JPS5992144A - Composition of embedding material for precision casting - Google Patents

Composition of embedding material for precision casting

Info

Publication number
JPS5992144A
JPS5992144A JP20248782A JP20248782A JPS5992144A JP S5992144 A JPS5992144 A JP S5992144A JP 20248782 A JP20248782 A JP 20248782A JP 20248782 A JP20248782 A JP 20248782A JP S5992144 A JPS5992144 A JP S5992144A
Authority
JP
Japan
Prior art keywords
expansion
weight
silica
embedding material
investment material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20248782A
Other languages
Japanese (ja)
Other versions
JPS6044061B2 (en
Inventor
Fuminobu Kubo
久保 文信
Kazuhiko Kamiara
上新 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAISEI SHIKA KOGYO KK
Original Assignee
TAISEI SHIKA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAISEI SHIKA KOGYO KK filed Critical TAISEI SHIKA KOGYO KK
Priority to JP20248782A priority Critical patent/JPS6044061B2/en
Publication of JPS5992144A publication Critical patent/JPS5992144A/en
Publication of JPS6044061B2 publication Critical patent/JPS6044061B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:To provide a compsn. of an embedding material for precision casting which is formulated to expand largely on curing by mixing ZrSiO4, fused quartz, silica, NH4H2PO4 and MgO and kneading the mixture with a colloidal silica dispersion. CONSTITUTION:An embedding material prepd. by mixing 30-50wt% ZrSiO4, 15-30% fused quartz, 10-40% silica, 5-15% NH4H2PO4, 5-15% MgO is kneaded with a colloidal silica dispersion, whereby a compsn. of an embedding material for precision casting is obtd. The dispersant is mixed preferably at about 14-18cc with 100g, the embedding material. The expansion on curing of such compsn. is increased to about 4%. The expansion on curing is made adjustable by the concn. of the silica in the dispersant. Since there is virtually no expansion with heating, any cracking is not generated in the embedding material and the heating time is reduced.

Description

【発明の詳細な説明】 この発明は精密鋳造用埋没材組成物に関する。[Detailed description of the invention] The present invention relates to an investment material composition for precision casting.

歯冠などの歯科用鋳造品の精密鋳造において、埋没材中
に埋没されたワックス原型を加熱、焼失または溶出させ
て形成された成型空所に溶湯を注入して鋳造する際に、
合金は、その種類によって異なるが、約1.4〜2.3
%の熱収M4をするため、溶湯注入時の成型空所はあら
かじめ膨張させておく必要があり、この膨張は、埋没材
の硬化時および加熱時において生ずる膨張によって行な
われている。
In precision casting of dental cast products such as dental crowns, when casting by injecting molten metal into the mold cavity formed by heating, burning out or eluting the wax model embedded in the investment material,
The alloy varies depending on the type, but is approximately 1.4 to 2.3
% heat loss M4, it is necessary to expand the molding cavity beforehand when pouring the molten metal, and this expansion is carried out by the expansion that occurs when the investment material hardens and is heated.

従来の埋没材としては、シリカなどの耐火材に。Conventional investment materials include refractory materials such as silica.

結合材としてせつこうを混合したせつこう系埋没材ト、
結合材として第1リン酸アンモニウムオヨび酸化マグネ
シウムを混合したリン酸塩系埋没材とが一般に使用され
ており、後者のリン酸塩系埋没材は、m1者のせつこう
系埋没材に比べて、耐熱性が高いのでニッケル・クロム
−コバルト合金などの融点の高い合金の鋳造にも使用す
ることができ、また鋳造時の埋没材の強度が大きいなど
の利点がある。しかしなガら従来のリン酸′J4A系埋
没材は、水で混練すると、硬化膨張はほとんどなく、加
熱膨張が1%程度であるので、合金の熱収縮を十分に補
償することができない。このためにリン酸塩系埋没材の
混練には、コロイダルシリカ分散液が使用されており、
この場合はコロイダルシリカ分散液のシリカ濃度を大き
くすることによって硬化膨張を1%程度まで向上させる
ことができる。
Gypsum-based investment material mixed with plaster as a binding material,
Phosphate-based investment materials mixed with monoammonium phosphate and magnesium oxide as a binding material are generally used, and the latter phosphate-based investment materials have a higher performance than plaster-based investment materials. Since it has high heat resistance, it can also be used for casting alloys with high melting points such as nickel-chromium-cobalt alloys, and it also has advantages such as the strength of the investment material during casting. However, when conventional phosphoric acid J4A-based investment materials are kneaded with water, there is almost no hardening expansion and the heating expansion is about 1%, so that the thermal contraction of the alloy cannot be sufficiently compensated for. For this reason, colloidal silica dispersion is used for kneading phosphate-based investment materials.
In this case, the curing expansion can be improved to about 1% by increasing the silica concentration of the colloidal silica dispersion.

