JPS61134611A - Instrument for measuring shape in furnace - Google Patents

Instrument for measuring shape in furnace

Info

Publication number
JPS61134611A
JPS61134611A JP25818984A JP25818984A JPS61134611A JP S61134611 A JPS61134611 A JP S61134611A JP 25818984 A JP25818984 A JP 25818984A JP 25818984 A JP25818984 A JP 25818984A JP S61134611 A JPS61134611 A JP S61134611A
Authority
JP
Japan
Prior art keywords
lance
furnace
measuring
laser beam
measuring lance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25818984A
Other languages
Japanese (ja)
Inventor
Takayuki Yanagimoto
柳本 隆之
Yuichiro Asano
浅野 有一郎
Seiji Watanabe
誠治 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25818984A priority Critical patent/JPS61134611A/en
Publication of JPS61134611A publication Critical patent/JPS61134611A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To detect the local bend at the front end of a measuring lance with good accuracy by providing plural circular rings near the front end of the measuring lance and picking up the image of the movement of the lowermost point by an image pickup means having the visual vield including the lowermost point of the plural circular rings near the front end of the measuring lance provided to a self-traveling carriage which supports the rear end of the measuring lance. CONSTITUTION:A measuring lance 12 is inserted into a converter 10 and a laser beam 23 is projected by projecting parts 24, 28 to furnace wall surface 10B and a furnace base 10C. The images of the bright points 26A, 30A of the beam are respectively received by photodetecting parts 32, 34 and are fed to an ITV36, by which the images are picked up. Such operation is executed while the lance 12 is rotated around the axis by a lance driving part 22 and is moved in the axial direction so as to scan the entire inside surface of the converter by the laser beams 26, 30. The coordinates at the respective points of the profile in the furnace are thus determined in accordance with the principle of triangulation by the various coordinate positions and rotating angle. However, the deflection by gravity, etc. arise when the lance 12 is inserted into the furnace and therefore the movement of the lowermost point of the circular rings 14, 16 on the lance 12 are projected on the ITV40 and the positions of the bright points 26A, 30A of the laser beam are corrected.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、炉内形状の測定装置に係り、特に、転炉の内
張耐火物の損耗状態を検出する際に用いるのに好適な、
炉内に投射したレーザビームの輝点の位置から、炉内の
形状を非接触で測定する炉内形状の測定装置の改良に関
する。
The present invention relates to an apparatus for measuring the shape inside a furnace, and is particularly suitable for use in detecting the state of wear and tear on the refractory lining of a converter.
The present invention relates to an improvement of a furnace shape measuring device that non-contactly measures the shape of the inside of a furnace from the position of a bright spot of a laser beam projected into the furnace.

【従来の技術】[Conventional technology]

耐火物内張が施された炉、例えば転炉等の製鋼炉の寿命
は、内張耐火物の損耗により決まる。近年、耐火物内張
の内面損耗に対する補修技術が発達すると共に、出鋼後
の耐火物損耗状態を、高精度で且つ迅速に測定する技術
が求められている。 そこで、例えば特開昭54−115160で、転炉の出
鋼直後、その内部に測定ランスを挿入し、この測定ラン
スの先端部に取付けた投光部と受光部とにより、レーザ
光を用いていわゆる三角測量の原理に基づき、耐火物内
張の内面形状を測定する方法が提案されている。 この方法では、測定ランスをその中心軸のまわりに回転
及び/又は中心軸心の向きに平行移動させることにより
、耐火物内張の内面を広い範囲に亘り、溶損状況の検出
確認をすることができる。
The life of a refractory-lined furnace, for example a steelmaking furnace such as a converter, is determined by the wear and tear of the refractory lining. In recent years, along with the development of repair techniques for internal wear of refractory linings, there is a need for techniques to quickly and accurately measure the state of wear of refractories after tapping. Therefore, for example, in Japanese Patent Application Laid-Open No. 115160/1983, a measuring lance is inserted into the converter immediately after steel is tapped, and a laser beam is used by a light emitting part and a light receiving part attached to the tip of this measuring lance. A method of measuring the inner surface shape of a refractory lining has been proposed based on the principle of so-called triangulation. In this method, by rotating the measuring lance around its central axis and/or moving it in parallel in the direction of the central axis, it is possible to detect and confirm the state of erosion over a wide range of the inner surface of the refractory lining. I can do it.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら、特開昭54−115160で提案された
方法により、溶損位置の検出を正確に行うためには、測
定ランスの中心軸心が毎測定時又は少なくとも1回の測
定中には、常に一定であることが必要であるが、最近の
転炉は炉容が著大であるため、出鋼後の直角に傾動した
転炉内への水平方向の挿入に際して、測定ランスが一般
に重力による撓みを生じ、又、上下左右における振動も
加わるので、測定ランスの中心軸心の曲線形状を一定に
保つことができず、変化してしまい、実際上正確な測定
を行うことは甚だ困難であった。 このような問題点を解決するものとして、出願人は既に
特願昭58−153193で、炉外の撮像装置により中
空ランスの先端部をIIIL、その画像信号を処理演算
して得られるランス先端の最    1下端位置の情報
から、その検出時点における測定ランスの中心軸心の曲
線形を推定し、これにより測定ランスの曲りやrXvJ
に基づく測定誤差を修正する方法を提案している。 しかしながら、この特願昭58−153193で開示し
た方法では、測定ランス先端の最下点1点の位置を検出
するようにしていたため、特に測定ランス先端部の局所
的な曲りを精度良く検出することは困難であった。。
However, in order to accurately detect the erosion position using the method proposed in JP-A-54-115160, it is necessary to keep the center axis of the measuring lance constant during each measurement or at least one measurement. However, because the furnace volume of modern converters is extremely large, the measuring lance generally does not deflect due to gravity when inserted horizontally into the converter, which is tilted at right angles after tapping. In addition, since vertical and horizontal vibrations are also added, the curved shape of the central axis of the measuring lance cannot be kept constant and changes, making it extremely difficult to perform accurate measurements in practice. In order to solve these problems, the applicant has already proposed in Japanese Patent Application No. 58-153193 a method of imaging the tip of a hollow lance using an imaging device outside the reactor, and processing and calculating the image signal to obtain the tip of the lance. From the information on the lowest end position, the curve shape of the central axis of the measuring lance at the time of detection is estimated, and this is used to estimate the curve of the measuring lance and rXvJ.
We propose a method to correct measurement errors based on . However, in the method disclosed in Japanese Patent Application No. 58-153193, the position of the lowest point of the tip of the measuring lance is detected, so it is difficult to accurately detect local bending of the tip of the measuring lance. was difficult. .

