JPH04114957A - Refractory for continuous casting and production thereof - Google Patents

Refractory for continuous casting and production thereof

Info

Publication number
JPH04114957A
JPH04114957A JP2230824A JP23082490A JPH04114957A JP H04114957 A JPH04114957 A JP H04114957A JP 2230824 A JP2230824 A JP 2230824A JP 23082490 A JP23082490 A JP 23082490A JP H04114957 A JPH04114957 A JP H04114957A
Authority
JP
Japan
Prior art keywords
refractory
carbon
particle size
continuous casting
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2230824A
Other languages
Japanese (ja)
Inventor
Hiroshi Imawaka
寛 今若
Shigetaka Anzai
安斎 栄尚
Hiroshi Sakamoto
浩 坂本
Yoichi Yokoyama
洋一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Nippon Steel Corp
Original Assignee
Harima Ceramic Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd, Nippon Steel Corp filed Critical Harima Ceramic Co Ltd
Priority to JP2230824A priority Critical patent/JPH04114957A/en
Publication of JPH04114957A publication Critical patent/JPH04114957A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the continuous casting refractory having high strength and excellent spool resistance by employing an Al2O3-C composition containing carbon or a mixture of the carbon and boron nitride and alumina having specific small particle diameters as a fundamental composition. CONSTITUTION:A refractory for continuous casting comprises an Al2O3-C composition containing 5-30wt.% of carbon alone or a mixture of the carbon and boron nitride and 95-70wt.% of alumina having particle diameters of <=0.15mm as a fundamental composition. The particle diameter distribution of the alumina comprises preferably 10-40wt.% of particle diameters of 0.044mm-0.15mm, 30-60wt.% of particle diameters of 0.010-0.04mm and 20-40wt.% of particle diameters of <=0.019mm. The particle diameter distribution of the carbon comprises preferably 40-70 wt.% of particle diameters of >=0.15mm, 10-40wt.% of particle diameters of 0.15-0.044 and 10-40wt.% of <=0.04mm. The refractory raw materials of the fundamental composition are mixed with 0.1-3wt.% of boron carbide, 0.5-10wt.% of metal silicon and a binder, kneaded, molded and baked in a nonoxidative atmosphere to provide the refractory for the continuous casting.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は鋼の連続鋳造用耐火物およびその製造方法に
関し、特に連続鋳造段O1ηにお(jる湯面下で凝固さ
せるモールドの内張り耐火物、加熱モール]・および水
平連鋳用ブレークリング等に用いて好適な、高強度でか
つ耐スポール性に優れたA12(h−C質の連続鋳造用
耐火物およびその製造方法に係るものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a refractory for continuous casting of steel and a method for producing the same, and in particular to a refractory lining of a mold solidified below the surface of the molten metal in the continuous casting stage O1η. A12 (h-C refractory for continuous casting and its manufacturing method) which has high strength and excellent spalling resistance and is suitable for use in break rings for horizontal continuous casting, etc. be.

