JPH04219375A - Production of coarse aggregate for casting material - Google Patents

Production of coarse aggregate for casting material

Info

Publication number
JPH04219375A
JPH04219375A JP2403712A JP40371290A JPH04219375A JP H04219375 A JPH04219375 A JP H04219375A JP 2403712 A JP2403712 A JP 2403712A JP 40371290 A JP40371290 A JP 40371290A JP H04219375 A JPH04219375 A JP H04219375A
Authority
JP
Japan
Prior art keywords
coarse aggregate
powder
weight
raw material
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2403712A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yamashita
順弘 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd filed Critical Kawasaki Refractories Co Ltd
Priority to JP2403712A priority Critical patent/JPH04219375A/en
Publication of JPH04219375A publication Critical patent/JPH04219375A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve corrosion resistance by blending a coarse aggregate with a well-known casting material in relation to a method for producing the coarse aggregate to be blended with the casting material. CONSTITUTION:The aforementioned method for production is constructed from a mixing step for blending, e.g. readily oxidizable metallic powder such as aluminum powder, metallic silicon powder or aluminum-magnesium alloy powder in an amount of 1-5wt.% together with 2-5wt.% thermosetting resin as a binder in a refractory raw material composed of 75-95wt.% magnesia clinker powder and 5-25wt.% carbon raw material and providing a body, a forming step for forming the aforementioned body into a prescribed shape and a heat-treating step for heating the formed compact at 150-300 deg.C temperature for a prescribed time.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は流し込み材に配合する粗
骨材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing coarse aggregate to be mixed into pouring material.

【0002】0002

【従来の技術】従来、例えば取鍋等の溶融金属容器の内
張り耐火物として使用される流し込み材に配合される、
例えば粒径5〜40mmの粗骨材としては、溶鋼、溶銑
に対する耐食性に優れるとされるジルコン質原料、ある
いはアルミナ質原料が多用されている。
[Prior Art] Conventionally, for example, pouring materials used as refractory linings for molten metal containers such as ladles,
For example, as coarse aggregate with a particle size of 5 to 40 mm, zircon raw materials or alumina raw materials, which are said to have excellent corrosion resistance against molten steel and hot metal, are often used.

【0003】また一方で、溶融金属容器のスラグライン
部等のスラグに接触する部位には特に耐食性に優れるマ
グネシア質原料やマグネシア−スピネル質原料を粗骨材
を配合した流し込み材や例えば黒鉛等のスラグに濡れ難
い炭素原料を配合した流し込み材を使用することが提案
されている。
On the other hand, in areas that come into contact with slag, such as the slag line of the molten metal container, pouring materials containing coarse aggregate, such as magnesia raw materials or magnesia-spinel raw materials with excellent corrosion resistance, or graphite, for example, are used. It has been proposed to use a pouring material containing a carbon material that is difficult to wet with slag.

【0004】0004

【発明が解決しようとする課題】しかしながら、上記ジ
ルコン質原料、あるいはアルミナ質原料を粗骨材とする
流し込み材あるいはマグネシア質原料やマグネシア−ス
ピネル質原料を粗骨材とする流し込み材は稼働面からの
スラグの浸透を容易に許す結果、該流し込み材による施
工体組織の脆化による構造スポーリングを発生して損耗
が大きく進行する欠点を有する。
[Problems to be Solved by the Invention] However, the casting material using the above-mentioned zircon material or alumina material as coarse aggregate, or the casting material using magnesia material or magnesia-spinel material as coarse aggregate has problems from the operational point of view. As a result of easily allowing slag to penetrate, structural spalling occurs due to embrittlement of the structure of the construction body due to the pouring material, resulting in significant wear and tear.