【発明の目的】[Purpose of the invention]

本発明は、前記従来の問題点を解消するべくなされたも
ので、測定ランス先端部の局所的な曲りを精度良く検出
することができ、従って、測定ランスの曲りに応じた高
精度の補正が可能な炉内形状の測定装置を提供すること
を目的とする。
The present invention was made in order to solve the above-mentioned conventional problems, and it is possible to detect the local bending of the tip of the measuring lance with high accuracy, and therefore to perform highly accurate correction according to the bending of the measuring lance. The purpose of the present invention is to provide a device for measuring the inside shape of a furnace.

【問題点を解決するための手段】[Means to solve the problem]

本発明は、炉内に投射したレーザビームの輝点の位置か
ら、炉内の形状を非接触で測定する炉内形状の測定装置
において、先端近傍に複数の円環が配設され、炉口より
炉内に挿入される、軸まわりに0転自在な測定ランスと
、該測定ランスの後端部を支持する、測定ランスの軸方
向に移動可能な自走台車と、該自走台車の移動変位を検
出する移動変位検出手段と、前記自走台車に配設された
、前記測定ラシスを回転させろランス駆助手段と、前記
測定ランスの回転角を検出する回転角検出手段と、前記
測定ランスに配設された、レーザビームを設定角度で炉
内に投射する投光手段と、前記測定ランスに配設された
、前記投光手段によるレーザビーム輝点を含む視野で炉
内の光学像を得る受光手段と、該受光手段によって得ら
れた光学像を撮像する第1撮像手段と、前記自走台車に
配設された、前記測定ランス先端近傍の複数の円環の最
下点を含む視野で、該最下点の動きを撮像する第2撮像
手段と、前記第1W1一手段で検出されたレーザビーム
輝点の位置を、前記第2撮像手段で検出された測定ラン
スの曲り量で補正することによって得られるレーザビー
ム輝点の真の位置、前記測定ランスの回転角及び移動変
位から、炉内形状を計算する信号処理手段と、を備える
ことにより、前記目的を達成したものである。
The present invention provides a furnace shape measuring device for non-contact measuring the shape of the inside of a furnace from the position of a bright spot of a laser beam projected into the furnace. A measuring lance that is inserted into the furnace and is rotatable around its axis; a self-propelled cart that supports the rear end of the measuring lance and is movable in the axial direction of the measuring lance; and movement of the self-propelled cart. a moving displacement detection means for detecting displacement; a lance driving means disposed on the self-propelled cart for rotating the measurement lance; a rotation angle detection means for detecting a rotation angle of the measurement lance; A light projecting means for projecting a laser beam into the furnace at a set angle, arranged on the measurement lance; a first imaging means for capturing an optical image obtained by the light receiving means; and a field of view including the lowest point of a plurality of rings near the tip of the measuring lance disposed on the self-propelled cart. and a second imaging means for imaging the movement of the lowest point, and correcting the position of the laser beam bright spot detected by the first W1 means with the amount of bending of the measuring lance detected by the second imaging means. The above object is achieved by comprising a signal processing means for calculating the shape of the furnace interior from the true position of the laser beam bright spot obtained by the above-mentioned measurement, and the rotation angle and movement displacement of the measuring lance.