このようにリン酸塩系埋没材をコロイダルシリカ分散液
で混練することによって埋没材の全膨張率を大きくする
ことができるが、加熱時における昇を品速度を大きくす
ると膨張速度が大きくなって埋没材に亀裂を生ずるので
、徐々に昇温して長時間(たとえば3〜7時間)加熱す
る必要がある。上記の問題を解決するためには、硬化膨
張を大きくして加熱膨張を小さくシ、かつ加熱時の昇温
速度を大きくしても埋没材に亀裂が生ぜず、短時間にて
鋳造することができるものが要望されている。
In this way, the total expansion rate of the investment material can be increased by kneading the phosphate-based investment material with the colloidal silica dispersion, but if the product speed is increased during heating, the expansion rate will increase and the investment material will be buried. Since cracks occur in the material, it is necessary to gradually raise the temperature and heat it for a long time (for example, 3 to 7 hours). In order to solve the above problems, it is necessary to increase the curing expansion and reduce the heating expansion, and even if the heating rate is increased, the investment material will not crack and can be cast in a short time. What is possible is requested.

−万、試作無膨張埋没材を用いての鋳造体の変形につい
ての研究が報告されている(報告者筆木秀和、日本補綴
肉刺学会雑誌第24巻第2号第165〜185頁、昭和
55年5月31日発行)。
- A study on the deformation of a cast body using a prototype non-expandable investment material has been reported (Reporter: Hidekazu Fudeki, Journal of the Japanese Society of Prosthodontics, Vol. 24, No. 2, pp. 165-185, 1972) Published on May 31st).

この研究報告による埋没材組成物は、けい酸ジルコニウ
ム20〜40重量%、溶融石英5〜30重量%、クリス
トバライト20=、45重量%、第1リン酸アンモニウ
ム(Nr(、H,PO4) i 0重量%、酸化マグネ
シウム(MgO)10重量%全混合した埋没材に対して
水15重量%を加えて混練したものであり、この埋没材
は硬化膨張はなく、加熱時の膨張、収縮も非常に小さい
ものであって、鋳造体自体の変形を研究することを目的
として試作されたもLニア)である。
The investment material composition according to this research report contains 20-40% by weight of zirconium silicate, 5-30% by weight of fused silica, 20% by weight of cristobalite, 45% by weight of cristobalite, and ammonium monophosphate (Nr(,H,PO4) i 0 % by weight, 10% by weight of magnesium oxide (MgO) is mixed into the investment material, and 15% by weight of water is added and kneaded. It is small and was prototyped for the purpose of studying the deformation of the cast body itself.

本発明者らは、上記雑文による無膨張埋没材の加熱膨張
が非常に小さいことに着目し7、この埋没材をコロイダ
ルシリカ分散液で混練した組成物は、従来のリン酸塩系
埋没材をコロイダルシリカ分散液で混練した組成物に比
べて、硬化膨張がはるかに大きくなり、しかも加熱膨張
が非常に小さい1まであることを知見し、この発明を達
成するに至ったのである。
The present inventors focused on the fact that the thermal expansion of the non-expandable investment material according to the above miscellaneous paper is extremely small7, and a composition obtained by kneading this investment material with a colloidal silica dispersion is superior to conventional phosphate-based investment materials. It was discovered that the curing expansion was much larger than that of a composition kneaded with a colloidal silica dispersion, and the heating expansion was extremely small, up to 1. This led to the achievement of this invention.

