JPS61134594A - Heat exchange device utilizing hydrogen occlusion alloy - Google Patents
Heat exchange device utilizing hydrogen occlusion alloyInfo
- Publication number
- JPS61134594A JPS61134594A JP59255793A JP25579384A JPS61134594A JP S61134594 A JPS61134594 A JP S61134594A JP 59255793 A JP59255793 A JP 59255793A JP 25579384 A JP25579384 A JP 25579384A JP S61134594 A JPS61134594 A JP S61134594A
- Authority
- JP
- Japan
- Prior art keywords
- temperature side
- hydrogen
- side reaction
- heat
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/003—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、水素貯蔵合金の水素吸収および放出の際の反
応熱の利用による水素貯蔵合金を利用した熱交換装置に
関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a heat exchange device using a hydrogen storage alloy by utilizing reaction heat during hydrogen absorption and release from the hydrogen storage alloy.
(従来の技術)
はぼ等しい水素平衡圧の下で高温度を示す高温側水素貯
蔵合金Mと、低温度を示す低温側水素貯蔵合金M′とを
それぞれ別個の反応槽〈充填し、両反応槽を水素流通路
で結び、両反応槽へ熱媒体を供給して、該両合金M、M
’に水素の吸収又は放出を交互にさせて、両反応槽間で
水素を移動させると共に、水素の吸収又は放出の際の反
応熱を利用することが行なわれている。(Prior art) Under approximately equal hydrogen equilibrium pressure, a high-temperature side hydrogen storage alloy M exhibiting a high temperature and a low-temperature side hydrogen storage alloy M′ exhibiting a low temperature are each filled in separate reaction vessels. The tanks are connected by a hydrogen flow path, a heat medium is supplied to both reaction tanks, and both alloys M, M
Hydrogen is transferred between both reaction vessels by alternately absorbing or desorbing hydrogen, and the heat of reaction during hydrogen absorption or desorption is utilized.
従来例として、第2図に、水素貯蔵合金が水素を吸収す
る際の反応熱を暖房装置に利用した概略図を示す。As a conventional example, FIG. 2 shows a schematic diagram in which the heat of reaction when a hydrogen storage alloy absorbs hydrogen is utilized in a heating device.
11は高温側反応槽であり、高温側水素貯蔵合金Mを内
蔵する。12は低温側反応槽であり、低源側水素貯蔵合
金M′を内蔵している。13d両該反応槽31.32を
連絡して気体水素を流通させる水素流通路である。14
は高熱源であり、高温側水素貯蔵合金Mを加熱または冷
却する熱交換手段ス5にポンプP14および/ンルデ”
Ill を介して接続している。また高熱源14は、低
温側反応槽内の低温側水素貯蔵合金M′を加熱する熱交
換手段16にポンプP14およびパルプv14を介して
接続している。17は低熱源であり、低温側水素貯蔵合
金M′を冷却する熱交換手段18にポンプPi?および
ノ々ルデv1mを介して接続している。19は、放熱器
等の熱利用装置であり、高温側反応P111からの熱取
出し手段20にポンプP0およびノ々ルプVttを介し
て接続している。11 is a high temperature side reaction tank, which contains a high temperature side hydrogen storage alloy M. Reference numeral 12 denotes a low temperature side reaction tank, which contains a low source side hydrogen storage alloy M'. 13d A hydrogen flow path that connects both reaction vessels 31 and 32 and allows gaseous hydrogen to flow therethrough. 14
is a high heat source, and a pump P14 and a pump P14 are connected to the heat exchange means 5 for heating or cooling the hydrogen storage alloy M on the high temperature side.
Connected via Ill. Further, the high heat source 14 is connected via a pump P14 and a pulp v14 to a heat exchange means 16 that heats the low temperature side hydrogen storage alloy M' in the low temperature side reaction tank. 17 is a low heat source, and a pump Pi? and is connected via Noorude v1m. Reference numeral 19 denotes a heat utilization device such as a radiator, which is connected to the heat extraction means 20 from the high temperature side reaction P111 via a pump P0 and a norpu Vtt.
かかる装置の作動について、第3図のヒートポンプの圧
力一温度特性線図に基づいて説明する。The operation of such a device will be explained based on the pressure-temperature characteristic diagram of the heat pump shown in FIG.