【作用】[Effect]

本発明においては、測定ランスの曲り量を検出するに際
して、測定ランスの先端近傍に複数の円環を配設すると
共に、測定ランスの後端部を支持する自走台車に配設し
た、前記測定ランス先端近傍の複数の円環の最下点を含
む視野を有する第2撮像手段で、該最下点の動きをWi
像するようにしたので、測定ランス先端部の局所的な曲
り量を精度良く検出することができる。従って、炉内の
光学像を得る第1搬像手段で検出されたレーザビーム輝
点の位置を高11度で補正することができ、真のレーザ
ビーム輝点の位置、即ち炉内形状を精度良く検出するこ
とができる。
In the present invention, when detecting the amount of bending of the measuring lance, a plurality of rings are arranged near the tip of the measuring lance, and the measuring lance is arranged on a self-propelled cart that supports the rear end of the measuring lance. A second imaging means having a field of view including the lowest points of the plurality of rings near the tip of the lance detects the movement of the lowest points.
Since the measurement lance is imaged, the local amount of bending at the tip of the measuring lance can be detected with high accuracy. Therefore, the position of the laser beam bright spot detected by the first image carrier that obtains the optical image inside the furnace can be corrected by a high degree of 11 degrees, and the true position of the laser beam bright spot, that is, the shape of the inside of the furnace, can be corrected with high precision. It can be detected well.

