JPS61134612A - Method and device for measuring intra-furnace shape - Google Patents

Method and device for measuring intra-furnace shape

Info

Publication number
JPS61134612A
JPS61134612A JP25819084A JP25819084A JPS61134612A JP S61134612 A JPS61134612 A JP S61134612A JP 25819084 A JP25819084 A JP 25819084A JP 25819084 A JP25819084 A JP 25819084A JP S61134612 A JPS61134612 A JP S61134612A
Authority
JP
Japan
Prior art keywords
furnace
laser beam
lance
measuring
bright spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25819084A
Other languages
Japanese (ja)
Inventor
Takayuki Yanagimoto
柳本 隆之
Yuichiro Asano
浅野 有一郎
Seiji Watanabe
誠治 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25819084A priority Critical patent/JPS61134612A/en
Publication of JPS61134612A publication Critical patent/JPS61134612A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PURPOSE:To detect accurately the residual thickness of refractories or the like by calculating the position of a laser beam bright point in accordance with the principle of triangulation and obtaining an intra-furnace shape on a basis of the position of the detected laser beam bright point while rotating and moving a measuring lance. CONSTITUTION:A measuring lance 12 is allowed to fall by a driving part 18, and its T-shaped front end part 12A is set to a position near a furnace wall bottom surface 10C, and a laser beam 22 is projected from a light projector 23 at a projection angle alpha to the furnace wall bottom surface 10C. A bright point 24A on the furnace wall bottom surface 10C is sent to an ITV 30 from a photodetector to obtain a video signal, and this signal is inputted to a minicomputer 34 to store the position of the bright point. This operation is repeated while rotating and raising the measuring lace 12 to scan the furnace wall bottom surface 10C and a furnace wall side surface 10B, and bright point image positions, lance rotation angles beta, and lance moving displacements D in position where measurement is necessary are inputted to the minicomputer 34. Coordinates of individual points of the intra-furnace profile obtained in this manner are obtained in accordance with the principle of triangulation on a basis of position coordinates of the light projector 23 and the photodetector 28, light projection angles alpha, lance rotation angle beta, a photodetector azimuth gamma, and position coordinates N of an optical image.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、炉内形状の測定方法及び装置に係り、特に、
転炉、混銑炉、取鋼等、主として製鋼用の炉の耐火物内
張の損耗状態を測定する際に用いるのに好適な、炉内に
投射したレーザビームの輝点の位置から、炉内の形状を
非接触で測定する炉内形状の測定方法及び装置の改良に
関する。
The present invention relates to a method and apparatus for measuring the shape inside a furnace, and in particular,
It is suitable for measuring the state of wear and tear on the refractory lining of furnaces mainly used for steel making, such as converters, mixer furnaces, and steel tapping furnaces. The present invention relates to an improved method and apparatus for measuring the shape of a furnace in a non-contact manner.

【従来の技術】 一般に、転炉の寿命は、内張耐火物の損耗により決まり
、近年、内壁補修技術の発達と共に、出鋼後の耐火物損
耗状態を、高精度で且つ迅速に測定する技術が求められ
ている。即ち、近年は、連鋳比率の上昇等により鋳込時
間に整合した転炉の出鋼が要求され、吹付は補修に必要
な時間が充分にとれないという状況が出ている。それに
伴い、薄壁操業の期間も長期化して、多くの問題点、危
険性を孕んでいる。 従って、従来から、例えばAGAジオトロニクス社(ス
ウェーデン)のレーザ測距計による方式や、「耐火物1
983No、1Jの34頁〜35頁に報告されているマ
イクロ波測距計による方式が提案されている。
[Background Art] Generally, the life of a converter is determined by the wear and tear of the refractory lining, and in recent years, along with the development of inner wall repair technology, technology has been developed to quickly and accurately measure the state of wear and tear on the refractory after tapping. is required. That is, in recent years, due to an increase in the continuous casting ratio, etc., steel tapping from a converter is required to match the pouring time, and a situation has arisen in which spraying does not allow enough time for repairs. As a result, the period of thin-wall operation has become longer, creating many problems and risks. Therefore, conventionally, for example, a method using a laser rangefinder made by AGA Geotronics (Sweden) or a method using a "refractory 1
A method using a microwave rangefinder is proposed, as reported in 983 No. 1J, pages 34 to 35.