(従来の技術) 鋼の連続鋳造において溶鋼を取鍋からタンデイシュ、あ
るいはタンデイシブ、からモールドへ移送させるノズル
やスライディングノズル等の連続鋳造用耐火物は/8鋼
の酸化や乱流の防止、溶鋼流量の調整などの役割をもち
、その材質の良否が鋼製品の品質に大きく影響するため
重要な部材である。従来、これらの部品の耐火物には耐
食性のほかに耐スポール性が要求されることからAl2
O:l−C系材質が多用されている。近年は連続鋳造設
備における耐火物の使用範囲が広がり溶鋼に接する部位
だGJでなく、加熱モールドや水平連鋳用ブレークリン
グのように凝固が始まった鋼と接触する部分にも使用さ
れている。これらの部分に使用される耐火物の特性とし
ては適度な耐食性、耐スポール性のほかに耐摩耗性、潤
滑性、加工性等が要求される。これまでに、加熱モール
ド用の耐火物としては炭化珪素(特公昭6m−4622
9号公報)、また水平連続鋳造用ブレークリング材の耐
火物としては窒化珪素−窒化硼素(特開昭56wt20
575号公報)、窒化珪素(特公昭57−36057号
公報)、窒化アルミニウムおよび窒化硼素を含有し残部
が窒化珪素からなる材料(特開昭56wt2057号公
報)等の非酸化物材料が提案され、その有用性が着目さ
れてきた。しかしながらこれらの材料は主にニューセラ
ミックスと称される非酸化物であって、製造価格が高く
工業的に広く用いる上での難点となっている。一方A]
203−C質材料については、例えば特公昭63−48
828号公報において、80メツシユ以下のアルミナ4
0〜65弱t%、シリカ1〜30葬t%、炭素10〜4
5−t%、炭化硼素0.05〜211t%からなり、常
温での曲げ強さが93〜99kg/cfflの浸漬ノズ
ルが開示されている。
(Prior art) Refractories for continuous casting, such as nozzles and sliding nozzles that transfer molten steel from the ladle to the tundish or from the tundish to the mold, are used to prevent oxidation and turbulence of /8 steel, and to prevent molten steel flow. It is an important component because the quality of the material greatly affects the quality of steel products. Conventionally, refractories for these parts were required to have spalling resistance in addition to corrosion resistance, so Al2
O:l-C based materials are often used. In recent years, the range of use of refractories in continuous casting equipment has expanded, and they are now being used not only in GJs, which are the parts that come into contact with molten steel, but also in parts that come into contact with steel that has begun to solidify, such as heating molds and break rings for horizontal continuous casting. The properties of the refractories used in these parts include moderate corrosion resistance and spalling resistance, as well as abrasion resistance, lubricity, and workability. Up to now, silicon carbide (Special Publication No. 6m-4622) has been used as a refractory for heating molds.
9), silicon nitride-boron nitride (Japanese Patent Application Laid-open No. 56wt20) is used as a refractory for break ring materials for horizontal continuous casting.
Non-oxide materials have been proposed, such as silicon nitride (Japanese Patent Publication No. 57-36057), materials containing aluminum nitride and boron nitride with the remainder being silicon nitride (Japanese Patent Application Laid-open No. 56WT2057), Its usefulness has been attracting attention. However, these materials are mainly non-oxide materials called new ceramics, and their manufacturing costs are high, making it difficult for them to be widely used industrially. On the other hand A]
Regarding 203-C quality materials, for example, Japanese Patent Publication No. 63-48
In Publication No. 828, alumina 4 of 80 mesh or less
0-65 t%, silica 1-30 t%, carbon 10-4
5-t%, boron carbide 0.05-211t%, and has a bending strength of 93-99 kg/cffl at room temperature.

(発明が解決しようとする課題) しかしながら、このように従来がら浸漬ノズル等に多用
されている旧、03−C材質では通常その骨材であるア
ルミナやシリカの最大粒径は0.5〜0.3+nn+で
ありその曲げ強さも最大100kg/cf程度であった
。そのためモールドの内張り材に使用したとき凝固した
鋳片の摩耗により耐火物の骨材粒子が組織から脱落して
材料稼動面の表面粗さが粗くなり鋳片に傷をつ番ノると
いう問題を生していた。
(Problem to be Solved by the Invention) However, in the old 03-C material, which has been conventionally widely used in immersion nozzles, etc., the maximum particle size of the alumina and silica, which are the aggregates, is usually 0.5 to 0. .3+nn+, and its bending strength was also about 100 kg/cf at maximum. Therefore, when used as a mold lining material, refractory aggregate particles fall out of the structure due to abrasion of the solidified slab, causing the surface roughness of the working surface of the material to become rough and causing damage to the slab. It was alive.

(課題を解決するための手段) したがって、本発明は比較的安価なアルミナ−カーボン
質を基本材質とし、面積度、耐摩耗性、潤滑性および強
度を向上させることにより、加熱モールドや水平連続鋳
造用プレクリング等の耐火物に適用可能な耐火物を提供
するものである。すなわち、本発明では従来よりも粒径
の小さいアルミナを使用することにより組織を微細化し
て強度を上げることとした。基本材質のもう1つである
炭素は柔軟性、潤滑性および耐スポール性に貢献する。
(Means for Solving the Problems) Therefore, the present invention uses relatively inexpensive alumina-carbon material as a basic material and improves surface area, wear resistance, lubricity, and strength, thereby making it possible to perform heating molding and horizontal continuous casting. The present invention provides a refractory that can be applied to refractories such as pre-clinging. That is, in the present invention, the structure is made finer and the strength is increased by using alumina having a smaller particle size than the conventional one. Carbon, another basic material, contributes to flexibility, lubricity and spall resistance.