【実施例】【Example】

以下図面を参照して、本発明が採用された転炉のレンガ
残厚測定装置の実施例を詳細に説明する。 本実施例は、第1図に示す如く、炉口10Aより、出鋼
後の直角に傾動した転炉10内に挿入される、先端近傍
に2個の円環14.16が配設された、中心軸まわりに
回転自在な測定ランス12を含んでいる。該測定ランス
12の後端部は、昇降台20を介して、測定ランス12
の中心軸方向に移動可能な自走台車18によって支持さ
れている。該自走台車1Bには、その進退位置、即ち、
測定ランス12の進退位置×を検出する進退位置検出器
19が配設されている。前記昇降台20には、前記測定
ランス12をその中心軸まわりに回転させるランス駆動
機構21が配設されている。 該ランス駆動機構21には、測定ランス12の回転角θ
を検出する回転角検出器22が配設されている。前記測
定ランス12の先端部及び中央部側面には、レーザビー
ム26.30をそれぞれ設定角度で転炉10の炉壁面1
0B又は炉底面10Cに投射する投光部24.28が配
設されている。 更に、前記測定ランス12の側面には、前記投光部24
.28によるレーザビーム輝点26A、3OAを含む視
野32A、34Aで、炉壁面10B又は炉底面10Cの
光学像を得る受光部32.34が配設されている。  
                1前記自走台車18
の後部には、レーザビームを発振するレーザ発振器23
が配設されている。なお、レーザ発振123を床に固定
することもできる。 前記投光1!624.28は、測定ランス12内に収容
された光伝送ファイバ29によって前記レーザ発振器2
3と接続されている。 前記測定ランス12の後端には、前記受光部32.34
によって得られた炉内の光学像を搬像する第1の工業用
テレビカメラ(以下ITVと称する)36が配設されて
いる。該第1iTV36は、前i2測定ランス12内に
収容された画像伝送ファイバ38によって前記受光部3
2.34と接続されている。 前記自走台車18の前部には、前記測定ランス12先端
近傍の2つの円環14.16の最下点を含む視野で、該
最下点の動きをJli−する第2ITV40が配設され
ている。 更に、前記第11TV36で検出された画面上のレーザ
ビーム輝点26A、30Aの位置を、前記第2ITV4
0で検出された測定ランス12の曲りlで補正すること
によって得られるレーザビーム輝点の真の位置、前記測
定ランス12の回転角θ及び進退位置×から、炉内形状
を計算するミニコンピユータ42も備えられている。 前記測定ランス12は、第2図及び第3図に詳細に示す
如く、外側から順に、外パイプ12Bと、第1中間パイ
プ12Gと、第2中間パイプ120と、光学系支持パイ
プ12Eとから構成されている。前記第1中間バイブ1
2Cと第2中間パイプ12Dの関には、冷却水給水口1
2Fから冷却水が供給され、又、第1中間パイプ12G
と外バイ112Bの間には、冷却水排水口12Gが接続
され、何れも冷却水が送水されて冷却するようにされて
いる。又、前記光学系支持パイプ12Eの内部と第2中
閤パイプ120の内部には、パージガス供給口12H(
第1図)より圧縮空気が供給され、エアパージされてい
る。 前記投光部24は、第4図に詳細に示す如く、光伝送フ
ァイバ29Aで伝送されてきたレーザビームを、転炉1
0の炉壁面10Bに向けて投射するための光学ミラー2
4Aを含んでいる。 一方、前記投光部28は、同じく第4図に詳細に示した
如く、光伝送ファイバ29Bで伝送されてきたレーザビ
ームを、測定ランス12外に取出し、炉底面10Cに向
けて、即ち、測定ランス12の中心軸方向と略平行に投
射するための2つの光学ミラー28A、28Bと、該光
学ミラー28Bの角度を測定ランス12の長手方向を含
む面内で2次元的に変えるためのモータ28Cを含んで
おり、ビームスキャナの機能を有している。 前記受光部32.34は、光学像を得るためのレンズ系
からなる受光器32B134Bをそれぞれ含んでいる。 以下実施例の作用を説明する。 出鋼後の直角に傾動した転炉10内に、第1図に示した
如く、自走台車18を前進させて測定ランス12をその
最先端位置まで挿入する。この状態で、レーザ発!!2
3により発生されたレーザビームを、投光部24.28
により炉壁面10B及び炉底面10Cに投射し、壁面上
のレーザビーム輝点26A、30Aを、それぞれ受光部
32.34で受像する。 即ち、炉壁面10Bの測定については、前記レーザ発振
器23により発生したレーザビームを、光伝送ファイバ
29Aにより投光部24まで伝送し、光学ミラー24A
により、測定ランス12の中心軸に対して直角に、炉壁
面10Bに投射する。 該レーザビーム26の輝点26Aを視野に含む受光部3
2は、レーザビーム輝点26Aを含む光学像を得て、画
像伝送ファイバ38Aを介して第11TV36に伝送し
、ここで撮像される。 一方、炉底面10Cの測定に関しては、前記レーザ発振
器23により発生したレーザビームを光伝送ファイバ2
9Bにより投光部28まで伝送し、該投光部28によっ
て、測定ランス12の長手方向を含む面内で2次元的に
スキャンしながら炉底面10Gに投射する。炉底面10
Cに生じたレーザビーム輝点30Aは、受光部34で検
知され、画像伝送ファイバ38Bにより第117V36
ま    1で伝送して撮像される。 以上の操作を、ランス駆動部22により測定ランス12
を軸まわりに回転させ、且つ、自走台車18を後退させ
て軸方向に移動させながら行うことによって、レーザビ
ーム26.30は、転炉的全面を走査することが可能と
なり、炉内全域の測定を行うことができる。 このようにして、炉内プロフィル各点の座標は、投光部
24.28と受光部32.34の位置座標、レーザビー
ム26.3oの投光角、測定ランス12の回転角、光学
像の位置座標から三角測量の原理に基づき完全に決定さ
れる。 なお、溶損位置の検出を正確に行うためには、測定ラン
ス12の中心軸が、一連の測定中に常に一定であること
が必要である。しかしながら、測定ランス12は、炉内
挿入に際して、一般に重力による撓みを生じ、又、上下
左右の振動も加わるため、測定を正確に行うには、測定
ランス12の位置変動による測定誤差の補正が必要とな
る。そこで、本発明では、測定ランス12上の2定点、
即ち円環14.16の最下点の動きを、第5図に示を如
く、第2 ITV40LJ:す1lllt、’、回転中
の測定ランス12の位置を検出することにより、第11
TV36で検出されるレーザビーム輝点26A、30A
の位置を補正している。 即ち、今測定ランス12の中心軸が、第6図に示す如く
、Zから2′に変位しているとすると、レーザビーム輝
点Uの位置座標U (X、Y、Z)は、XYZ−0座標
系では、次のようにして求められる。 まず、円環14.16の最下点位置をそれぞれP、Qと
し、その位置座標をP(XalYa、Q)、Q(Xb、
Yb、d)とする。又、測定ランス12の回転角をθ、
レーザビームの投射角をβ、画像伝送ファイバ38での
レーザビーム輝点受像角をα+γとすると、測定点Uか
らZ−軸に下した垂線の足Tの位置座標は(Ktanβ
・xa+(1−Ktanβ)Xb1Ktanβ−Ya+
(1−K tanβ)Yb 、  (1−K tanβ
)dlとなる。 ここでKは次式で表わされる。 K−1/[tanβ+tan(α+γ) ]−(1)又
、次式の関係が成立する。 (1,0、O) ・Q P ’p L cosθ−(2
>(0,1,0)−QPΦL stnθ・(3)ここで
、Lは次式で表わされる。 L−UT =  d/ [tanβ+ tan(α+γ)]  ・
−(4)従って、次式の関係が成立する。 Z −Z Q −L sln$ −(1−Ktanβ)d −L    a−Xb)”+(Ya−Yb)’/d・・
・・・・・−(5) 以上の(2)、(3)及び(5)式より、結局測定点り
の真の座標(X%Y、Z)は、次式で表わされる。 X−Ktanβ−Xa + (1−K tanβ>xb
+KOO8θ−d      ・・・……(6)Y−K
tanβ”Ya+(1−Ktanβ)Yb+Kslnθ
−d      −−−−−−−−−(7)Z=(1−
Ktanβ)d −K    a −Xb ) t + (Ya −Yb
 ) t・・・・・・・−(8) 従って、第21TV40で検出される円環14.16の
最下点位IP、Qの座標Xa % Ya 1Xb 。 Yb 、d及び、測定ランス12の回転角θ、レーザビ
ーム投射角βにより、前記第11TV36で検出される
W!i像伝送ファイバ38でのレーザビーム輝点の受像
角α+γを補正することによって、該レーザビーム輝点
の真の位置座標X、Y、Zを前出(6)〜(8)式によ
り求めることができる。 発明者の実験によると、本実施例により、測定点位置精
度±1 On、耐火物厚さ方向精度±5n。 データ採集時間5ミリ秒/点(20秒/4000点)に
て、ブOフィル4000点を算出することができた。 本実施例においては、転炉10の炉壁面10Bと炉底面
10Gをそれぞれ独立した投受光系で同時に検出するよ
うにしているので、am度の測定を迅速に行うことがで
きる。なお、単一の投受光     1系で炉壁面10
Bと炉底面10Cを順次検出するように構成することも
可能である。 又、本実施例においては、レーザビーム輝点の位置決定
に際して、三角測量に基づく方法が用いられていたが、
パルスレーザによる時間測定又は振幅変調による位相差
測定のような、レーザレーダ法を用いることもできる。 前記実施例は、本発明を転炉のレンガ残厚測定に適用し
たものであるが、本発明の適用範囲はこれに限定されず
、電気炉等一般の溶解炉の炉内形状を同様に測定できる
ことは明らかである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a brick residual thickness measuring device for a converter to which the present invention is applied will be described in detail below with reference to the drawings. In this embodiment, as shown in FIG. 1, two rings 14 and 16 are arranged near the tip of the converter 10, which is inserted from the furnace mouth 10A into the converter 10 tilted at right angles after tapping. , includes a measuring lance 12 rotatable about a central axis. The rear end of the measuring lance 12 is connected to the measuring lance 12 via the lifting table 20.
It is supported by a self-propelled trolley 18 that is movable in the central axis direction. The self-propelled trolley 1B has its advancing and retreating positions, that is,
A forward/backward position detector 19 for detecting a forward/backward position x of the measuring lance 12 is provided. A lance drive mechanism 21 for rotating the measuring lance 12 around its central axis is disposed on the elevating table 20. The lance drive mechanism 21 has a rotation angle θ of the measuring lance 12.
A rotation angle detector 22 is provided to detect the rotation angle. Laser beams 26 and 30 are applied to the tip and central side surfaces of the measuring lance 12 at set angles to the furnace wall surface 1 of the converter 10, respectively.
Light projecting units 24 and 28 are provided to project light onto 0B or the furnace bottom surface 10C. Further, the light projecting section 24 is provided on the side surface of the measuring lance 12.