すなわちこの発明は、けい酸ジルコニウム30〜50重
量%、溶融石英15〜30重量%、シリカ10〜40重
量%、第1リン酸アンモニウム5〜15重i%、酸化マ
グネシウム5〜15重量%を混合した埋没材を、コロイ
ダルシリカ分散液で混練したことを特徴とする精密鋳造
用埋没材組成物である。
That is, this invention mixes 30 to 50% by weight of zirconium silicate, 15 to 30% by weight of fused silica, 10 to 40% by weight of silica, 5 to 15% by weight of monoammonium phosphate, and 5 to 15% by weight of magnesium oxide. This is an investment material composition for precision casting, characterized in that the above investment material is kneaded with a colloidal silica dispersion.

この発明における埋没材成分中のけい酸ジルコニウム、
溶融石英は、加熱時においてほとんど膨張性はないので
、シリカの加熱膨張性を消去する作用を有する。埋没材
全成分中の混合割合はけい酸ジルコニウム30〜50重
量%、溶融石英15〜30重量%であり、それぞれの下
限値未満であると埋没材の加熱時の膨張性が大きくなり
、またそれぞれの上限値を越えると加熱時に収縮性とな
って合金の熱収縮を補なうことができなくなる。
Zirconium silicate in the investment material component in this invention,
Since fused silica has almost no expansion property when heated, it has the effect of eliminating the heating expansion property of silica. The mixing ratio in the total components of the investment material is 30 to 50% by weight of zirconium silicate and 15 to 30% by weight of fused quartz.If they are below the respective lower limits, the expansion property of the investment material will increase when heated, and each If the upper limit of is exceeded, the alloy will shrink when heated and will not be able to compensate for the thermal contraction of the alloy.

埋没材成分中のシリカは、クリストバライトもしくは石
英であり、その混合割合はio〜40重量%である。シ
リカの混合割合が10重量%未満であると結合材の加熱
収縮を補なうことができず、また40重量%を越えると
埋没材の加熱膨張性が大きくなる。埋没材成分中の第1
リン酸アンモニウムと酸化マグネシウムとは結合材であ
り、それぞれの混合割合は5〜15重量%である。それ
ぞれの混合割合が5重量%未満であると硬化性が低下j
−て混練組成物の硬化に長時間を要すると共に加熱後の
埋没材の強度が低下し、捷だ15重量%を越えると加熱
後の埋没材の強度が大きくなり過ぎて鋳造品の取出し作
業が困難となる。
The silica in the investment material component is cristobalite or quartz, and the mixing ratio thereof is io to 40% by weight. If the mixing ratio of silica is less than 10% by weight, it will not be possible to compensate for the heat shrinkage of the binding material, and if it exceeds 40% by weight, the thermal expansion property of the investment material will increase. The first component in the investment material
Ammonium phosphate and magnesium oxide are binders, and the mixing ratio of each is 5 to 15% by weight. If the mixing ratio of each is less than 5% by weight, curability decreases.
- It takes a long time for the kneaded composition to harden, and the strength of the investment material after heating decreases.If the amount of kneading exceeds 15% by weight, the strength of the investment material after heating becomes too large, making it difficult to remove the cast product. It becomes difficult.

上記埋没材の各成分の割合は、コロイダルシリカ分散液
で混練した際の硬化時および加熱時の膨張性によって適
宜調節される。概していえば、シリカの混合割合が増加
するにつれてけい酸ジルコニウムに対する溶融石英の割
合を小さくすることが好ましい。なお、けい酸ジルコニ
ウムと溶融石英との割合はいずれが太きぐでもよい。
The proportion of each component in the investment material is appropriately adjusted depending on the expansion property during curing and heating when kneaded with a colloidal silica dispersion. Generally speaking, it is preferable to decrease the ratio of fused silica to zirconium silicate as the mixing ratio of silica increases. Note that the ratio of zirconium silicate to fused silica may be large.