【0005】また、炭素原料を配合した流し込み材は一
定の耐食性の向上はみられるものの、実機使用にあたっ
ては該炭素原料が激しい酸化作用を受け、組織の一部が
揮発・消失するので必ずしも耐用性の向上は期待できな
い。さらに流し込み材の混練時に他の耐火材原料に黒鉛
等の炭素原料を配合するだけでは、その他の耐火材原料
との比重差により得られた施工体に黒鉛が偏析する結果
、施工体の全ての部位で所期の耐食性を発揮することが
できない場合がある。
[0005] Furthermore, although a certain degree of improvement in corrosion resistance can be seen in pouring materials containing carbon raw materials, when used in actual equipment, the carbon raw materials are subjected to severe oxidation, and part of the structure evaporates and disappears, so durability is not always guaranteed. cannot be expected to improve. Furthermore, if carbon raw materials such as graphite are simply blended with other refractory raw materials when mixing pouring materials, graphite will segregate in the resulting construction body due to the difference in specific gravity with other refractory raw materials, resulting in all of the components in the construction body being mixed. In some cases, it may not be possible to exhibit the desired corrosion resistance in some areas.

【0006】本発明は上記従来の事情に鑑み提案された
ものであって、流し込み材に配合して耐食性の向上を図
ることのできる粗骨材の製造方法を提供することを目的
とするものである。
The present invention has been proposed in view of the above-mentioned conventional circumstances, and an object of the present invention is to provide a method for producing coarse aggregate that can be blended into pouring materials to improve corrosion resistance. be.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は以下の手段を採用する。すなわち、マグネ
シアクリンカー粉末75〜95重量%、炭素原料5〜2
5重量%より成る耐火原料に対し、金属粉末1〜5重量
%とともにバインダーとして添加する熱硬化性樹脂2〜
5重量%を配合する坏土を得る混合工程と、該坏土を所
定の形状に成形する成形工程と、150〜300℃で所
定時間加熱を行う加熱処理工程とよりなる流し込み材用
粗骨材の製造方法である。また、上記金属粉末は、アル
ミニウム粉末、金属ケイ素粉末、アルミニウム−マグネ
シウム合金粉末からなる群のうちから少なくとも1種選
択されることが望ましく、また、上記成形工程において
はブリケットマシンを使用することが望ましい。
[Means for Solving the Problems] In order to achieve the above object, the present invention employs the following means. That is, magnesia clinker powder 75-95% by weight, carbon raw material 5-2%
2 to 5% by weight of a thermosetting resin added as a binder together with 1 to 5% by weight of metal powder to a refractory raw material consisting of 5% by weight.
Coarse aggregate for pouring material, which consists of a mixing step to obtain a clay containing 5% by weight, a molding step of molding the clay into a predetermined shape, and a heat treatment step of heating at 150 to 300°C for a predetermined time. This is a manufacturing method. Further, it is preferable that the metal powder is at least one selected from the group consisting of aluminum powder, metal silicon powder, and aluminum-magnesium alloy powder, and it is preferable that a briquette machine be used in the forming process. .

【0008】[0008]

【作  用】上記構成のうち混合工程によって、予め粗
骨材に炭素原料を配合することにより、該炭素原料以外
の耐火材原料との比重差によって生じる施工体での偏析
が生じず、また上記炭素原料を配合した粗骨材に、例え
ばアルミニウム粉末、金属ケイ素粉末、アルミニウム−
マグネシウム合金粉末等の易酸化性金属の粉末と併せて
配合したので炭素原料の酸化による揮発・消失を抑制す
る。
[Function] By blending the carbon raw material into the coarse aggregate in advance in the mixing process of the above configuration, segregation in the construction body caused by the difference in specific gravity with the refractory material raw materials other than the carbon raw material does not occur, and the above-mentioned For example, aluminum powder, metal silicon powder, aluminum
Since it is blended with easily oxidizable metal powder such as magnesium alloy powder, it suppresses volatilization and disappearance due to oxidation of the carbon raw material.

【0009】該混合工程でのマグネシアクリンカー粉末
はMgO純度は89〜99%の高純度品を使用すること
とし、その配合量は75〜95重量%が望ましく、75
重量%未満の配合量であると相対的に炭素原料が過多と
なり耐酸化性が低下し、95重量%を超える配合量であ
ると炭素原料が不足して耐食性が低下することとなる。 炭素原料としては本発明においては特に限定しないが、
黒鉛を使用することが望ましい。配合量は5〜25重量
%が望ましく、5重量%未満であると耐食性が低下し、
25重量%を超える配合量では粗骨材を成形する際に欠
陥が発生して実用できない。
[0009] The magnesia clinker powder used in the mixing process should be a high-purity product with an MgO purity of 89 to 99%, and the blending amount is preferably 75 to 95% by weight.
If the amount is less than 95% by weight, the amount of carbon material will be relatively excessive and the oxidation resistance will be reduced, and if the amount is more than 95% by weight, the amount of carbon material will be insufficient and the corrosion resistance will be reduced. Although the carbon raw material is not particularly limited in the present invention,
It is desirable to use graphite. The blending amount is preferably 5 to 25% by weight, and if it is less than 5% by weight, corrosion resistance will decrease,
If the amount exceeds 25% by weight, defects will occur during molding of the coarse aggregate, making it impractical.