.. Light receiving sections 32 and 34 are provided to obtain an optical image of the furnace wall surface 10B or the furnace bottom surface 10C in fields of view 32A and 34A including the laser beam bright spots 26A and 3OA caused by the laser beams 28 and 3OA.
1 The self-propelled trolley 18
A laser oscillator 23 that emits a laser beam is installed at the rear of the
is installed. Note that the laser oscillation 123 can also be fixed to the floor. The light emitted 1!624.28 is transmitted to the laser oscillator 2 by an optical transmission fiber 29 housed in the measuring lance 12.
3 is connected. At the rear end of the measuring lance 12, the light receiving section 32.34 is provided.
A first industrial television camera (hereinafter referred to as ITV) 36 is disposed to convey an optical image of the inside of the furnace obtained by the above. The first iTV 36 is connected to the light receiving unit 3 by an image transmission fiber 38 housed in the front i2 measurement lance 12.
2.34 is connected. A second ITV 40 is disposed at the front of the self-propelled cart 18 to monitor the movement of the lowest point of the two rings 14 and 16 near the tip of the measuring lance 12 in a field of view that includes the lowest point. ing. Furthermore, the positions of the laser beam bright spots 26A, 30A on the screen detected by the 11th TV 36 are determined by the 2nd ITV 4.
A mini-computer 42 that calculates the shape of the furnace interior from the true position of the laser beam bright spot obtained by correcting the bending l of the measuring lance 12 detected at 0, the rotation angle θ and the advance/retreat position x of the measuring lance 12. are also provided. As shown in detail in FIGS. 2 and 3, the measurement lance 12 is composed of, in order from the outside, an outer pipe 12B, a first intermediate pipe 12G, a second intermediate pipe 120, and an optical system support pipe 12E. has been done. Said first intermediate vibe 1
2C and the second intermediate pipe 12D, there is a cooling water supply port 1.
Cooling water is supplied from 2F, and the first intermediate pipe 12G
A cooling water drain port 12G is connected between the external pipe 112B and the outside pipe 112B, and cooling water is supplied to both of them for cooling. Furthermore, a purge gas supply port 12H (
Compressed air is supplied from Fig. 1) and air purge is performed. As shown in detail in FIG. 4, the light projecting section 24 directs the laser beam transmitted through the optical transmission fiber 29A to the converter
Optical mirror 2 for projecting toward the furnace wall surface 10B of 0
Contains 4A. On the other hand, as also shown in detail in FIG. 4, the light projecting section 28 takes out the laser beam transmitted through the optical transmission fiber 29B to the outside of the measurement lance 12 and directs it toward the furnace bottom surface 10C, that is, for measurement. Two optical mirrors 28A and 28B for projecting images substantially parallel to the central axis direction of the lance 12, and a motor 28C for two-dimensionally changing the angle of the optical mirror 28B within a plane including the longitudinal direction of the measuring lance 12. It has the function of a beam scanner. The light receiving sections 32, 34 each include a light receiver 32B134B consisting of a lens system for obtaining an optical image. The operation of the embodiment will be explained below. As shown in FIG. 1, the self-propelled cart 18 is advanced and the measuring lance 12 is inserted into the converter 10, which is tilted at right angles after tapping, to its most extreme position. In this state, the laser fires! ! 2
3, the laser beam generated by
The laser beam is projected onto the furnace wall surface 10B and the furnace bottom surface 10C, and the laser beam bright spots 26A and 30A on the wall surface are received by the light receiving sections 32 and 34, respectively. That is, for the measurement of the furnace wall surface 10B, the laser beam generated by the laser oscillator 23 is transmitted to the light projecting section 24 through the optical transmission fiber 29A, and then
As a result, the light is projected onto the furnace wall surface 10B at right angles to the central axis of the measuring lance 12. A light receiving unit 3 whose field of vision includes the bright spot 26A of the laser beam 26
2 obtains an optical image including the laser beam bright spot 26A and transmits it to the 11th TV 36 via the image transmission fiber 38A, where it is imaged. On the other hand, regarding the measurement of the furnace bottom surface 10C, the laser beam generated by the laser oscillator 23 is transmitted to the optical transmission fiber 2.
9B to the light projecting section 28, and the light projecting section 28 projects the light onto the furnace bottom surface 10G while scanning two-dimensionally within a plane including the longitudinal direction of the measuring lance 12. Furnace bottom surface 10
The laser beam bright spot 30A generated at C is detected by the light receiving unit 34, and transmitted to the 117th V36 by the image transmission fiber
It is transmitted and imaged in step 1. The above operations are carried out by the lance drive unit 22 on the measuring lance 12.
By rotating around the axis and moving the self-propelled cart 18 backward in the axial direction, the laser beam 26.30 can scan the entire surface of the converter. Measurements can be taken. In this way, the coordinates of each point in the furnace profile are determined by the positional coordinates of the light emitter 24.28 and the light receiver 32.34, the projection angle of the laser beam 26.3o, the rotation angle of the measuring lance 12, and the optical image. It is completely determined from the position coordinates based on the principle of triangulation. In addition, in order to accurately detect the melting damage position, it is necessary that the central axis of the measuring lance 12 is always constant during a series of measurements. However, when the measuring lance 12 is inserted into the furnace, it is generally deflected by gravity and is also subjected to vertical and horizontal vibrations, so in order to perform accurate measurements, it is necessary to correct measurement errors caused by positional fluctuations of the measuring lance 12. becomes. Therefore, in the present invention, two fixed points on the measuring lance 12,