この炭素の一部を窒化硼素と置き換えることも可能であ
る。したがって本発明の耐火物は、 a)炭素単独で、または炭素と窒化硼素とを合わせて5
〜30匈t%および b) 粒度が0゜15mm以下のアルミナが95〜70
wt% を含むAl2O,−C質を基本組成とした構成になって
いる。この基本組成に、耐酸化性の向上を目的として炭
化硼素、および強度や耐摩耗性の向にを目的として金属
シリコンを添加することも可能である。
It is also possible to replace part of this carbon with boron nitride. Therefore, the refractory of the present invention comprises: a) carbon alone or a combination of carbon and boron nitride;
~30 t% and b) 95-70 alumina with a particle size of 0°15 mm or less
The basic composition is Al2O, -C containing % wt%. It is also possible to add boron carbide to this basic composition for the purpose of improving oxidation resistance, and metal silicon for the purpose of increasing strength and wear resistance.

本発明で使用されるアルミナは粒度分布を有するのが好
ましく、この粒度分布において、a) 粒径0.044
 m+++〜0.15mmが10〜40wt%、b) 
粒径0.010 mm−0,CN3 mmが30〜60
wt%、C) 粒径0.010 +++m以下が20〜
40wt%、である。
The alumina used in the present invention preferably has a particle size distribution in which: a) particle size 0.044;
m+++~0.15mm is 10~40wt%, b)
Particle size 0.010 mm-0, CN3 mm is 30-60
wt%, C) Particle size 0.010 +++ m or less is 20~
It is 40wt%.

また、本発明の耐火物に含有される炭素の原料としては
黒鉛が好適であり、この黒鉛もまた粒度分布を有するこ
とが効果的である。
Further, graphite is suitable as a raw material for carbon contained in the refractory of the present invention, and it is effective that this graphite also has a particle size distribution.

この粒度分布において a) 粒径0.15mm以上が40〜70wt%、b)
 粒径0.15mm 〜0.044 mmが10〜40
wt%、C)粒径0.044 mm以下がICl−4(
ht%、であることが好ましい。
In this particle size distribution, a) particle size of 0.15 mm or more is 40 to 70 wt%, b)
Particle size 0.15mm ~ 0.044mm is 10~40
wt%, C) Particle size of 0.044 mm or less is ICl-4 (
ht%.

本発明の耐火物は次のようにして得ることができる。ま
ず、炭素(または炭素と窒化硼素)とアルミナの基本組
成に炭化硼素や金属シリコン等の添加物を加えた後、ピ
ッチ、レジン等の有機バインダーを混合して混練する。
The refractory of the present invention can be obtained as follows. First, additives such as boron carbide and metal silicon are added to the basic composition of carbon (or carbon and boron nitride) and alumina, and then an organic binder such as pitch and resin is mixed and kneaded.

それから加圧成形して乾燥させ、非酸化性雰囲気中で焼
成する。
It is then pressure molded, dried and fired in a non-oxidizing atmosphere.

(作 用) このように本発明では使用するアルミナの粒径を主とし
て0.15mm以下の微粉とすることにより、耐火物の
組織が微細化される。これにより、例えば曲げ強さが1
50 kg/c+ll以」二となる等、耐火物の強度が
増大し、表面精度や潤滑性も向上する。さらにこの細か
いアルミナに粒度分布を持たせるとより大きな強度が付
与される。この粒度分布においては、粒径0.044 
mm 〜0.15mmが10〜40wt%、粒径0.0
10〜0.044 mmが30〜60wt%、粒径0.
010 mm以下が20〜40wt%である粒度分布と
することが効果的である。
(Function) As described above, in the present invention, the structure of the refractory is refined by using alumina mainly in fine powder having a particle size of 0.15 mm or less. As a result, for example, the bending strength is 1
The strength of the refractory is increased, such as 50 kg/c+ll or more, and the surface precision and lubricity are also improved. Furthermore, if this fine alumina has a particle size distribution, greater strength will be imparted. In this particle size distribution, the particle size is 0.044
mm ~0.15mm is 10~40wt%, particle size is 0.0
10 to 0.044 mm is 30 to 60 wt%, particle size is 0.
It is effective to have a particle size distribution in which 20 to 40 wt% of the particle size is 0.010 mm or less.