【0010】さらに易酸化性金属粉末としてアルミニウ
ム粉末、金属ケイ素粉末、アルミニウム−マグネシウム
合金粉末等が良好な炭素原料の酸化防止効果を発揮し、
その配合量は1〜5重量%が望ましく、1重量%未満で
は所定の酸化防止効果を発揮せず、5重量%を超える配
合量では配合量に見合った酸化防止効果が得られないと
ともに熱膨張率が増大し、施工体の耐用性に悪影響を及
ぼす。
Furthermore, as easily oxidizable metal powders, aluminum powder, metal silicon powder, aluminum-magnesium alloy powder, etc. exhibit a good effect of preventing oxidation of carbon raw materials.
The blending amount is preferably 1 to 5% by weight; if it is less than 1% by weight, the desired antioxidant effect will not be exhibited, and if the blending amount exceeds 5% by weight, the antioxidant effect commensurate with the blending amount will not be obtained and thermal expansion will occur. rate increases, which has a negative impact on the durability of the construction structure.

【0011】さらにまた、バインダーとして添加する熱
硬化性樹脂は本発明では特に限定されないが、フェノー
ルレジンを使用することが望ましく、その配合量は2〜
5重量%程度とするのが適当であり2重量%未満の配合
量では粗骨材の成形が行えず、5重量%を超える配合量
では後段の成形工程において離型し難く作業性が低下す
る。
Furthermore, the thermosetting resin added as a binder is not particularly limited in the present invention, but it is preferable to use a phenol resin, and the amount thereof is 2 to 2.
It is appropriate to set the amount to about 5% by weight; if the amount is less than 2% by weight, it will not be possible to form coarse aggregate, and if the amount is more than 5% by weight, it will be difficult to release from the mold in the subsequent forming process, resulting in reduced workability. .

【0012】また、成形工程において坏土が成形される
形状については特に限定するものではないが、例えば並
形れんがのような形状とすると、加熱工程終了後に粉砕
したり篩別を行う必要が生じて工程が煩瑣化するととも
に、不要な粒径の耐火物も同時に生成されることとなり
不都合である。そこで、該成形工程と同時に所定粒径の
粗骨材のみを得るために、予め得ようとする粗骨材の形
状にあわせて凹部を形成した加圧ローラーを備えるブリ
ケットマシンを使用することが耐火物の原単価低減の観
点からより望ましい。
[0012]Although there are no particular limitations on the shape of the clay in the molding process, if the clay is shaped like a regular brick, for example, it will be necessary to crush or sieve the clay after the heating process is completed. This is inconvenient because the process becomes complicated and refractories with unnecessary particle sizes are also produced at the same time. Therefore, in order to obtain only coarse aggregate of a predetermined particle size at the same time as the forming process, it is recommended to use a fire-resistant briquette machine equipped with a pressure roller that has recesses formed in advance to match the shape of the coarse aggregate to be obtained. This is more desirable from the perspective of reducing the unit cost of goods.

【0013】該粗骨材の粒径は本発明においては限定せ
ず、該粗骨材を配合する流し込み材が適用される条件に
応じて調整すればよいが、例えば5〜40mmの粒径の
範囲とすることが一般的であり、5mm未満では流し込
み材に配合したときに粗骨材としての働きが弱く、耐熱
スポーリング性が低下し、40mmを超える粒径では成
形工程での成形圧力が不足し、粗骨材の気孔率が高くな
り、スラグに対する耐食性が劣化し実用に適さない。
[0013] The particle size of the coarse aggregate is not limited in the present invention, and may be adjusted depending on the conditions to which the pouring material containing the coarse aggregate is applied. If the particle size is less than 5 mm, it will not work as a coarse aggregate when mixed into the pouring material, and the heat spalling resistance will decrease, and if the particle size exceeds 40 mm, the molding pressure in the molding process will be reduced. If it is insufficient, the porosity of the coarse aggregate will increase, and its corrosion resistance against slag will deteriorate, making it unsuitable for practical use.

