 2) The hardness is the Brinell hardness test result of a flat plate obtained in Experiment 1 with a thickness of 3fi and 2 tri.

実験例λ 鋳型材中の主材が重量比で55%、硬化剤が重量比で4
5%のものを、水にて真空練和し、ワックスパターンを
埋没し、適法どおり鋳型を作り、硬化させた後電気炉に
てこれを1200℃で焼成し、さらに常温に降下させた
鋳型に溶融した純チタンを鋳込んだところ表2のとおり
の結果であった。
Experimental example λ The main material in the mold material is 55% by weight, and the hardening agent is 4% by weight.
5% of the mixture was vacuum kneaded with water, the wax pattern was buried in it, a mold was made as per legal requirements, and after hardening, it was fired at 1200℃ in an electric furnace, and then the mold was cooled to room temperature. When molten pure titanium was cast, the results are shown in Table 2.

但し、シリカとアルミナの量は両者の和を100%とし
て双方の配合比を示した。又硬化剤45%中の配合、各
成分はリン酸アンモニウムが重量比で15%、マグネシ
アが重量比で30%である。
However, the amounts of silica and alumina are shown based on the sum of the two as 100%. The composition of each component in the 45% curing agent is ammonium phosphate at 15% by weight and magnesia at 30% by weight.

表2 実験例3゜ 鋳型材中の主材が重量比で40%、硬化剤が重量比で6
0%のものを、水にて真空練和し、ワックスパターンを
埋没し、適法どおり鋳型を作り、硬化させた後、電気炉
にてこれを1200℃で焼成し、さらに常温に降下させ
た鋳型に溶融した純チタンを鋳込んだところ表3のとお
りの結果であった。
Table 2 Experimental example 3゜The main material in the mold material is 40% by weight, and the hardening agent is 6% by weight.
A mold made by vacuum kneading 0% with water, embedding the wax pattern, legally making a mold, curing it, firing it at 1200℃ in an electric furnace, and letting it cool to room temperature. When molten pure titanium was cast, the results are shown in Table 3.

但し、シリカとアルミナの量は両者の和をxoo%とし
て双方の配合比を示した、又硬化剤60幅中の配合、各
成分はリン酸アンモニウムが重量比で20%マグネシア
が重量比で30%である。
However, the amount of silica and alumina is expressed by taking the sum of the two as xoo%, and the composition of each component in the curing agent 60 range is as follows: ammonium phosphate is 20% by weight, magnesia is 30% by weight. %.

表3゜ 実験例4゜ 鋳型材中の主材が重量比で90鴨、硬化剤が重量比で1
0%のものを、水にて真空練和し、ワックスパターンを
埋没し、適法どおり鋳型を作り、硬化させた後、電気炉
にてこれを1200℃で焼成し、さらに常温に降下させ
た鋳型に、溶融した純チタンを鋳込んだところ表4のと
おりの結果であった。
Table 3゜Experiment example 4゜The main material in the mold material is 90% duck by weight, and the hardening agent is 1% by weight.
A mold made by vacuum kneading 0% with water, embedding the wax pattern, legally making a mold, curing it, firing it at 1200℃ in an electric furnace, and letting it cool to room temperature. When molten pure titanium was cast, the results are shown in Table 4.

但し、シIJ力とアルミナの量は両者の和を100%と
して双方の配合比を示した、又硬化剤10%中の配合各
成分はリン酸アンモニウムが重量比で5%、マグネシア
が重量比で5%である。
However, the amount of IJ strength and alumina are shown based on the sum of both as 100%. Also, each component in the 10% curing agent is ammonium phosphate at 5% by weight and magnesia at 5% by weight. It is 5%.