That is, as shown in FIG.
Laser beam bright spots 26A and 30A detected by TV36
The position of is being corrected. That is, if the central axis of the measuring lance 12 is now displaced from Z to 2' as shown in FIG. 6, the position coordinates U (X, Y, Z) of the laser beam bright spot U are In the 0 coordinate system, it is determined as follows. First, let the lowest point positions of the torus 14.16 be P and Q, respectively, and the position coordinates are P(XalYa, Q), Q(Xb,
Yb, d). Also, the rotation angle of the measuring lance 12 is θ,
If the projection angle of the laser beam is β, and the angle of reception of the laser beam bright spot at the image transmission fiber 38 is α+γ, the position coordinates of the foot T of the perpendicular line drawn from the measurement point U to the Z-axis are (Ktanβ
・xa+(1-Ktanβ)Xb1Ktanβ-Ya+
(1-K tanβ)Yb, (1-K tanβ
) dl. Here, K is expressed by the following formula. K-1/[tanβ+tan(α+γ)]-(1) Furthermore, the following relationship holds true. (1,0,O) ・Q P 'p L cos θ-(2
>(0,1,0)-QPΦL stnθ·(3) Here, L is expressed by the following formula. L-UT = d/ [tanβ+ tan(α+γ)] ・
-(4) Therefore, the following relationship holds true. Z -Z Q -L sln$ -(1-Ktanβ)d -L a-Xb)"+(Ya-Yb)'/d...
...-(5) From the above equations (2), (3), and (5), the true coordinates (X%Y, Z) of the measurement point are finally expressed by the following equation. X-Ktanβ-Xa + (1-Ktanβ>xb
+KOO8θ-d......(6)Y-K
tanβ"Ya+(1-Ktanβ)Yb+Kslnθ
−d −−−−−−−−−(7) Z=(1−
Ktanβ) d −Ka −Xb ) t + (Ya −Yb
) t...-(8) Therefore, the coordinates Xa % Ya 1Xb of the lowest point IP, Q of the ring 14.16 detected by the 21st TV 40. W! detected by the eleventh TV 36 from Yb, d, the rotation angle θ of the measuring lance 12, and the laser beam projection angle β! By correcting the reception angle α+γ of the laser beam bright spot in the i-image transmission fiber 38, the true position coordinates X, Y, and Z of the laser beam bright spot are determined by the above equations (6) to (8). I can do it. According to the inventor's experiments, this embodiment has a measurement point position accuracy of ±1 On and a refractory thickness direction accuracy of ±5 nm. With a data collection time of 5 milliseconds/point (20 seconds/4000 points), it was possible to calculate 4000 points of BuO fill. In this embodiment, since the furnace wall surface 10B and the furnace bottom surface 10G of the converter 10 are simultaneously detected by independent light emitting and receiving systems, the degree of am can be measured quickly. In addition, a single light emitting/receiving system has a furnace wall surface of 10
It is also possible to sequentially detect B and the furnace bottom surface 10C. Furthermore, in this embodiment, a method based on triangulation was used to determine the position of the laser beam bright spot;
Laser radar methods can also be used, such as time measurements with pulsed lasers or phase difference measurements with amplitude modulation. In the above example, the present invention is applied to measuring the brick residual thickness of a converter, but the scope of application of the present invention is not limited to this, and the inner shape of a general melting furnace such as an electric furnace can be similarly measured. It is clear that it can be done.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、測定ランス先端部
の局所的な曲り量を精度良く検出して、適確に補正する
ことができる。従って、炉内形状を、迅速に、且つ高精
度に測定することが可能となるという優れた効果を有す
る。
As described above, according to the present invention, the local bending amount of the tip of the measuring lance can be detected with high accuracy and corrected appropriately. Therefore, it has the excellent effect that the shape inside the furnace can be measured quickly and with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明が採用された、転炉のレンガ残厚測定
装置の実施例の全体構成を示:を断面図、第2図は、前
記実施例で用いられている測定ランスの内部構造を示す
横断面図、第3図は、同じく測定ランスの縦断面図、第
4図は、同じく光学系支持バイブを示す側面図、第5図
は、同じく第2工業用テレビカメラの画像の一例を示す
線図、第6図は、前記実施例における、測定ランスの曲
りに応じて測定点の検出値を補正する方法を示す線図で
ある。 10・・・転炉、       12・・・測定ランス
、12A、ZlZ”−・・中心軸、 14.16・・・円環、    18・・・自走台車、
19・・・遭遇位置検出器、  ×・・・ランス進退位
置、21・・・ランス駆動部、   22・・・回転角
検出器、θ・・・ランス回転角、    24.28・
・・投光部、−26,30・・・レーザビーム、 26A、30A・・・レーザビーム輝点、32.34・
・・受光部、 32A、34A−・・視野、 36.40−工業用テレビカメラ(ITV>、42・・
・ミニコンピユータ、 P、Q・・・最下点位置。
Fig. 1 shows the overall configuration of an embodiment of a brick residual thickness measuring device for a converter in which the present invention is adopted; 3 is a longitudinal sectional view of the measuring lance, FIG. 4 is a side view of the optical system support vibe, and FIG. 5 is a cross-sectional view of the second industrial television camera. FIG. 6, which is a diagram showing an example, is a diagram showing a method of correcting the detected value at the measurement point according to the bending of the measurement lance in the embodiment. 10... Converter, 12... Measuring lance, 12A, ZlZ"-... Central axis, 14.16... Annular ring, 18... Self-propelled trolley,
19...Encounter position detector, ×...Lance advance/retreat position, 21...Lance drive unit, 22...Rotation angle detector, θ...Lance rotation angle, 24.28.
...Light projection part, -26,30...Laser beam, 26A, 30A...Laser beam bright spot, 32.34.
... Light receiving section, 32A, 34A - Field of view, 36.40 - Industrial television camera (ITV>, 42...
・Mini computer, P, Q...lowest point position.