【0014】更に加熱工程では、上記バインダーとして
配合した熱硬化性樹脂を硬化させるものであり、該加熱
工程における加熱温度は150〜300℃程度の範囲が
適当であり、150℃未満の加熱温度では上記バインダ
ーによる結着が充分に進行せず緻密な粗骨材が得られず
、300℃を超える加熱温度では上記熱硬化性樹脂が炭
化して緻密な粗骨材が得られずともに好ましくない。 また該加熱工程の加熱時間は特に限定せず、配合する熱
硬化性樹脂の特性に応じて設定すればよいが、例えばフ
ェノールレジンを使用した場合、4〜32時間が適当で
あり、この範囲より長すぎる場合は経済的に不利であり
、短すぎる場合は該成形体の強度が不足する。
Furthermore, in the heating step, the thermosetting resin blended as the binder is cured, and the heating temperature in the heating step is suitably in the range of about 150 to 300°C, and the heating temperature below 150°C is Binding by the binder does not proceed sufficiently, making it impossible to obtain a dense coarse aggregate, and heating temperatures exceeding 300° C. carbonize the thermosetting resin, making it impossible to obtain a dense coarse aggregate, which is not preferable. The heating time of the heating step is not particularly limited and may be set depending on the characteristics of the thermosetting resin to be blended. For example, when using phenol resin, 4 to 32 hours is appropriate; If it is too long, it is economically disadvantageous, and if it is too short, the strength of the molded article is insufficient.

【0015】以上の工程を経て製造された粗骨材はアル
ミナ−スピネル質、マグネシア−スピネル質、マグネシ
ア質等の原料を主体とした従来公知の流し込み材に配合
することができ、特にその適用対象は限定せず、またそ
の配合量は製造した粗骨材の粒径や、該粗骨材以外の耐
火材原料の粒度分布を勘案して決定される。
[0015] The coarse aggregate produced through the above steps can be blended into conventionally known pouring materials mainly made of raw materials such as alumina-spinel, magnesia-spinel, and magnesia. is not limited, and its blending amount is determined by taking into account the particle size of the coarse aggregate produced and the particle size distribution of the refractory material raw material other than the coarse aggregate.

【0016】[0016]

【実施例】以下本発明を実施例をもとに説明する。表1
は本発明にかかる実施例A〜Cの粗骨材の配合を示すも
のであり、ミキサーを混合手段として得られた坏土(混
合工程)を、ブリケットマシンを使用して表1最下欄に
それぞれ示す粒径の粗骨材を成形し(成形工程)した。 その後、180〜280℃に保持した乾燥炉で24時間
加熱を行い(加熱処理工程)、実施例A〜Cの粗骨材を
得た。
EXAMPLES The present invention will be explained below based on examples. Table 1
Table 1 shows the composition of the coarse aggregate of Examples A to C according to the present invention, and the clay obtained by using a mixer (mixing process) is shown in the bottom column of Table 1 using a briquette machine. Coarse aggregates with the respective particle sizes shown were molded (molding step). Thereafter, it was heated for 24 hours in a drying oven maintained at 180 to 280°C (heat treatment step) to obtain coarse aggregates of Examples A to C.

【0017】上記実施例Aを表2に示す配合のアルミナ
−スピネル質流し込み材(実施例1)に配合して、10
0t取鍋の側壁を施工した。一方同じく表2に示す配合
の従来のアルミナ質原料よりなる粗骨材を配合したアル
ミナ−スピネル質流し込み材(比較例1)を同様に施工
し、ほぼ同条件の操業を行った結果、比較例1による施
工を行った取鍋は160回の操業で寿命が尽きたのに対
し、実施例1では190回の操業に耐えた。
The above Example A was mixed with the alumina-spinel casting material (Example 1) having the composition shown in Table 2, and 10
The side walls of a 0t ladle were constructed. On the other hand, an alumina-spinel cast material (Comparative Example 1) containing coarse aggregate made of conventional alumina raw materials having the composition shown in Table 2 was constructed in the same manner and operated under almost the same conditions. The life of the ladle constructed according to Example 1 expired after 160 operations, whereas Example 1 withstood 190 operations.