表生 実験例5゜ シリカとアルミナの和か90重量%以上となり、硬化剤
としてリン酸アンモニウム5重量%以下、マグネシアが
5重量%以下となる時は、機械的強度(引張強度、伸び
、硬度)は良好であるが、 歯科用においては、リン酸アンモニウム5重量%以下と
なると凝固膨張が不足し、鋳造体の寸法、金属(チタン
)の収縮分を補うことができない。又マグネシア5重量
%以下では硬化後の鋳型生強度がないため、脱ロ一時の
面荒れが起こる。以上の2点より歯科用としては不向き
となる。
Surface Experiment Example 5゜When the sum of silica and alumina is 90% by weight or more, ammonium phosphate is 5% by weight or less as a hardening agent, and magnesia is 5% by weight or less, mechanical strength (tensile strength, elongation, hardness) ) is good, but in dental applications, if the ammonium phosphate content is less than 5% by weight, the solidification expansion will be insufficient and the size of the cast body and shrinkage of the metal (titanium) cannot be compensated for. Furthermore, if magnesia is less than 5% by weight, there is no mold green strength after hardening, resulting in surface roughness during removal. Due to the above two points, it is unsuitable for dental use.

しかし、−設工業界の部品等においては、凝固膨張を出
す必要性はな(、ワックスパターンをあらかじめ鋳造用
金属としてのチタンの収縮分2〜3%を見込んで作るこ
とが可能なところであり、又脱ロ一作業も注意深く時間
をかけて行えば肌荒れを防止できることから硬化剤の和
が10重1%以下の場合も使用可能となる。
However, in parts for the construction industry, there is no need to produce solidification expansion (it is possible to create a wax pattern in advance, taking into account the shrinkage of titanium as a casting metal of 2 to 3%, Furthermore, if the de-rossing work is carried out carefully and over time, rough skin can be prevented, so it can be used even when the total amount of curing agent is less than 10% by weight.

表5゜ 実験例6゜ 鋳型材中の主材が重量比で80%、硬化剤が重量比で2
0%のものを、コロイダルシリカ又は水にて真空練和し
、ワックスパターンを埋没し、適法どおり、鋳型を作り
硬化させた後、電気炉にてこれを1200℃で焼成し、
さらに常温に降下させた鋳型に溶融したチタン合金(T
 i −6A L −4V ) ヲ鋳込んだところ、表
6のとおりの結果であった。但し、シリカとアルミナの
量は、両者の和を100として双方の配合比を示した、
又硬化剤20重量%中の配合各成分はリン酸アンモニウ
ムが重を比で12<、マグネシアが重量比で8%である
Table 5゜Experiment Example 6゜The main material in the mold material is 80% by weight, and the hardening agent is 2% by weight.
0% is vacuum kneaded with colloidal silica or water, the wax pattern is embedded, a mold is made as per legal procedures, and after hardening, it is fired at 1200°C in an electric furnace.
Furthermore, the molten titanium alloy (T
i-6A L-4V) was cast, and the results were as shown in Table 6. However, the amounts of silica and alumina are shown as the blending ratio of both, with the sum of the two as 100.
Further, in the 20% by weight of the curing agent, ammonium phosphate has a weight ratio of 12%, and magnesia has a weight ratio of 8%.

表6゜Table 6゜

Claims (1)