【発明が解決しようとする問題点】         
 ]しかしながら、前記レーザ測距計による方式は、1
点の位置測定所用時間が8秒と長いため、局部的なプロ
フィルを得るだけでも30〜60分以上必要とし、頻繁
に測定することは工程上困難である。又、炉外からの測
定であるため、測定領域が限定され、炉口付近の測定は
困難であるという問題点を有していた。 又、前記マイクロ波測距計による方式は、マイクロ波を
用いるため、ビーム径が200nφと大きく、要求位置
精度50日を満足することは困難であるゆ又、マイクロ
波発振部が測定ランスに対して直角に設置されているの
で、炉内底部の測定が困難であるという問題点を有して
いた。 このような問題点を解消するべく、例えば特開昭54−
115160や特願昭58−153193で、転炉の出
鋼直後、その内部に測定ランスを挿入し、該測定ランス
の先端部に取付けた投光部と受光部とにより、レーザ光
を用いて、いわゆる三角測量の原理に基づき、耐火物内
張の内面形状を測定することが試みられてしする。 しかしながら、この方式においても、従来は、第3図に
示す如く、炉口10Aから転炉10内に挿入される測定
ランス12の先端部に、投光部14及び受光部16を炉
!銅面10Bに向けて並設していたため、炉内底部10
Gの形状を精度良く検出することは困難であった。
[Problems to be solved by the invention]
] However, the method using the laser rangefinder has 1
Since the time required to measure the position of a point is as long as 8 seconds, it takes 30 to 60 minutes or more just to obtain a local profile, and it is difficult to perform frequent measurements. Furthermore, since the measurement was performed from outside the furnace, the measurement area was limited and measurement near the furnace mouth was difficult. In addition, since the method using the microwave rangefinder uses microwaves, the beam diameter is as large as 200nφ, making it difficult to satisfy the required position accuracy of 50 days. Since the furnace is installed at a right angle, it is difficult to measure the bottom of the furnace. In order to solve such problems, for example,
115160 and Japanese Patent Application No. 58-153193, a measuring lance is inserted into the converter immediately after steel is tapped, and a laser beam is used by a light emitting part and a light receiving part attached to the tip of the measuring lance. Attempts have been made to measure the inner shape of refractory linings based on the principle of so-called triangulation. However, even in this method, conventionally, as shown in FIG. 3, a light emitting part 14 and a light receiving part 16 are attached to the tip of the measuring lance 12 inserted into the converter 10 from the furnace mouth 10A. Because they were installed in parallel toward the copper surface 10B, the furnace bottom 10
It was difficult to accurately detect the shape of G.

【発明の目的】[Purpose of the invention]

本発明は、前記従来の問題点を解消するべくなされたも
ので、炉内底部を含む炉内形状を、高精度で且つ迅速に
測定することができ、従って、耐火物残厚、要補修個所
等を的確に検出することができる炉内形状の測定方法及
び@置を提供することを目的とする。
The present invention was made in order to solve the above-mentioned conventional problems, and it is possible to measure the shape of the furnace including the bottom of the furnace with high precision and quickly. It is an object of the present invention to provide a method and apparatus for measuring the shape of the inside of a furnace, which can accurately detect the shape of the inside of a furnace.

【問題点を解決するための手段】[Means to solve the problem]