この発明の特長とすることは、上記埋没4才をコロイダ
ルシリカ分散液で混練することによって、硬化膨張を高
め、加熱膨張をほとんどなくすことにある。埋没材io
o yに対するコロイダルシリカ分散液の混合量は14
〜18ccが好寸しく、混合量が小さ過ぎると均一な混
線が困ψ1[となり、混合量が多過ぎると硬化時間が長
くなり、硬化膨張や強度が小さくなるので好1しくない
。重要なことはコロイダルシリカ分散液の濃度であり、
ン農度が大きくなるにつれて硬化膨張が大きくなり、こ
の発明において゛は硬化膨張を4%程度まで向上させる
ことができる。従ってコロイダルシリカ分散液の濃度を
適宜に選ぶことによって、合金の異なる熱収縮性r十分
に補償することができる。コロイタルシリカ分散液は、
シリカ濃度20〜40%の範囲のものが市販されている
ので、所望の硬化膨張を得るには、市販のコロイダルシ
リカ分散液をそのitの濃度で使用するか、若しくは水
で希釈1−て1吏月]することができる。
The feature of this invention is that by kneading the above-mentioned buried 4-year-old with a colloidal silica dispersion liquid, curing expansion is increased and heating expansion is almost eliminated. investment material io
The amount of colloidal silica dispersion mixed with o y is 14
~18 cc is preferable; if the mixing amount is too small, it will be difficult to achieve uniform crosstalk, and if the mixing amount is too large, the curing time will become longer and the curing expansion and strength will decrease, which is not preferable. What is important is the concentration of the colloidal silica dispersion,
As the hardness increases, the cure expansion increases, and in the present invention, the cure expansion can be improved to about 4%. Therefore, by appropriately selecting the concentration of the colloidal silica dispersion, it is possible to sufficiently compensate for the different heat shrinkage properties of the alloy. Colloidal silica dispersion is
Since silica concentrations ranging from 20 to 40% are commercially available, to obtain the desired cure expansion, commercially available colloidal silica dispersions can be used at their concentrations or diluted with water 1-1. [Rigetsu] can be done.

この発明によれば、硬化膨張を4%程度にまで高めるこ
とができ、捷たコロイダルシリカ分散液のシリカン農度
によって硬化膨張を任意に調節することができるので、
熱収縮性の大きい合金についても十分に熱収縮を補償す
ることができる。また加熱膨張はほとんどないので、加
熱時に昇温速度を大きくしても埋没材に亀裂を生ずるこ
とがなく。
According to this invention, the curing expansion can be increased to about 4%, and the curing expansion can be arbitrarily adjusted by the silica content of the crushed colloidal silica dispersion.
Heat shrinkage can be sufficiently compensated even for alloys with high heat shrinkability. Furthermore, since there is almost no thermal expansion, cracks will not occur in the investment material even if the heating rate is increased during heating.

従って加熱時間を短縮することができ、′!、た700
℃の焼成炉中に直接供給することができ、その結果鋳造
工程時間が短かくなる。
Therefore, the heating time can be shortened,'! ,700
℃ can be fed directly into the kiln, resulting in a short casting process time.

以下にこの発明の詳細な説明する。This invention will be explained in detail below.