本発明の耐火物を構成する炭素としては黒鉛、とりわけ
リン状黒鉛が一般的に使用される。この炭素の含有量は
炭素単独または炭素と窒化硼素とを合せた量で5〜30
wt%が適当である。5wt%より少ないと耐スポール
性が劣り、また30w t%を超えると強度や耐食性の
低下をもたらす。また、耐火物中の炭素が溶鋼へ吸収さ
れる現象、いわゆる鋼のカーボンビックアンプが問題と
なるような場合には、炭素の一部を窒化硼素と置き換え
ることにより耐スポール性を損わずに低カーボン化を図
るごとが可能である。窒化硼素はホワイトカーボンとい
われているように熱伝導率、耐食性、潤滑性において黒
鉛と類似の特性を有することから、炭素と置き換え得る
のである。
Graphite, especially phosphorous graphite, is generally used as the carbon constituting the refractory of the present invention. The carbon content is 5 to 30 carbon alone or a combination of carbon and boron nitride.
wt% is appropriate. If it is less than 5 wt%, spall resistance will be poor, and if it exceeds 30 wt%, strength and corrosion resistance will be reduced. In addition, in cases where carbon in refractories is absorbed into molten steel, so-called carbon big amplifier of steel, it is possible to replace some of the carbon with boron nitride without impairing spall resistance. It is possible to reduce carbon emissions. Boron nitride is called white carbon and has properties similar to graphite in terms of thermal conductivity, corrosion resistance, and lubricity, so it can be replaced with carbon.

本発明において、炭素原料に使用可能なリン状黒鉛等の
黒鉛は、それ自体柔軟性があり、潤滑性、平滑性が大き
いので粒径が大きくてもその点では問題がない。しかし
、微細なものを配合して使用すれば分散がより均一にな
るので耐スポール性を向上させる効果を生ずる。さらに
粒度分布を持たせることにより、成形充填性を良好にす
ることが可能である。
In the present invention, graphite such as phosphorous graphite that can be used as a carbon raw material is flexible, has high lubricity, and smoothness, so there is no problem in that respect even if the particle size is large. However, if fine particles are blended and used, the dispersion becomes more uniform, resulting in the effect of improving spall resistance. Furthermore, by providing a particle size distribution, it is possible to improve molding and filling properties.

すなわち、リン状黒鉛等の黒鉛は、アルミナと壮べて比
重が小さいためその占める容積は相対的に大きいことか
ら、その粒度または粒度分布は耐火材料としての成形充
填性に大きく影響する。炭素の粒度分布と成形充填性と
の関係においては、少なくとも粒径0.15mm以上(
最大径は特に限定するものではないが0.5mm以下が
好ましい。)が40〜70wt%、粒径0.15〜0.
044 mmが10〜40wt%、粒径0.044mm
以下が10〜40wt%である粒度分布の場合に成形充
填性が良くなり、その結果気孔率が下がって強度が向上
する。
That is, since graphite such as phosphorous graphite has a lower specific gravity than alumina, and therefore occupies a relatively large volume, its particle size or particle size distribution greatly influences the moldability as a refractory material. In terms of the relationship between the particle size distribution of carbon and mold filling properties, it is important that the particle size is at least 0.15 mm or more (
Although the maximum diameter is not particularly limited, it is preferably 0.5 mm or less. ) is 40 to 70 wt%, particle size is 0.15 to 0.
044 mm is 10 to 40 wt%, particle size is 0.044 mm
In the case of a particle size distribution of 10 to 40 wt%, the molding and filling properties are improved, and as a result, the porosity is reduced and the strength is improved.