本発明は、炉内に投射したレーザビームの輝点の位置か
ら、炉内の形状を非接触で測定する炉内形状の測定方法
において、投光手段及び受光手段が炉壁底面に向けて先
端部に並設された、軸まわりに回転自在で且つ軸方向に
移動自在な測定ランスを、炉口より炉内に挿入し、前記
投光手段よりレーザビームを設定角度で炉内に投射した
時のレーザビーム輝点を、前記受光手段を介してm働手
段により検出し、前記レーザビーム輝点の位置を、三角
測量の原理により計算し、前記測定ランスを回転させ、
又、移動させながら検出したレーザビーム輝点の位置か
ら、炉内形状を求めるようにして、前記目的を達成した
ものである。 又、本発明は、同様な炉内形状の測定装置において、炉
口より炉内に挿入される、軸まわりに回転自在で且つ軸
方向に移動自在な中空の測定ランスと、該測定ランスを
回転させ、又、移動させるランス駆動手段と、前記測定
ランスの回転角及び移動変位を検出するランス位置検出
手段と、炉外でレーザ光束を発生するレーザ光源と、前
記測定ランスの先端部に炉壁底面に向けて配設された、
レーザビームを設定角度で炉内に投射する投光手段と、
前記レーザ光源で発生されたレーザ光束を、前記測定ラ
ンスの内部を介して、前記投光手段に伝送するレーザ光
伝送手段と、前記測定ランスの先端部に、前記投光手段
と並んで炉壁底面に向けて配設された、前記投光手段に
よるレーザビーム輝点を含む視野で炉内の光学像を得る
受光手段と、該受光手段によって得られた光学像を、炉
外で撮像する撮像手段と、前記受光手段によって得られ
た光学像を、前記測定ランスの内部を介して、前記m像
手段に伝送する画像伝送手段と、前記撮像手段上のレー
ザビーム輝点の位置、前記測定ランスの回転角及び移動
変位から、三角測昌の原理により炉内形状を計算する信
号処理手段とを備えることにより、同じく前記目的を達
成したものである。
The present invention provides a method for measuring the shape of the inside of a furnace in a non-contact manner from the position of a bright spot of a laser beam projected into the furnace, in which a light projecting means and a light receiving means are directed toward the bottom of the furnace wall. When the measurement lances, which are arranged in parallel to each other and are rotatable around the shaft and movable in the axial direction, are inserted into the furnace from the furnace mouth, and the laser beam is projected into the furnace at a set angle from the projection means. detecting a bright spot of the laser beam through the light receiving means by the working means, calculating the position of the bright spot of the laser beam by the principle of triangulation, and rotating the measuring lance;
Furthermore, the above object is achieved by determining the shape of the furnace interior from the position of the laser beam bright spot detected while moving. The present invention also provides a measuring device having a similar shape inside the furnace, including a hollow measuring lance that is inserted into the furnace from the furnace mouth and is rotatable around an axis and movable in the axial direction; a lance driving means for moving the measuring lance; a lance position detecting means for detecting the rotation angle and movement displacement of the measuring lance; a laser light source for generating a laser beam outside the furnace; placed towards the bottom,
a projection means for projecting a laser beam into the furnace at a set angle;
a laser beam transmission means for transmitting a laser beam generated by the laser light source to the light projection means through the inside of the measurement lance; and a furnace wall disposed at the tip of the measurement lance alongside the light projection means. a light-receiving means for obtaining an optical image inside the furnace with a field of view including a laser beam bright spot from the light projecting means, which is disposed toward the bottom surface; and an imaging device for capturing the optical image obtained by the light-receiving means outside the furnace. a means for transmitting an optical image obtained by the light receiving means to the m-image means through the inside of the measuring lance; a position of a laser beam bright spot on the imaging means; The above object is also achieved by providing a signal processing means for calculating the shape of the furnace interior based on the rotation angle and movement displacement of the reactor based on the principle of triangulation.

【作用】[Effect]

本発明においては、測定ランスに配役される投光手段及
−び受光手段を、炉壁底面に向けて先端部に並設するよ
うにしたので、炉壁底面を含む炉内形状を高精度で且つ
迅速に測定することが可能となる。
In the present invention, the light emitting means and the light receiving means arranged in the measuring lance are arranged side by side at the tip facing the bottom of the furnace wall, so the shape of the inside of the furnace including the bottom of the furnace wall can be determined with high precision. Moreover, it becomes possible to measure quickly.