実施例1 けい酸ジルコニウム(ネ)1度74〜500μm、アソ
シエーテツド・ミネラルヌ・コンサリデーテッド7・1
製)40市−φ・%、溶融石英(ふるい44μmを90
%パヌ、74μ〃zを92%パヌ、14911mで1%
残留の粒度分布、商品名ニッヵンコ−1・W −P、日
本ルツボjt[)25重量%、クリストバライト(粒度
7411m以下、大成歯科工業社調aQ ) i 5重
量%、第1リン酸アンモニウム(粒度74μm 以下、
片山化学社製)10重量%、酸化マクネシウム(粒度7
4μη2以下、大成歯科工業社調製)を混合器で30分
間混合して埋没材を調製し、この埋没材100fIに対
してコロイダルシリカ分散面(シリカ濃度30%、商品
名力タロイド5C−3Q、触媒化成工業社製)16cc
の割合で添加し、真空練和器(0−C社製)で混練速度
350rpmで混練1−た。
Example 1 Zirconium silicate (N) 1 degree 74-500 μm, Associated Mineral Consolidated 7.1
)40 city-φ・%, fused silica (sieve 44 μm 90
%panu, 74μ〃z is 92%panu, 14911m is 1%
Residual particle size distribution, trade name Nikkanko-1 W-P, Japan Crucible JT [) 25% by weight, cristobalite (particle size 7411 m or less, Taisei Dental Industry Co., Ltd. survey aQ) i 5% by weight, monobasic ammonium phosphate (particle size 74 μm) below,
(manufactured by Katayama Chemical Co., Ltd.) 10% by weight, magnesium oxide (particle size 7
4 μη2 or less, prepared by Taisei Dental Industry Co., Ltd.) for 30 minutes in a mixer to prepare an investment material, and 100 fI of this investment material was mixed with a colloidal silica-dispersed surface (silica concentration 30%, trade name Chikara Taloid 5C-3Q, catalyst). (manufactured by Kasei Kogyo Co., Ltd.) 16cc
and kneaded at a kneading speed of 350 rpm using a vacuum kneader (manufactured by 0-C).

この埋没材組成物を、前記筆木秀和氏の研究報告の徂j
定法に準じて硬化膨張、加熱膨張を測定し、その結果を
第1図のグラフで示j−た。第1図のグラフAはコロイ
ダルシリカ分散液のシリカ濃度30%のものであり、硬
化膨張率は4.0%に向上し、加熱時における膨張はみ
られなかった、第1図のグラフBは、上記のカタロイド
5C−30を水で希釈し、シリカ濃度20%としたもの
を使用した場合で、グラフBにおいては硬化膨張率は1
.7%でアリ、加熱時における膨張はみられない。
This investment material composition was prepared according to the research report by Hidekazu Fudeki.
Curing expansion and heating expansion were measured according to standard methods, and the results are shown in the graph of FIG. Graph A in Figure 1 is for a colloidal silica dispersion with a silica concentration of 30%, and the curing expansion rate has improved to 4.0%, and no expansion was observed during heating. Graph B in Figure 1 is , when the above Cataloid 5C-30 is diluted with water and the silica concentration is 20%, the cure expansion coefficient is 1 in graph B.
.. At 7%, no expansion was observed during heating.

実施例2 1 記!5+、! 施例1vcおいて、−h ll o
 4 FSC−30ツノリカ濃度を15.20.25.
30%に変化させた場合の硬化膨張率を測定し、その結
果を第2図のグラフC(実線)で示り、た。上記実bl
a例1において、コロイダルシリカ分散液として、商品
名スノーテックス40(シリカ濃度40%、日産化学工
業社製)を1吏用し、シリカ濃度を10,2(L80.
40%に変化させた場合の硬化膨張率の変化を測定し、
その結果を第2図のグラフ1〕(点線)で示した。」二
記第2図のグラフで示すように、コロイダルシリカ分散
液のシリカ濃度が大きくなるにつれて硬化膨張率は大き
くなり、またメーカの相違によって硬化膨張率は若干差
異がある。
Example 2 1 Note! 5+,! In Example 1vc, -h ll o
4 FSC-30 Thornica concentration 15.20.25.
The cure expansion coefficient was measured when the temperature was changed to 30%, and the results are shown in graph C (solid line) in FIG. The above fruit bl
a In Example 1, one volume of the trade name Snowtex 40 (silica concentration 40%, manufactured by Nissan Chemical Industries, Ltd.) was used as a colloidal silica dispersion, and the silica concentration was 10.2 (L80.
Measure the change in cure expansion rate when changing to 40%,
The results are shown in graph 1 (dotted line) in FIG. As shown in the graph of FIG. 2, the cure expansion coefficient increases as the silica concentration of the colloidal silica dispersion increases, and there are slight differences in the cure expansion coefficient depending on the manufacturer.