Claims (1)

【特許請求の範囲】[Claims] (1)炉内に投射したレーザビームの輝点の位置から、
炉内の形状を非接触で測定する炉内形状の測定装置にお
いて、 炉口より炉内に挿入される、先端近傍に複数の円環が配
設された、軸まわりに回転自在な測定ランスと、 該測定ランスの後端部を支持する、測定ランスの軸方向
に移動可能な自走台車と、 該自走台車の移動変位を検出する移動変位検出手段と、 前記自走台車に配設された、前記測定ランスを回転させ
るランス駆動手段と、 前記測定ランスの回転角を検出する回転角検出手段と、 前記測定ランスに配設された、レーザビームを設定角度
で炉内に投射する投光手段と、 前記測定ランスに配設された、前記投光手段によるレー
ザビーム輝点を含む視野で炉内の光学像を得る受光手段
と、 該受光手段によつて得られた光学を撮像する第1撮像手
段と、 前記自走台車に配設された、前記測定ランス先端近傍の
複数の円環の最下点を含む視野で、該最下点の動きを撮
像する第2撮像手段と、 前記第1撮像手段で検出されたレーザビーム輝点の位置
を、前記第2撮像手段で検出された測定ランスの曲り量
で補正することによつて得られるレーザビーム輝点の真
の位置、前記測定ランスの回転角及び移動変位から、炉
内形状を計算する信号処理手段と、 を備えたことを特徴とする炉内形状の測定装置。
(1) From the position of the bright spot of the laser beam projected into the furnace,
A furnace shape measurement device that measures the shape of the inside of a furnace in a non-contact manner uses a measuring lance that is inserted into the furnace from the furnace mouth and has multiple rings near its tip and is rotatable around its axis. , a self-propelled cart that supports the rear end of the measuring lance and is movable in the axial direction of the measuring lance; a movement displacement detection means for detecting a displacement of the self-propelled cart; Further, a lance driving means for rotating the measuring lance, a rotation angle detecting means for detecting a rotation angle of the measuring lance, and a light projection disposed on the measuring lance for projecting a laser beam into the furnace at a set angle. means, a light-receiving means disposed on the measurement lance for obtaining an optical image of the interior of the furnace with a field of view including a bright spot of the laser beam from the light projecting means; and a light-receiving means for capturing an optical image obtained by the light-receiving means a second imaging means disposed on the self-propelled cart and configured to image the movement of the lowest point of a plurality of rings near the tip of the measuring lance with a field of view including the lowest point; The true position of the laser beam bright spot obtained by correcting the position of the laser beam bright spot detected by the first imaging means by the amount of bending of the measurement lance detected by the second imaging means; A measuring device for the shape of the furnace interior, comprising: a signal processing means for calculating the shape of the furnace interior from the rotation angle and movement displacement of the lance.
JP25818984A 1984-12-06 1984-12-06 Instrument for measuring shape in furnace Pending JPS61134611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25818984A JPS61134611A (en) 1984-12-06 1984-12-06 Instrument for measuring shape in furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25818984A JPS61134611A (en) 1984-12-06 1984-12-06 Instrument for measuring shape in furnace