本発明の耐火物ではへ1□03−C質の基本組成に炭化
硼素や金属シリコンを添加することができる。このうち
炭化硼素は主として耐酸化性の向上を目的として添加さ
れ、金属シリコンは強度と耐摩耗性の向上を目的として
添加される。これらの添加量は、前述したアルミナと炭
素を合わせた重量、あるいは炭素の一部を窒化硼素で置
き換えた場合にはその窒化硼素をアルミナと炭素に加え
た重量を全体重量とすると、この全体重量の重量100
に対して炭化硼素の場合0.1〜3の割合が適当である
。この割合が0.1未満では効果がほとんど認められず
、3を超えると耐食性の低下や耐スポール性の劣化が顕
著になる。金属シリコンの添加量は前記全体重量の重量
100に対し、0.5〜10の割合となる範囲内にある
のが適当である。この範囲より少ないと添加の効果がほ
とんど認められず、この範囲を超えるとやはり耐食性や
耐スポール性の劣化が大きくなる。
In the refractory of the present invention, boron carbide or metallic silicon can be added to the basic composition of 1□03-C. Among these, boron carbide is added mainly for the purpose of improving oxidation resistance, and metallic silicon is added for the purpose of improving strength and wear resistance. The amount of these additions is the total weight of the aforementioned alumina and carbon, or if part of the carbon is replaced with boron nitride, the weight of the boron nitride added to alumina and carbon is the total weight. weight of 100
In the case of boron carbide, a ratio of 0.1 to 3 is appropriate. When this ratio is less than 0.1, almost no effect is observed, and when it exceeds 3, the corrosion resistance and spalling resistance deteriorate significantly. The amount of metal silicon added is suitably within a range of 0.5 to 10% of the total weight. If the content is less than this range, the effect of addition will hardly be recognized, and if it exceeds this range, corrosion resistance and spalling resistance will deteriorate significantly.

本発明の耐火物ではさらに、耐スポール性や耐酸化性を
向上させるために前記全体重量100に対して10以下
の割合で炭化珪素を添加することも可能である。
In the refractory of the present invention, it is also possible to add silicon carbide at a ratio of 10 or less to 100 of the total weight in order to improve spall resistance and oxidation resistance.

本発明の耐火物の製造工程においては、前述したような
原料は非酸化性雰囲気中で焼成される。これは炭素が酸
化されることによる組織劣化を防ぎ、高い強度を保持す
るためである。また、焼成温度を1000〜1500”
Cとすれば炭素と金属シリコンとの反応により炭化珪素
を生成して耐スポール性や強度を増大させることができ
る。
In the refractory manufacturing process of the present invention, the raw materials described above are fired in a non-oxidizing atmosphere. This is to prevent structural deterioration due to carbon oxidation and to maintain high strength. Also, increase the firing temperature to 1000-1500"
If C is used, silicon carbide can be generated by the reaction between carbon and metal silicon, thereby increasing spall resistance and strength.

また、ここで使用される有機バインダーとしてはピッチ
またはフェノールレジンが好適であるが両者を併用する
ことが強度や耐スポール性を付与する」二で効果的であ
る。有機バインダーの添加量は前述した全体重量100
に対して2〜20の割合が適当であり、少なすぎると十
分な強度を発現せず、また多ずぎる場合には焼成時にバ
インダーがら解離する揮発分によって成形体が膨れ組織
の脆弱化を招く懸念がある。
Further, as the organic binder used here, pitch or phenol resin is suitable, but it is effective to use both in combination to impart strength and spall resistance. The amount of organic binder added is 100% of the total weight as described above.
A ratio of 2 to 20 is appropriate; if it is too small, sufficient strength will not be developed, and if it is too large, the molded body will swell due to volatile matter that dissociates from the binder during firing, leading to weakening of the structure. There are concerns.

(実施例) 第1表に示す炭素および第2表に示すアルミナを用い、
第3表に示す原料配合で耐火物原料とし、この耐火物原
料を混合・混練後、加圧成形し非酸化雰囲気で焼成し、
耐火物レンガを得た。そして、本発明耐火物レンガ(N
o、]〜7)の物性を本発明の範囲外の比較品の物性止
具に第3表に併せて示した。なお第1表のリン状黒鉛A
は従来から通常に使用されているものであり、リン状黒
鉛Bはリン状黒鉛Aを粉砕して微細化したものである。
(Example) Using the carbon shown in Table 1 and the alumina shown in Table 2,
The raw material composition shown in Table 3 is used as a refractory raw material, and after mixing and kneading this refractory raw material, the raw material is pressure-formed and fired in a non-oxidizing atmosphere.
Obtained refractory bricks. Then, the refractory brick of the present invention (N
o,] to 7) are shown in Table 3 along with the physical properties of comparative fasteners outside the scope of the present invention. In addition, phosphorous graphite A in Table 1
has been conventionally used, and phosphorous graphite B is obtained by crushing phosphorous graphite A into fine particles.