同図の縦軸は水素圧Pを、横軸は水素の絶対温度をTと
してその逆数値】/Tt−示す。同図において、点(イ
)は、低温側水素貯蔵合金M′が水素を充分に吸収して
、低温側反応槽12内には気体水素は他めて少い状態を
示す。ここで両パルプv11 + v18 を閉とし
、・々ルゾV14 を開としてポンプP′14を駆動
し。In the figure, the vertical axis indicates the hydrogen pressure P, and the horizontal axis indicates the absolute temperature of hydrogen, T, and its reciprocal value]/Tt-. In the figure, point (a) indicates a state in which the low temperature side hydrogen storage alloy M' has sufficiently absorbed hydrogen and there is little gaseous hydrogen in the low temperature side reaction tank 12. Here, both the pulps v11 + v18 are closed, and the pulps V14 are opened and the pump P'14 is driven.
高熱源14より熱媒体を熱交換手段16に供給して低温
側水素貯蔵合金M′を加熱すると、該合金M′より水素
を放出して水素圧Pが上昇してB行程を経て点(ロ)に
至る。なお、この際に高温側反応槽11内の温度を適温
に保つため忙パルプv1!は開又は閉とする。When a heat medium is supplied from the high heat source 14 to the heat exchange means 16 to heat the low-temperature side hydrogen storage alloy M', hydrogen is released from the alloy M', the hydrogen pressure P rises, and it passes through the B stroke to point (RO). ). At this time, in order to maintain the temperature inside the high temperature side reaction tank 11 at an appropriate temperature, the busy pulp v1! shall be open or closed.
点(ロ)は、低温側水素貯蔵合金M′の放出になる気体
水素が水素流通路13を経て高温側反応槽11に至り、
高温側水素貯蔵合金Mが水素を吸収し始めた状態を示す
。この時点で両ノ々ルプ”12− vts を閉とし、
かつ両バルブv11 # ■14を開として、低温側水
素貯蔵合金M′への加熱を継続し、高温側水素 1貯
蔵合金Mへの水素の吸収はほぼ平衡圧でなされ、水素温
度が上昇する。この際の反応熱を、熱取出し手段20に
ポンプP1.′Vcて熱媒体を流して取り出し、熱利用
装置19に与える。かくしてC行程を経て点eうに至る
。At point (b), gaseous hydrogen to be released from the low-temperature side hydrogen storage alloy M' reaches the high-temperature side reaction tank 11 through the hydrogen flow path 13;
This shows a state in which the high-temperature side hydrogen storage alloy M has begun to absorb hydrogen. At this point, both nodes are closed,
Then, both valves v11#14 are opened to continue heating the hydrogen storage alloy M' on the low temperature side, hydrogen is absorbed into the hydrogen storage alloy M on the high temperature side at approximately equilibrium pressure, and the hydrogen temperature rises. The reaction heat at this time is transferred to the heat extraction means 20 by the pump P1. 'Vc, the heat medium is taken out and supplied to the heat utilization device 19. In this way, the point E is reached through the C process.
点Cつは、高温側水素貯蔵合金Mが水素を吸収し発熱反
応が終了した状態を示す。Point C indicates a state in which the high temperature side hydrogen storage alloy M has absorbed hydrogen and the exothermic reaction has ended.
この時点では、ノ々ルデv、1を閉として熱利用装置1
9への熱供給を停止し、ノ々ルゾVtt を開として高
熱源14よりポンプP14にて高温側反応槽の熱交換手
段15に熱媒体を供給して、高温側水素貯蔵合金Mを冷
却し、かつパルプV1mを開として低温側水素貯蔵合金
M′を冷却する。かくすることによって、高温側水素貯
蔵合金Mに水素を吸収し水素の温度、圧力共に低下して
D行程を経て点に)に至る。At this point, the heat utilization device 1 is closed with the heat utilization device 1 closed.
The heat supply to the high temperature side reaction tank 15 is stopped, the noorzo Vtt is opened, and the heat medium is supplied from the high heat source 14 to the heat exchange means 15 of the high temperature side reaction tank by the pump P14 to cool the high temperature side hydrogen storage alloy M. , and the pulp V1m is opened to cool the hydrogen storage alloy M' on the low temperature side. As a result, hydrogen is absorbed into the hydrogen storage alloy M on the high temperature side, and both the temperature and pressure of the hydrogen are reduced, and the temperature and pressure of the hydrogen are reduced to a point (D).