【図面の簡単な説明】[Brief explanation of drawings]

第】図は実施例1の膨張率の変化を示すグラフ、第2図
は硬イし膨張率とコロイダルシリカ分散液のシリカ濃度
の関係を示すグラフである。 =277
FIG. 2 is a graph showing the change in the expansion coefficient of Example 1, and FIG. 2 is a graph showing the relationship between the hardening expansion coefficient and the silica concentration of the colloidal silica dispersion. =277

Claims (1)

【特許請求の範囲】 〔l〕けい酸ジルコニウム30〜50重量%、溶融石英
15〜30重量%、シリカ10〜40fi量%、第1リ
ン酸アンモニウム5〜15重量%、酸化マグネシウム5
〜15重量%を混合した埋没材を、コロイダルシリカ分
散液で混練したことを特徴とする精密鋳造用埋没材組成
物。
[Claims] [l] 30 to 50% by weight of zirconium silicate, 15 to 30% by weight of fused silica, 10 to 40% by weight of silica, 5 to 15% by weight of monoammonium phosphate, 5% by weight of magnesium oxide
An investment material composition for precision casting, characterized in that an investment material containing ~15% by weight is kneaded with a colloidal silica dispersion.
JP20248782A 1982-11-18 1982-11-18 Investment material composition for precision casting Expired JPS6044061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20248782A JPS6044061B2 (en) 1982-11-18 1982-11-18 Investment material composition for precision casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20248782A JPS6044061B2 (en) 1982-11-18 1982-11-18 Investment material composition for precision casting

Publications (2)

Publication Number Publication Date
JPS5992144A true JPS5992144A (en) 1984-05-28
JPS6044061B2 JPS6044061B2 (en) 1985-10-01

Family

ID=16458313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20248782A Expired JPS6044061B2 (en) 1982-11-18 1982-11-18 Investment material composition for precision casting

Country Status (1)

Country Link
JP (1) JPS6044061B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135448A (en) * 1984-12-04 1986-06-23 Ohara:Kk Mold material for casting pure titanium and titanium alloy and production of casting mold
EP1043094A1 (en) * 1999-04-09 2000-10-11 SHERA-Werkstofftechnologie GmbH & Co.KG Process for making castings and moulding material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61262775A (en) * 1985-05-17 1986-11-20 Sharp Corp Fixing device for copying machine with composite copying function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135448A (en) * 1984-12-04 1986-06-23 Ohara:Kk Mold material for casting pure titanium and titanium alloy and production of casting mold
JPH021586B2 (en) * 1984-12-04 1990-01-12 Ohara Kk
EP1043094A1 (en) * 1999-04-09 2000-10-11 SHERA-Werkstofftechnologie GmbH & Co.KG Process for making castings and moulding material

Also Published As

Publication number Publication date
JPS6044061B2 (en) 1985-10-01

Similar Documents

Publication Publication Date Title
CN105732014A (en) Silicon-based ceramic core preparation method
DE3542921A1 (en) MOLDED MATERIAL AND METHOD FOR POWING PURE TITANIUM OR TITANIUM ALLOYS
TWI611814B (en) Casting material for casting and casting method using the same
KR100864717B1 (en) Plastery Investment used for Investment casting
US4591385A (en) Die material and method of using same
US2081558A (en) Casting investment material and process
US4106945A (en) Investment material
JP2857872B2 (en) Dental investment
JPS5992144A (en) Composition of embedding material for precision casting
EP0511546B1 (en) Investment material and mold for dental use and burnout thereof
CN101372033A (en) Self-spreading method for quickly casting armored vehicle aluminium alloy part or blank for emergency in battlefield
JPS601109A (en) Embedding composition for precision casting
JPH082771B2 (en) Rapid heating type investment material composition
JP3447769B2 (en) Dental investment composition
JP4861269B2 (en) Gypsum mold for casting crystal glass and composition for producing gypsum mold
US2195452A (en) Method of making articles of porcelain
US1962764A (en) Investment
JP4786080B2 (en) Dental rapid heating phosphate investment
JP7532400B2 (en) Investment Powder
JP2578076B2 (en) Dental refractory profile
JPS59172406A (en) Investment composition for dental casting
JPH04200950A (en) Molding material for casting metal having high melting point
JPS6115778B2 (en)
JPS60208902A (en) Dental embedding commposition for casting having high thermal expansion coefficient
SU944745A1 (en) Mixture for producing casting moulds