また第2表のアルミナは焼結アルミナを粉砕して各粒度
にふるい分りしたものである。
The alumina shown in Table 2 is obtained by crushing sintered alumina and sifting it into various particle sizes.

第1表 炭素の性状 第2表 アルミナの性状 また、第1図(八)に本発明によるNo、 3の耐火物
レンガ、同しく第1図(B)に従来の浸漬ノズルに使用
される耐火物レンガ(粒径が0.5mm以下の熔融シリ
カを10wt%添加)の粒子組織の顕微鏡写真を夫々示
す。以上より、本発明の耐火物レンガでば組織が微細と
なり強度が大巾に向上したのが確認できた。
Table 1 Properties of carbon Table 2 Properties of alumina Also, Fig. 1 (8) shows No. 3 refractory bricks according to the present invention, and Fig. 1 (B) shows the refractory bricks used in conventional immersion nozzles. Microscopic photographs of the particle structure of Monobrick (10 wt % of fused silica with a particle size of 0.5 mm or less are added) are shown. From the above, it was confirmed that the refractory brick of the present invention had a fine structure and significantly improved strength.

次に、本発明による面1大物レンガNo、 1 、 N
Next, face 1 large brick No. 1, N according to the present invention
.

4およびNo、 5を第2図に示される加熱モールドに
使用してみた。第2図において、金属モールド1の上に
、この金属モールド1と同様に断面が角筒状とされた本
発明の耐火物からなり厚さが30mmとされた加熱モー
ルド2が立設されている。なお、3は加熱モールド2の
外周に巻回される加熱用の高周波ヒータであるとともに
、4は溶鋼である。そして、ガスバーナーによって加熱
モールド2の内面側の温度が800°C程度になるよう
に予熱した後に、溶鋼を流し込んで鋳造した。その結果
耐火レンガ3に熱衝撃による割れも発生せず損耗も少な
かった。
No. 4, No. 5, and No. 5 were used in the heating mold shown in FIG. In FIG. 2, a heating mold 2 made of the refractory material of the present invention and having a rectangular cylindrical cross section and a thickness of 30 mm is placed on top of a metal mold 1. . Note that 3 is a high-frequency heater for heating that is wound around the outer periphery of the heating mold 2, and 4 is molten steel. After preheating the heating mold 2 using a gas burner so that the temperature of the inner surface thereof reached approximately 800° C., molten steel was poured into the mold and casting was performed. As a result, no cracking occurred in the firebrick 3 due to thermal shock, and there was little wear and tear.

(発明の効果) 本発明の耐火物ではアルミナの粒径を主として0.15
mm以下とすることにより、耐火物のMi織が微細化さ
れ強度が従来に比べて大11に増大した。すなわち従来
がら浸漬ノズルに使用されてきたへ1□03−c質耐火
物ノズルでは、常温の曲げ強さが100 kg/c4程
度であったものが、本発明の耐火物では150 kg/
al1以上、大きなものでは240 kg/cfl以」
二という高い強度を示し、顕著な効果が得られた。しが
も組織の微細化により面精度、耐摩耗性、潤滑性につい
ても大きく改善された。その結果、従来は、窒化硼素や
窒化珪素等のニューセラミックスしか適用できなかった
連続鋳造設備にお4.(る湯面下凝固モールドの内張り
、加熱モールド、水平連鋳のブレークリング等の溶鋼が
凝固し始めている部位に、本発明の耐火物が通用可能と
なった。本発明の耐火物はニュセラミンクスよりも安価
で入手しやすいへ1□O,−C材質からなることも大き
な利点である。また、従来からAl2O3−〇質耐火物
が使用されてきたロングノズル、スライディングノズル
、浸漬ノズル等の部位においても高強度、高耐用性が要
求されており、本発明の耐火物は当然にこれら高強度、
高耐用性を満足するものとして適用可能である。
(Effect of the invention) In the refractory of the present invention, the particle size of alumina is mainly 0.15.
By making the thickness less than mm, the Mi weave of the refractory was made finer and the strength was increased by 11 times compared to the conventional one. In other words, the bending strength of the F1□03-C refractory nozzle conventionally used for immersion nozzles was approximately 100 kg/c4 at room temperature, but the refractory of the present invention has a bending strength of approximately 150 kg/c4.
Al1 or higher, large ones 240 kg/cfl or higher.”
It showed a high strength of 2, and a remarkable effect was obtained. Surface precision, wear resistance, and lubricity were also greatly improved by making the structure finer. As a result, 4. (The refractory of the present invention can now be used in areas where molten steel begins to solidify, such as the lining of submerged solidification molds, heating molds, and break rings in horizontal continuous casting. Another big advantage is that it is made of 1□O, -C material, which is cheaper and easier to obtain than minx.Al2O3-〇 refractories have traditionally been used for long nozzles, sliding nozzles, immersion nozzles, etc. High strength and high durability are also required in the parts, and the refractory of the present invention naturally has these high strength and high durability.
It can be applied as a material that satisfies high durability.