上記のパルプ操作の状態を継続することによって、高温
側水素貯蔵合金Mの水素の放出に必要な熱を高熱源14
からの熱媒体にて補給して発生する気体水素は、はぼ平
衡圧で水素流通路13を経て低温側反応槽12に至シ、
低熱源17からの熱媒体によシ冷却される低温側水素貯
蔵合金M′はその反応熱を奪われて水素を吸収し、行程
Aを経て充分に水素を吸収した状態の点(イ)に至って
−サイクルを終了する。By continuing the above pulp operation state, the heat necessary for releasing hydrogen from the high temperature side hydrogen storage alloy M is transferred to the high heat source 14.
The gaseous hydrogen generated by replenishing with the heating medium from the hydrogen flows through the hydrogen flow path 13 to the low-temperature side reaction tank 12 at almost equilibrium pressure.
The low-temperature side hydrogen storage alloy M', which is cooled by the heat medium from the low heat source 17, is deprived of its reaction heat and absorbs hydrogen, and reaches point (a) when it has sufficiently absorbed hydrogen through process A. Thus - end the cycle.
第4図は、サイクル時間中の、熱取出し手段20の出口
における熱媒体の温度変化を各行程を付記して示したも
のであり、縦軸に該熱媒体の温度を、横軸に時間を示す
。現実に高温側水素貯蔵合金Mの反応熱を熱利用装置1
9に利用できるのはC行程とD行程の初期の部分である
。FIG. 4 shows the temperature change of the heat medium at the outlet of the heat extraction means 20 during the cycle time, with each stroke indicated. The vertical axis represents the temperature of the heat medium, and the horizontal axis represents time. show. In reality, heat utilization device 1 for the reaction heat of high-temperature side hydrogen storage alloy M
9 can be used in the initial part of the C process and the D process.
(発′明が解決しようとする問題点)
上記のような従来装置にあっては、第4図にて知られる
ようにサイクル時間tに占めるり、A行程、すなわち熱
取出弄段20の出口における熱媒体の温度が低下する時
間t、の割合が犬きく、従って熱利用を連続させて行う
場合には相当数の装置を並列に配置して熱利用装置に接
続する必要があった。(Problems to be Solved by the Invention) In the conventional device as described above, as shown in FIG. The rate of time t, during which the temperature of the heat medium decreases, is very high. Therefore, when heat utilization is performed continuously, it is necessary to arrange a considerable number of devices in parallel and connect them to the heat utilization device.
(問題点を解決するための手段)
本発明になる水素貯蔵合金を利用した熱交換装置は、低
温側反応槽と高温側反応槽とを組合せてf41、第2系
列のヒートポンプ系を構成し、第1系列の高温側反応槽
と第2系列の低温側反応槽との間、および第1系列の低
温側反応槽と第2系列の高温側反応槽との間にそれぞれ
水素貯蔵タンク全配置したものであり、その構成は下記
の通りである。(Means for Solving the Problems) A heat exchange device using a hydrogen storage alloy according to the present invention comprises an f41, second series heat pump system by combining a low temperature side reaction tank and a high temperature side reaction tank, All hydrogen storage tanks were placed between the high-temperature side reaction tank of the first series and the low-temperature side reaction tank of the second series, and between the low-temperature side reaction tank of the first series and the high-temperature side reaction tank of the second series. Its structure is as follows.
低温側水素貯蔵合金を内蔵し、低熱源からの熱媒体循環
路に接続する熱交換手段と、高熱源からの熱媒体循環路
に接続する熱交換手段とを有する一対の低温側反応槽と
、高温側水素貯蔵合金を内蔵し、高熱源からの熱媒体循
環路に接続する熱交換手段と、熱取出し手段とを有する
一対の高温側反応槽と、高温側反応槽と低温側反応槽と
を連絡する一対の水素流通路と、両高温側反応槽の熱取
出し手段の熱媒体循環路に接続する熱利用装置と。A pair of low-temperature side reaction vessels each containing a low-temperature side hydrogen storage alloy and having a heat exchange means connected to a heat medium circulation path from a low heat source and a heat exchange means connected to a heat medium circulation path from a high heat source; A pair of high-temperature side reaction tanks containing a high-temperature side hydrogen storage alloy and having a heat exchange means connected to a heat medium circulation path from a high heat source and a heat extraction means, a high-temperature side reaction tank and a low-temperature side reaction tank. A pair of communicating hydrogen flow passages and a heat utilization device connected to the heat medium circulation passage of the heat extraction means of both high-temperature side reaction tanks.