【実施例】【Example】

以下図面を参照して、本発明が採用された転炉内形状の
測定装置の実施例を詳細に説明する。 本実施例は、第1図及び第2図に示す如く、転炉10の
炉口10Aより炉内に挿入される、中心軸まわりに回転
自在で且つ軸方向に移動自在な測定ランス12と、該測
定ランス12を回転させ、又、移動させるための、転炉
10の直上に配設されたランス駆動部18と、前記測定
ランス12の回転角β及び移動変位りを検出するランス
位置検出器20と、炉外でレーザ光束を発生するレーザ
光源22(第2図)と、前記測定ランス12のT字状先
端部12Aの一端に、炉壁底面10Cに向けて配設され
た、レーザビーム24を設定角度α(第2図)で炉内に
投射する投光器23と、前記レーザ光源22で発生され
たレーザ光束を、前記測定ランス12の内部を介して、
前記投光器23に伝送する光伝送ファイバ27(第2図
)と、前記測定ランス12のT字状先端部12Aの他端
に、前記投光器23と並んで炉壁底面10Gに向けて配
設された、前記投光器23によるレーザビーム輝点24
Aを含む?l!!F28Aで炉内の光学像を得る受光器
28と、該受光器28によって得られた光学像を、転炉
10の直上で撮像する工業用テレビカメラ(以下ITV
と称する)30(第2図)と、前記受光器28によって
得られた光学像を、前記測定ランス12の内部を介して
、前記ITV30に伝送するイメージ伝送ファイバ32
(第2図)と、前記ITV30の画面上のレーザビーム
輝点24Aの位置、前記測定ランス12の回転角β及び
移動変位りから、三角81IIの原理により炉内形状を
計算するミニコンピユータ34(第2図)とから構成さ
れている。 第1図において、21は、前記レーザ光源22の格納部
、26は、前記光伝送ファイバ27の格納パイプ、29
は、前記ITV30等が格納された受像部、36は、パ
ージガス供給管、38は、冷却水の給水管、40は、同
じく排水管である。 又、第2図において、42は、前記rTV30の出力ビ
デオ信号や前記ランス位置検出器20出力のランス回転
角信号及びランス移動変位信号等を外部に出力するため
の外部出力端子、44は、パージ用ガス通路、46は、
冷却水の給水通路、48は、同じく排水通路である。 前記投光器23には、レーザビーム24の拡散を防ぐた
めのレンズ系が組込まれている。 又、前記受光器28には、光学像を得るためのレンズ系
が組込まれている。 更に、前記rTV30には、レーザ光波長のみを透過す
る光学フィルタが組込まれでいる。 以下実施例の作用を説明する。 測定開始にあたり、ランス駆動部18により測定ランス
12を下降させ、そのT字状先端部12Aが、炉壁底面
10Cの近傍に位置するような定位置に初期設定する。 次に、レーザ光[22をオンとして、レーザビームをレ
ーザ光源22より発生し、光伝送ファイバ27によって
投光器23まで伝送し、第2図に示した設定投光角αで
炉壁底面10Gに投射する。 次いで、第1図に示した如く、炉壁底面10C上のレー
ザビーム輝点24Aを、受光器28により入力し、イメ
ージ伝送ファイバ32によりITV30まで伝送して、
ITV30でビデオ信号を得る。このビデオ信号は、外
部出力端子42を介してミニコンピユータ34に入力さ
れ、ITV30上での輝点像位置が検出されて記憶され
る。 以上の操作を、測定ランス12を回転、上昇させながら
行うことによって、炉壁底面10C全面及び炉壁側面1
0Bを走査し、測定必要個所の輝点像位置、ランス回転
角β及びランス移動変位りをミニコンピユータ34に入
力する。 このようにして、炉内プロフィール各点の座標は、投光
器23と受光器28の位置座標、投光角α、ランス回転
角β、受光器方向角γ、光学像の位置t!標Nから、三
角測量の原理に基づき完全に決定される。 本実施例によれば、測定点位It精度±1 On。 耐火物厚さ方向精度±5m、デー少データrR5ミリ秒
/点(20秒/4000点)、計算所要時間20秒/4
000点で、ブOフィル4000点を算出することがで
きた。 なお前記実施例においては、本発明が、転炉の炉内形状
測定に適用されていたが、本発明の適用   1範囲は
これに限定されず、混銑炉や電気炉等一般の溶解炉につ
いても、その耐火物等のブOフィル測定に同様に適用す
ることが可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a converter internal shape measuring device to which the present invention is applied will be described in detail with reference to the drawings. As shown in FIGS. 1 and 2, this embodiment includes a measuring lance 12 that is inserted into the furnace from the furnace mouth 10A of the converter 10 and is rotatable around the central axis and movable in the axial direction. A lance drive unit 18 disposed directly above the converter 10 for rotating and moving the measuring lance 12, and a lance position detector for detecting the rotation angle β and displacement of the measuring lance 12. 20, a laser light source 22 (FIG. 2) that generates a laser beam outside the furnace, and a laser beam disposed at one end of the T-shaped tip 12A of the measuring lance 12 toward the bottom surface 10C of the furnace wall. 24 into the furnace at a set angle α (FIG. 2), and the laser beam generated by the laser light source 22 is passed through the inside of the measurement lance 12.
An optical transmission fiber 27 (FIG. 2) that transmits data to the projector 23 and an optical transmission fiber 27 (FIG. 2) arranged at the other end of the T-shaped tip 12A of the measuring lance 12, along with the projector 23, are arranged toward the bottom surface 10G of the furnace wall. , a laser beam bright spot 24 from the projector 23
Does it include A? l! ! A photodetector 28 that obtains an optical image inside the furnace using the F28A, and an industrial television camera (hereinafter referred to as ITV) that captures the optical image obtained by the photodetector 28 directly above the converter 10.
) 30 (FIG. 2), and an image transmission fiber 32 that transmits the optical image obtained by the light receiver 28 to the ITV 30 through the interior of the measurement lance 12.
(Fig. 2), the position of the laser beam bright spot 24A on the screen of the ITV 30, the rotation angle β and the movement displacement of the measuring lance 12, and the mini-computer 34 ( (Fig. 2). In FIG. 1, 21 is a storage section for the laser light source 22, 26 is a storage pipe for the optical transmission fiber 27, and 29
36 is a purge gas supply pipe, 38 is a cooling water supply pipe, and 40 is a drain pipe. Further, in FIG. 2, 42 is an external output terminal for outputting the output video signal of the rTV 30, the lance rotation angle signal and the lance movement displacement signal output from the lance position detector 20, and 44 is a purge terminal. The gas passage 46 for