本発明の製造方法では、非酸化性雰囲気中で焼成を行う
ために炭素の酸化による組織劣化を生ずることがなく、
前述したような効果を10わずに良質の耐火物を提供す
ることが可能になった。
In the manufacturing method of the present invention, since the firing is performed in a non-oxidizing atmosphere, there is no structural deterioration due to carbon oxidation.
It has become possible to provide high-quality refractories without sacrificing the effects described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)、(B)は本発明による耐火物の粒子組織
、および従来品の粒子組織夫々の顕微鏡写真、 第2図は本発明の一実施例の耐火物を加熱モルトに適用
した際の状態を示す断面説明図である。 1・・・・・・金属モールド、 3・・・・・・ヒータ、 2・・・・・・加熱モールド、 4 ・・・・・・?容  鋼。
Figures 1 (A) and (B) are micrographs of the grain structure of the refractory according to the present invention and the grain structure of a conventional product, respectively. Figure 2 is a photograph of the refractory of an embodiment of the present invention applied to heated malt. FIG. 1...metal mold, 3...heater, 2...heating mold, 4...? Yong Steel.

Claims (1)

【特許請求の範囲】 1 a)炭素を単独で、または炭素と窒化硼素とを合わ
せて5〜30wt%および b)粒径が0.15mm以下のアルミナが95〜70w
t% を含むAl_2O_3−C質を基本組成としたことを特
徴とする連続鋳造用耐火物。 2 前記アルミナが粒度分布を有し、少なくともこの粒
度分布において a)粒径0.044mm〜0.15mmが10〜40w
t% b)粒径0.010mm〜0.044mmが30〜60
wt% c)粒径0.010mm以下が20〜40wt%である
ことを特徴とする請求項1に記載の連続鋳造用耐火物。 3 炭素が粒度分布を有し、少なくともこの粒度分布に
おいて a)粒径0.15mm以上が40〜70wt% b)粒径0.15mm〜0.044mmが10〜40w
t% c)粒径0.044mm以下が10〜40wt%である
ことを特徴とする請求項1に記載の連続鋳造用耐火物。 4 a)炭素を単独で、または炭素と窒化硼素とを合わ
せて5〜30wt%および b)粒径が0.15mm以下のアルミナが95〜70w
t% を含む基本組成とした耐火物原料に、 c)外掛けで0.1〜3wt%の炭化硼素、0.5〜1
0wt%の金属シリコンおよびバインダーを添加し、混
練・成形後非酸化性雰囲気中で焼成することを特徴とす
る連続鋳造用耐火物の製造方法。
[Claims] 1 a) 5 to 30 wt % of carbon alone or carbon and boron nitride in combination; and b) 95 to 70 w of alumina with a particle size of 0.15 mm or less.
A refractory for continuous casting, characterized in that its basic composition is Al_2O_3-C containing t%. 2 The alumina has a particle size distribution, and at least in this particle size distribution, a) particle size of 0.044 mm to 0.15 mm is 10 to 40 w;
t% b) Particle size 0.010mm to 0.044mm is 30 to 60
The refractory for continuous casting according to claim 1, characterized in that wt% c) particle size of 0.010 mm or less is 20 to 40 wt%. 3 Carbon has a particle size distribution, and at least in this particle size distribution, a) 40 to 70 wt% of particles with a particle size of 0.15 mm or more b) 10 to 40 wt% of particle sizes of 0.15 mm to 0.044 mm
The refractory for continuous casting according to claim 1, characterized in that c) particle size of 0.044 mm or less is 10 to 40 wt%. 4 a) 5 to 30 wt% of carbon alone or a combination of carbon and boron nitride and b) 95 to 70 w of alumina with a particle size of 0.15 mm or less
c) 0.1 to 3 wt% of boron carbide on the outside, 0.5 to 1
A method for producing a refractory for continuous casting, which comprises adding 0 wt% of metal silicon and a binder, kneading and shaping the product, and then firing the product in a non-oxidizing atmosphere.
JP2230824A 1990-08-31 1990-08-31 Refractory for continuous casting and production thereof Pending JPH04114957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2230824A JPH04114957A (en) 1990-08-31 1990-08-31 Refractory for continuous casting and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2230824A JPH04114957A (en) 1990-08-31 1990-08-31 Refractory for continuous casting and production thereof