【0018】上記実施例Bを表3に示す配合のマグネシ
ア−スピネル質流し込み材(実施例2)に配合して、2
50t取鍋のスラグラインを施工した。一方同じく表3
に示す配合の従来のスピネル質原料よりなる粗骨材を配
合したアルミナ−スピネル質流し込み材(比較例2)を
同様に施工し、ほぼ同条件の操業を行った結果、比較例
1による施工を行った取鍋は120回の操業で寿命が尽
きたのに対し、実施例1では150回の操業に耐えた。
The above Example B was blended with the magnesia-spinel casting material (Example 2) having the composition shown in Table 3, and 2
A slag line for a 50t ladle was constructed. On the other hand, Table 3
An alumina-spinel cast material (Comparative Example 2) containing coarse aggregate made from a conventional spinel raw material having the composition shown in was similarly constructed and operated under almost the same conditions. The ladle used in this experiment ended its life after 120 operations, whereas Example 1 withstood 150 operations.

【0019】上記実施例Cを表4に示す配合のマグネシ
ア質流し込み材(実施例3)に配合して、300t取鍋
のスラグラインを施工した。一方同じく表4に示す配合
の従来のスピネル質原料よりなる粗骨材を配合したマグ
ネシア質流し込み材(比較例3)を同様に施工し、ほぼ
同条件の操業を行った結果、比較例1による施工を行っ
た取鍋は50回の操業で熱スポーリングが発生して寿命
が尽きたのに対し、実施例1では100回の操業に耐え
た。
The above Example C was blended with the magnesia pouring material (Example 3) having the composition shown in Table 4, and a 300 t ladle slag line was constructed. On the other hand, as a result of similarly constructing a magnesia cast material (Comparative Example 3) containing coarse aggregate made of conventional spinel raw materials shown in Table 4 and operating under almost the same conditions, it was found that The ladle in which the construction was performed ended its life after 50 operations due to thermal spalling, whereas Example 1 withstood 100 operations.

【0020】以上、3種の異なった容量の取鍋に本発明
を適用する実機使用試験を行ったところ、いずれにおい
ても本発明を適用した取鍋の耐用性は向上する結果が得
られた。
[0020] As described above, when the present invention was applied to three types of ladles of different capacities and actual machine use tests were conducted, the durability of the ladle to which the present invention was applied was improved in all cases.

【0021】[0021]

【表1】[Table 1]

【0022】[0022]

【表2】[Table 2]

【0023】[0023]

【表3】[Table 3]

【0024】[0024]

【表4】[Table 4]

【0025】[0025]