【特許請求の範囲】 1)シリカとアルミナを主成分とする主材と、リン酸塩
と塩基性金属酸化物で構成される硬化剤と、 よりなる純チタン又はチタン合金鋳造用鋳型材。 2)主材としてのシリカ、アルミナの和を90〜50重
量%とし、硬化剤としてのリン酸塩を5〜15重量%、
塩基性金属酸化物を5〜30重量%としてなる特許請求
の範囲第1項記載の純チタン又はチタン合金鋳造用鋳型
材。 3)シリカとアルミナの和を100部とし、一方は少な
くとも10部以上配合してなる特許請求の範囲第1項又
は第2項記載の純チタン又はチタン合金鋳造用鋳型材。 4)シリカとアルミナの和を100部とし、一方は少な
くとも20部以上配合してなる特許請求の範囲第3項記
載の純チタン又はチタン合金鋳造用鋳型材。 5)シリカとして、硅石、硅砂、粒状硅砂又はクリスト
バライトから選んだ一種又は二種以上のもので純度90
%以上のものを利用してなる特許請求の範囲第1項〜第
4項記載の純チタン又はチタン合金鋳造用鋳型材。 6)アルミナとして、純度80%以上の高純度アルミナ
又は高アルミナ質鉱物を用いてなる特許請求の範囲第1
項〜第4項記載の純チタン又はチタン合金鋳造用鋳型材
。 7)リン酸塩として、リン酸アンモニウム、リン酸カリ
ウム、リン酸ソーダから選んだ1つを用いてなる特許請
求の範囲第1項〜第4項記載の純チタン又はチタン合金
鋳造用鋳型材。 8)塩基性金属酸化物として、酸化マグネシウム、電融
マグネシア、マグネシアクリンカーから選んだものを用
いてなる特許請求の範囲第1項〜第4項記載の純チタン
又はチタン合金鋳造用鋳型材。 9)第1項記載の鋳型材に練和液として20〜40%の
コロイダルシリカ液を混入してなる純チタン又はチタン
合金鋳造用鋳型材。 10)シリカ10〜82重量%、アルミナ10〜82重
量%、リン酸塩5〜15重量%、塩基性金属酸化物5〜
30重量%をコロイダルシリカで練和して、硬化後10
00℃以上で焼成し、鋳型材中にムライト、スピネル、
コーディライトの一種以上の耐火物組織を生成してなる
純チタン又はチタン合金鋳造用鋳型製造方法。
[Claims] 1) A mold material for casting pure titanium or a titanium alloy, comprising: a main material mainly composed of silica and alumina, and a hardening agent composed of a phosphate and a basic metal oxide. 2) The sum of silica and alumina as the main material is 90 to 50% by weight, and the phosphate as a hardening agent is 5 to 15% by weight.
The mold material for casting pure titanium or titanium alloy according to claim 1, which contains a basic metal oxide in an amount of 5 to 30% by weight. 3) The mold material for casting pure titanium or titanium alloy according to claim 1 or 2, wherein the sum of silica and alumina is 100 parts, and one of them is at least 10 parts. 4) The mold material for casting pure titanium or titanium alloy according to claim 3, wherein the sum of silica and alumina is 100 parts, one of which is at least 20 parts. 5) As silica, one or more types selected from silica stone, silica sand, granular silica sand, or cristobalite with a purity of 90
% or more of pure titanium or a titanium alloy casting mold material according to claims 1 to 4. 6) Claim 1 in which high-purity alumina or high alumina mineral with a purity of 80% or more is used as the alumina.
A mold material for casting pure titanium or titanium alloy according to items 1 to 4. 7) The mold material for casting pure titanium or titanium alloy according to claims 1 to 4, wherein the phosphate is one selected from ammonium phosphate, potassium phosphate, and sodium phosphate. 8) The mold material for casting pure titanium or titanium alloy according to claims 1 to 4, wherein the basic metal oxide is selected from magnesium oxide, fused magnesia, and magnesia clinker. 9) A mold material for casting pure titanium or titanium alloy, which is obtained by mixing 20 to 40% colloidal silica liquid as a mixing liquid into the mold material described in item 1. 10) Silica 10-82% by weight, alumina 10-82% by weight, phosphate 5-15% by weight, basic metal oxide 5-5% by weight
30% by weight was kneaded with colloidal silica, and after curing 10% by weight was mixed with colloidal silica.
Sintered at 00℃ or higher, mullite, spinel,
A method for producing a mold for casting pure titanium or a titanium alloy, which is formed by producing one or more refractory structures of cordierite.
JP59257154A 1984-12-04 1984-12-04 Mold material for casting pure titanium and titanium alloy and production of casting mold Granted JPS61135448A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59257154A JPS61135448A (en) 1984-12-04 1984-12-04 Mold material for casting pure titanium and titanium alloy and production of casting mold
GB08528772A GB2168060B (en) 1984-12-04 1985-11-22 Mold material and process for casting of pure titanium or titanium alloy
US06/803,447 US4709741A (en) 1984-12-04 1985-12-02 Mold material and process for casting of pure titanium or titanium alloy
IT48868/85A IT1183034B (en) 1984-12-04 1985-12-03 MOLD MATERIAL AND PROCEDURE FOR CASTING PURE TITANIUM OR TITANIUM ALLOY
FR8517962A FR2574010B1 (en) 1984-12-04 1985-12-04 MOLD MATERIAL AND METHOD FOR MOLDING PURE TITANIUM OR TITANIUM ALLOY
DE19853542921 DE3542921A1 (en) 1984-12-04 1985-12-04 MOLDED MATERIAL AND METHOD FOR POWING PURE TITANIUM OR TITANIUM ALLOYS
US07/097,019 US4830083A (en) 1984-12-04 1987-09-16 Mold material and process for casting of pure titanium or titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59257154A JPS61135448A (en) 1984-12-04 1984-12-04 Mold material for casting pure titanium and titanium alloy and production of casting mold