Publications (1)

Publication Number Publication Date
JPH04114957A true JPH04114957A (en) 1992-04-15

Family

ID=16913860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2230824A Pending JPH04114957A (en) 1990-08-31 1990-08-31 Refractory for continuous casting and production thereof

Country Status (1)

Country Link
JP (1) JPH04114957A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285599A (en) * 1992-09-14 1994-10-11 Shinagawa Refract Co Ltd Nozzle for continuous casting
KR100770172B1 (en) * 2006-07-07 2007-10-25 재단법인 포항산업과학연구원 Refractory composition for tap hole in melter-gasifier of finex

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129703A (en) * 1973-03-28 1974-12-12
JPS60166261A (en) * 1984-02-06 1985-08-29 黒崎窯業株式会社 Refractory material for continuous casting apparatus member
JPS62260767A (en) * 1986-04-25 1987-11-13 ノ−トン カンパニ− Minute sintered refractories
JPH01212274A (en) * 1988-02-17 1989-08-25 Harima Ceramic Co Ltd Refractory material for nozzle comprising alumina-carbon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129703A (en) * 1973-03-28 1974-12-12
JPS60166261A (en) * 1984-02-06 1985-08-29 黒崎窯業株式会社 Refractory material for continuous casting apparatus member
JPS62260767A (en) * 1986-04-25 1987-11-13 ノ−トン カンパニ− Minute sintered refractories
JPH01212274A (en) * 1988-02-17 1989-08-25 Harima Ceramic Co Ltd Refractory material for nozzle comprising alumina-carbon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285599A (en) * 1992-09-14 1994-10-11 Shinagawa Refract Co Ltd Nozzle for continuous casting
KR100770172B1 (en) * 2006-07-07 2007-10-25 재단법인 포항산업과학연구원 Refractory composition for tap hole in melter-gasifier of finex

Similar Documents

Publication Publication Date Title
JPS59111985A (en) Composite body of ceramic material and metal
CN102584293B (en) Method for preparing magnesium-zirconium-carbon slide gate nozzle
JPS62297264A (en) Carbon-bonded refractories
CN115536410A (en) Low-carbon magnesia carbon brick and preparation method thereof
JPH04114957A (en) Refractory for continuous casting and production thereof
JP2012192430A (en) Alumina carbon-based slide gate plate
CN113683426A (en) Baking-free high-strength metal ceramic composite material and preparation method and application thereof
JPH026373A (en) Cast amorphous refractory
WO2019013728A1 (en) Chamotte refractory bricks (alumina-silica bricks) from waste sand of investment casting (lost wax casting, precision casting) mold
JPH03170367A (en) Refractory for continuous casting and its production
JP2001146464A (en) Refractory containing lump graphite
JPH0633179B2 (en) Irregular refractory for pouring
JP7377635B2 (en) Bricks for hot metal ladle and hot metal ladle lined with the bricks
JPS6081068A (en) Antispalling non-bake refractories
JPS608988B2 (en) Immersion nozzle composition for casting
JP2005335966A (en) Graphite-containing castable refractory
JP3157310B2 (en) Refractory
JP7130903B2 (en) Refractory materials for low-melting non-ferrous metals
JPH0725668A (en) Refractory for casting work
JPS5830265B2 (en) Refractories for continuous casting
JPH07330450A (en) Flow-in refractory material
JPS6127350B2 (en)
CN116589266A (en) Slag line low-carbon magnesia carbon brick for refining ladle and preparation method and application thereof
JP2000086334A (en) Brick for sliding nozzle apparatus
JPH05170523A (en) Sintered refractory