【発明の効果】以上のように本発明を適用した粗骨材を
配合した流し込み材は従来の流し込み材に比べて施工体
の耐用性が著しく向上する効果があり、特にスラグライ
ン部に適用した場合のスラグに対する耐食性には格段の
進歩が窺える。その結果、例えば取鍋等の溶融金属容器
の内張りの全面を不定形耐火物による施工を可能とし、
以て、炉材の原単価の低減を実現することができるもの
である。
[Effects of the Invention] As described above, the pouring material blended with coarse aggregate to which the present invention is applied has the effect of significantly improving the durability of the construction body compared to conventional pouring materials. Significant progress can be seen in the corrosion resistance against slag. As a result, for example, it is possible to construct the entire lining of a molten metal container such as a ladle with monolithic refractories,
This makes it possible to reduce the unit cost of furnace materials.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  マグネシアクリンカー粉末75〜95
重量%、炭素原料5〜25重量%より成る耐火原料に対
し、易酸化性金属粉末1〜5重量%とともにバインダー
として熱硬化性樹脂を2〜5重量%を配合して坏土を得
る混合工程と、該坏土を所定形状に成形する成形工程と
、150〜300℃の温度で所定時間加熱する加熱処理
工程とよりなることを特徴とする流し込み材用粗骨材の
製造方法。
[Claim 1] Magnesia clinker powder 75-95
% by weight, a refractory raw material consisting of 5 to 25% by weight of carbon raw material, a mixing step of blending 1 to 5% by weight of easily oxidizable metal powder and 2 to 5% by weight of a thermosetting resin as a binder to obtain clay. A method for producing coarse aggregate for pouring material, comprising: a molding step of molding the clay into a predetermined shape; and a heat treatment step of heating the clay at a temperature of 150 to 300° C. for a predetermined period of time.
【請求項2】  上記金属粉末が、アルミニウム粉末、
金属ケイ素粉末、アルミニウム−マグネシウム合金粉末
からなる群のうちから少なくとも1種選択されることを
特徴とする請求項1に記載の流し込み材用粗骨材の製造
方法。
2. The metal powder is aluminum powder,
2. The method for producing coarse aggregate for pouring material according to claim 1, wherein at least one kind is selected from the group consisting of metal silicon powder and aluminum-magnesium alloy powder.
【請求項3】  上記成形工程で使用する成形手段とし
て、ブリケットマシンを使用することを特徴とする請求
項1または2に記載の流し込み材用粗骨材の製造方法。
3. The method for producing coarse aggregate for pouring material according to claim 1, wherein a briquette machine is used as the forming means used in the forming step.
JP2403712A 1990-12-19 1990-12-19 Production of coarse aggregate for casting material Pending JPH04219375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2403712A JPH04219375A (en) 1990-12-19 1990-12-19 Production of coarse aggregate for casting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2403712A JPH04219375A (en) 1990-12-19 1990-12-19 Production of coarse aggregate for casting material

Publications (1)

Publication Number Publication Date
JPH04219375A true JPH04219375A (en) 1992-08-10

Family

ID=18513442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2403712A Pending JPH04219375A (en) 1990-12-19 1990-12-19 Production of coarse aggregate for casting material

Country Status (1)

Country Link
JP (1) JPH04219375A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108751957A (en) * 2018-07-10 2018-11-06 浙江自立高温科技有限公司 A kind of carbon-free high-purity magnalium pressed machine brick of refined steel ladles and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108751957A (en) * 2018-07-10 2018-11-06 浙江自立高温科技有限公司 A kind of carbon-free high-purity magnalium pressed machine brick of refined steel ladles and preparation method thereof
CN108751957B (en) * 2018-07-10 2020-06-16 浙江自立高温科技股份有限公司 Carbon-free high-purity aluminum-magnesium machine-pressed brick for refining steel ladle and preparation method thereof

Similar Documents

Publication Publication Date Title
US4280844A (en) Refractory brick for molding molten steel
JPH0196070A (en) Unfixed shape refractory to be used for spout for molten metal
EP0583466A1 (en) Vibratable refractory composition.
US3144690A (en) Exothermically reacting shaped products for use in foundry practice
JPS6411589B2 (en)
JPH04219375A (en) Production of coarse aggregate for casting material
US5214006A (en) Cement-free silicon carbide monoliths
CN106396699A (en) ZrN-SiAlON-added aluminum liquid penetration-resistant casting material and preparation method thereof
US3662058A (en) Utilization of molten slag from metallurgical furnace in manufacture of fused cast refractory shapes
JPS5921581A (en) Refractories for continuous casting
JPH0152349B2 (en)
JPH03170367A (en) Refractory for continuous casting and its production
JP2004083361A (en) Regenerated castable refractory
JPH0725668A (en) Refractory for casting work
JP2778760B2 (en) Sliding nozzle plate brick
RU2223247C2 (en) Method of production of high-strength carbon- containing refractory material
JP4070033B2 (en) Unshaped refractory for casting construction and molten steel container lined with this
JPS632910B2 (en)
JPH0212659B2 (en)
JPH04114957A (en) Refractory for continuous casting and production thereof
JPH10211541A (en) Durable mold
RU2118950C1 (en) Refractory heat-insulating material
JP2005139056A (en) Raw material and method for manufacturing castable refractory
JPH07206511A (en) Magnesia clinker, monolithic refractory and ladle for steel making
JPH04193770A (en) Basic refractory for pouring