Publications (2)

Publication Number Publication Date
JPS61135448A true JPS61135448A (en) 1986-06-23
JPH021586B2 JPH021586B2 (en) 1990-01-12

Family

ID=17302460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59257154A Granted JPS61135448A (en) 1984-12-04 1984-12-04 Mold material for casting pure titanium and titanium alloy and production of casting mold

Country Status (1)

Country Link
JP (1) JPS61135448A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172922A (en) * 1974-12-21 1976-06-24 Kubota Ltd IGATASEISAKUHOHO
JPS58132344A (en) * 1982-01-29 1983-08-06 Iwatani & Co Casting method of titanium casting consisting of pure titanium or alloy consisting essentially of titanium
JPS5992144A (en) * 1982-11-18 1984-05-28 Taisei Shika Kogyo Kk Composition of embedding material for precision casting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172922A (en) * 1974-12-21 1976-06-24 Kubota Ltd IGATASEISAKUHOHO
JPS58132344A (en) * 1982-01-29 1983-08-06 Iwatani & Co Casting method of titanium casting consisting of pure titanium or alloy consisting essentially of titanium
JPS5992144A (en) * 1982-11-18 1984-05-28 Taisei Shika Kogyo Kk Composition of embedding material for precision casting

Also Published As

Publication number Publication date
JPH021586B2 (en) 1990-01-12

Similar Documents

Publication Publication Date Title
US4830083A (en) Mold material and process for casting of pure titanium or titanium alloy
JP2008535765A (en) Zircon-based sintered products
JPS61135448A (en) Mold material for casting pure titanium and titanium alloy and production of casting mold
JP2000119070A (en) Castable refractory and refractory brick using the same
JPS61216832A (en) Mold material for casting of pure titanium or titanium alloy
JPH0212659B2 (en)
JPS6335593B2 (en)
JPS61216833A (en) Mold material for casting of pure titanium or titanium alloy
KR102650353B1 (en) Refractory batch, method for producing irregular refractory ceramic product from said batch and irregular refractory ceramic product obtained by said method
JPH0333060A (en) Calcination mold for high-temperature molding and mold material for high-temperature molding as well as production of calcination mold for high-temperature molding
JP4399579B2 (en) Castable molded product and method for producing the same
JPH01103952A (en) High-durability sliding nozzle plate brick
JP3071060B2 (en) Ceramic-metal insert and method of manufacturing the same
JP2019006630A (en) Alumina-magnesia based castable refractory
US3752684A (en) Insulating refractory and a method for manufacturing same
CN113811405B (en) Investment powder
US1454065A (en) Mold for casting metals and process of making and using the molds
JP2003034608A (en) Flash heating-type phosphate investment for dental use
WO2016176758A1 (en) Article made from refractory material for contact with a liquid metal or alloy, a method for manufacture, use and method of use of same
JPH06234613A (en) Dental investing material
JPH04219375A (en) Production of coarse aggregate for casting material
JP2022184504A (en) Shaped refractory for lining induction furnace and construction method of induction furnace using lining shaped refractory
JPS6054272B2 (en) Refractory manufacturing method
JPH05163112A (en) Mold material for casting
JP2005139056A (en) Raw material and method for manufacturing castable refractory