The cooling water supply passage 48 is also a drainage passage. The projector 23 has a built-in lens system for preventing the laser beam 24 from diffusing. Further, the light receiver 28 has a built-in lens system for obtaining an optical image. Furthermore, the rTV 30 includes an optical filter that transmits only the wavelength of the laser beam. The operation of the embodiment will be explained below. At the start of measurement, the measuring lance 12 is lowered by the lance drive unit 18 and initially set to a fixed position such that its T-shaped tip 12A is located near the bottom surface 10C of the furnace wall. Next, the laser beam [22 is turned on, a laser beam is generated from the laser light source 22, transmitted to the projector 23 through the optical transmission fiber 27, and projected onto the furnace wall bottom surface 10G at the set projection angle α shown in FIG. do. Next, as shown in FIG. 1, the laser beam bright spot 24A on the bottom surface 10C of the furnace wall is inputted by the light receiver 28 and transmitted to the ITV 30 by the image transmission fiber 32.
Obtain video signal with ITV30. This video signal is input to the minicomputer 34 via the external output terminal 42, and the bright spot image position on the ITV 30 is detected and stored. By performing the above operations while rotating and raising the measuring lance 12, the entire bottom surface 10C of the furnace wall and the side surface 1
0B is scanned, and the bright spot image position, lance rotation angle β, and lance movement displacement at the point where measurement is required are input into the minicomputer 34. In this way, the coordinates of each point in the furnace profile are the positional coordinates of the emitter 23 and the receiver 28, the projection angle α, the lance rotation angle β, the receiver direction angle γ, and the position of the optical image t! From mark N, it is completely determined based on the principle of triangulation. According to this embodiment, the measurement point position It accuracy is ±1 On. Accuracy in refractory thickness direction ±5m, small data rR5ms/point (20 seconds/4000 points), calculation time 20 seconds/4
000 points, it was possible to calculate 4000 BuO fill points. In the above embodiments, the present invention was applied to the measurement of the shape inside a converter, but the scope of application of the present invention is not limited to this, and can also be applied to general melting furnaces such as mixed iron furnaces and electric furnaces. , it is possible to similarly apply it to the O-fill measurement of refractories, etc.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、炉内底部を含む炉
内の形状を、高精度で且つ迅速に測定することができる
。従って、耐火物残厚や要補修個所等を的確に検出する
ことができるという優れた効果を有する。
As explained above, according to the present invention, the shape of the inside of the furnace including the bottom of the furnace can be measured quickly and with high accuracy. Therefore, it has an excellent effect of being able to accurately detect the remaining thickness of the refractory material, areas requiring repair, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る炉内形状の測定方法が採用され
た、転炉内形状の測定装置の実施例の全体構成を示す断
面図、第2図は、前記実施例の要部構成を示す拡大断面
図、第3因は、従来の炉内張耐火物の損耗形状の測定で
用いられている測定ランスにおける、投光部と受光部の
配置を示す断面図である。 10・・・転炉、       10A・・・炉口、1
oC・・・炉壁底面、     12・・・測定ランス
、12A・・・先端部、      18・・・ランス
駆動部、20・・・ランス位置検出器、 β・・・ランス回転角、     D・・・移動変位、
22・・・レーザ光源、     23・・・投光器、
24・・・レーザビーム、     α・・・投光角、
24A・・・レーザビーム輝点、 27・・・光伝送ファイバ、  28・・・受光器、2
8A・・・視野、 30・・・工業用テレビカメラ(ITV>、32・・・
イメージ伝送ファイバ、 34・・・ミニコンピユータ。
FIG. 1 is a sectional view showing the overall configuration of an embodiment of a converter internal shape measuring device in which the furnace internal shape measuring method according to the present invention is adopted, and FIG. 2 is a main part configuration of the embodiment. The third factor is a cross-sectional view showing the arrangement of a light projecting part and a light receiving part in a measurement lance used in the conventional measurement of the worn shape of a furnace lining refractory. 10... Converter, 10A... Furnace mouth, 1
oC... bottom of furnace wall, 12... measurement lance, 12A... tip, 18... lance drive section, 20... lance position detector, β... lance rotation angle, D...・Movement displacement,
22... Laser light source, 23... Floodlight,
24... Laser beam, α... Projection angle,
24A... Laser beam bright spot, 27... Optical transmission fiber, 28... Light receiver, 2
8A...Field of view, 30...Industrial television camera (ITV>, 32...
Image transmission fiber, 34...Mini computer.