Publications (1)

Publication Number Publication Date
JPS61134611A true JPS61134611A (en) 1986-06-21

Family

ID=17316750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25818984A Pending JPS61134611A (en) 1984-12-06 1984-12-06 Instrument for measuring shape in furnace

Country Status (1)

Country Link
JP (1) JPS61134611A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212738A (en) * 1991-04-12 1993-05-18 Martin Marietta Magnesia Specialties Inc. Scanning laser measurement system
US6249007B1 (en) 1997-09-12 2001-06-19 Thames Water Utilities Limited Non-contact distance measuring apparatus
CN1308653C (en) * 2005-02-25 2007-04-04 中国海洋大学 Rotary scanning measuring apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212738A (en) * 1991-04-12 1993-05-18 Martin Marietta Magnesia Specialties Inc. Scanning laser measurement system
US6249007B1 (en) 1997-09-12 2001-06-19 Thames Water Utilities Limited Non-contact distance measuring apparatus
GB2329244B (en) * 1997-09-12 2002-02-20 Thames Water Utilities Non-contact measuring apparatus
CN1308653C (en) * 2005-02-25 2007-04-04 中国海洋大学 Rotary scanning measuring apparatus

Similar Documents

Publication Publication Date Title
JPS60185108A (en) Method and device for measuring body in noncontacting manner
CN100367046C (en) Measurement of wear of fireproof lining of metallurgical vessel
US4671654A (en) Automatic surveying apparatus using a laser beam
US6922252B2 (en) Automated positioning method for contouring measurements using a mobile range measurement system
US11402207B2 (en) Surveying instrument
CN111485892B (en) Tube curtain machine pose measuring method and system
KR870000478B1 (en) Method of measuring optical outlines
JPS61134611A (en) Instrument for measuring shape in furnace
EP1167919B1 (en) Wall surface observing device with y movement
US20220373320A1 (en) System, device and method for measuring the interior refractory lining of a vessel
JP3265724B2 (en) Charged particle beam equipment
JPS58196406A (en) Device for measuring furnace wall profile
JPS59214703A (en) Position measuring device utilizing laser light
JPS59143905A (en) Method and device for measuring inner profile of lining of refractories
JPH0432705A (en) Road sectional unevenness measuring instrument
JP3065367B2 (en) Shape measurement device for structures around railway tracks
JPS62157514A (en) Apparatus for measuring displacement quantity of small caliber pipe embedding and propelling machine
JP3002415B2 (en) Furnace inner wall shape measurement method
JPS6046406A (en) Method and device for measuring internal surface profile of refractory lining
US20200081266A1 (en) Surveying Instrument
JP2507541B2 (en) Track survey system
JPH09210622A (en) Method and device for measuring distance to high-temperature object
JPS62291505A (en) Measurement of inside surface shape of container
JP7156894B2 (en) Roundness measuring device
JPS61134612A (en) Method and device for measuring intra-furnace shape