Claims (2)

【特許請求の範囲】[Claims] (1)炉内に投射したレーザビームの輝点の位置から、
炉内の形状を非接触で測定する炉内形状の測定方法にお
いて、 投光手段及び受光手段が炉壁底面に向けて先端部に並設
された、軸まわりに回転自在で且つ軸方向に移動自在な
測定ランスを、炉口より炉内に挿入し、 前記投光手段よりレーザビームを設定角度で炉内に投射
した時のレーザビーム輝点を、前記受光手段を介して撮
像手段により検出し、 前記レーザビーム輝点の位置を、三角測量の原理により
計算し、 前記測定ランスを回転させ、又、移動させながら検出し
たレーザビーム輝点の位置から、炉内形状を求めるよう
にしたことを特徴とする炉内形状の測定方法。
(1) From the position of the bright spot of the laser beam projected into the furnace,
In a method for measuring the shape of the inside of a furnace in a non-contact manner, the light emitting means and the light receiving means are arranged in parallel at the tip toward the bottom of the furnace wall, are rotatable around an axis, and are movable in the axial direction. A flexible measuring lance is inserted into the furnace from the furnace mouth, and when a laser beam is projected into the furnace from the light projecting means at a set angle, a laser beam bright spot is detected by the imaging means via the light receiving means. The position of the laser beam bright spot is calculated by the principle of triangulation, and the shape of the furnace interior is determined from the position of the laser beam bright spot detected while rotating and moving the measuring lance. Characteristic method for measuring the shape inside the furnace.
(2)炉内に投射したレーザビームの輝点の位置から、
炉内の形状を非接触で測定する炉内形状の測定装置にお
いて、 炉口より炉内に挿入される、軸まわりに回転自在で且つ
軸方向に移動自在な中空の測定ランスと、該測定ランス
を回転させ、又、移動させるランス駆動手段と、 前記測定ランスの回転角及び移動変位を検出するランス
位置検出手段と、 炉外でレーザ光束を発生するレーザ光源と、前記測定ラ
ンスの先端部に炉壁底面に向けて配設された、レーザビ
ームを設定角度で炉内に投射する投光手段と、 前記レーザ光源で発生されたレーザ光束を、前記測定ラ
ンスの内部を介して、前記投光手段に伝送するレーザ光
伝送手段と、 前記測定ランスの先端部に、前記投光手段と並んで炉壁
底面に向けて配設された、前記投光手段によるレーザビ
ーム輝点を含む視野で炉内の光学像を得る受光手段と、 該受光手段によつて得られた光学像を、炉外で撮像する
撮像手段と、 前記受光手段によつて得られた光学像を、前記測定ラン
スの内部を介して、前記撮像手段に伝送する画像伝送手
段と、 前記撮像手段上のレーザビーム輝点の位置、前記測定ラ
ンスの回転角及び移動変位から、三角測量の原理により
炉内形状を計算する信号処理手段と、 を備えたことを特徴とする炉内形状の測定装置。
(2) From the position of the bright spot of the laser beam projected into the furnace,
A furnace internal shape measuring device that measures the internal shape of the furnace in a non-contact manner includes: a hollow measuring lance that is inserted into the furnace from the furnace mouth and is rotatable around an axis and movable in the axial direction; lance driving means for rotating and moving the measuring lance; lance position detecting means for detecting the rotation angle and movement displacement of the measuring lance; a laser light source that generates a laser beam outside the furnace; a light projecting means disposed toward the bottom of the furnace wall and projecting a laser beam into the furnace at a set angle; and a light projecting means for projecting a laser beam into the furnace at a set angle; a laser beam transmitting means for transmitting a laser beam to the means; and a laser beam transmission means disposed at the tip of the measuring lance facing the bottom of the furnace wall in line with the light projecting means, the furnace having a field of view including a laser beam bright spot from the light projecting means. a light receiving means for capturing an optical image of the inside of the measuring lance; an imaging means for capturing an optical image obtained by the light receiving means outside the furnace; and a light receiving means for capturing an optical image of the inside of the measuring lance an image transmission means for transmitting the image to the imaging means through the imaging means; and a signal for calculating the shape of the furnace interior based on the principle of triangulation from the position of the laser beam bright spot on the imaging means, the rotation angle and the movement displacement of the measuring lance. A furnace shape measuring device characterized by comprising: a processing means;
JP25819084A 1984-12-06 1984-12-06 Method and device for measuring intra-furnace shape Pending JPS61134612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25819084A JPS61134612A (en) 1984-12-06 1984-12-06 Method and device for measuring intra-furnace shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25819084A JPS61134612A (en) 1984-12-06 1984-12-06 Method and device for measuring intra-furnace shape

Publications (1)

Publication Number Publication Date
JPS61134612A true JPS61134612A (en) 1986-06-21

Family

ID=17316764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25819084A Pending JPS61134612A (en) 1984-12-06 1984-12-06 Method and device for measuring intra-furnace shape

Country Status (1)

Country Link
JP (1) JPS61134612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108388A (en) * 2007-10-31 2009-05-21 Nippon Steel Corp Method for measuring profile of stuck metal on furnace opening hole of converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108388A (en) * 2007-10-31 2009-05-21 Nippon Steel Corp Method for measuring profile of stuck metal on furnace opening hole of converter

Similar Documents

Publication Publication Date Title
US6172367B1 (en) Method and device for measuring electromagnetic waves emanating from a melt
US7330242B2 (en) System for recording an object space
US6922252B2 (en) Automated positioning method for contouring measurements using a mobile range measurement system
JP3274021B2 (en) Method of measuring lining wear of container and container
KR870000478B1 (en) Method of measuring optical outlines
JPH11281331A (en) Device for measuring inner wall
US5378493A (en) Ceramic welding method with monitored working distance
JPH11326061A (en) Temperature measuring method and device for molten bath in furnace
JP2009053001A (en) Structure inspection device
JP2010189914A (en) Tail clearance measuring apparatus
JPS61134612A (en) Method and device for measuring intra-furnace shape
JPS58196406A (en) Device for measuring furnace wall profile
CN205426287U (en) Machine vision charge level indicator
JP2018185253A (en) Device and method for measuring converter refractory profile
JPH01145514A (en) Distance measuring apparatus for furnace observation
US4749171A (en) Method and apparatus for measuring slag-foam conditions within a converter
JPH03169474A (en) Method for measuring residual thickness in lining in heat resistant vessel
JP2009068982A (en) Profile measurement method of refractory material in converter, and thickness measurement method of refractory material
JP2006126062A (en) Temperature measurement method and apparatus for molten metal
JPS62157514A (en) Apparatus for measuring displacement quantity of small caliber pipe embedding and propelling machine
JPS60138407A (en) Method and device for measuring furnace wall profile
JPS61134611A (en) Instrument for measuring shape in furnace
JPH09243470A (en) Method for measuring level of molten metal in molten metal container and apparatus therefor
JP4439991B2 (en) Hot spot radiation measuring method and apparatus
JPS6129708A (en) Measuring method of surface profile of fireproof wall