高温側反応槽と前記水素流通路で連絡されていない側の
低温側反応槽とを一対としてそれぞれ水素補充流通路で
連絡し1両水素補充流通路中にそれぞれ水素貯蔵タンク
と、高温側反応槽からの水素を水素貯蔵タンクに送)込
みまたは該タンクから低温側反応槽に水素を送シ出すポ
ンプとを有する水素貯蔵合金を利用した熱交換装置であ
る。A high-temperature side reaction tank and a low-temperature side reaction tank on the side not connected through the hydrogen flow path are connected as a pair through a hydrogen replenishment flow path, and a hydrogen storage tank and a high temperature side reaction tank are provided in each of the two hydrogen replenishment flow paths. This is a heat exchange device that utilizes a hydrogen storage alloy and has a pump that sends hydrogen from the reactor to a hydrogen storage tank or sends hydrogen from the tank to a low-temperature reaction tank.
(作 用)
本発明になる水素貯蔵合金を利用した熱交換装置の作用
は下記の通りである。(Function) The function of the heat exchange device using the hydrogen storage alloy according to the present invention is as follows.
上記の構成によって組合せとなる低温側水素貯蔵合金を
内蔵した低温側反応槽と高温側水素貯蔵合金を内蔵した
高温側反応槽とを水素流通路で連絡した一方の系列(第
1系列と称す。)と同様゛に構成した他方の系列(第2
系列と称す。)とにおいて、第1系列の低温側反応槽の
低温側水素貯蔵合金および第2系列の高温側反応槽の高
温側水素貯蔵合金忙水素を充分に吸収させておき、かつ
第1系列の高温側反応槽と第2系列の低温側反応槽とに
接続する水素貯蔵タンクに水素を貯蔵し、第2系列の高
温側反応槽と第1系列の低温側反応槽とに接続する水素
貯蔵タンクは真空状態としておく。そして、第1系列の
低温側反応槽を高熱源に 1接続し、熱媒体循環路
に熱媒体を流し、熱交換手段にて低温側水素貯蔵合金を
加熱して水素を放出させ、該気体水素をほぼ平衡圧にて
水素流通路を通じて高温側反応槽に送プ、高温側水素貯
蔵合金が水素を吸収するに伴って発生する反応熱を、熱
取出し手段からこれに熱媒体循環路に接続する熱利用族
pVc熱を与える、またこの間に、第2系列の低温側反
応槽は、一方の水素計!タンクからの気体水素がポンプ
駆動にて水素補充流通路を介して供給され、かつ低熱源
からの熱媒体循環路に接続する熱交換手段にて冷却され
て低温側水素貯蔵合金に水素を吸収させる、更に、この
闇に、8温側反応槽は、高熱源から熱媒体循環路に接続
する熱交換手段にて加熱され、高温側水素貯蔵合金が放
出する気体水素をポンプを利用して他方の水素貯蔵タン
クに貯蔵しておく。かくして、第1系列の低温側反応槽
から高温側反応槽への気体水素の移動が終了したら、第
1系列と第2系列とを振りコイえて、前記と同様の作動
を繰り返して連続して熱利用装fK熱を供給する。One series (referred to as the first series) in which a low-temperature side reaction tank containing a low-temperature side hydrogen storage alloy and a high-temperature side reaction vessel containing a high-temperature side hydrogen storage alloy, which are combined with the above configuration, are connected through a hydrogen flow path. ) and the other series (second
It is called a series. ), the low temperature side hydrogen storage alloy of the low temperature side reaction tank of the first series and the high temperature side hydrogen storage alloy of the high temperature side reaction tank of the second series are made to sufficiently absorb hydrogen, and the high temperature side of the first series Hydrogen is stored in a hydrogen storage tank connected to the reaction tank and the low-temperature side reaction tank of the second series, and the hydrogen storage tank connected to the high-temperature side reaction tank of the second series and the low-temperature side reaction tank of the first series is kept under vacuum. Leave it as the state. Then, the low temperature side reaction tank of the first series is connected to a high heat source, the heat medium is passed through the heat medium circulation path, the low temperature side hydrogen storage alloy is heated by the heat exchange means to release hydrogen, and the gaseous hydrogen is is sent to the high-temperature side reaction tank through the hydrogen flow path at approximately equilibrium pressure, and the reaction heat generated as the high-temperature side hydrogen storage alloy absorbs hydrogen is connected to the heat medium circulation path from a heat extraction means. During this time, the low-temperature side reaction tank of the second series is connected to one of the hydrogen meters! Gaseous hydrogen from the tank is supplied via a hydrogen replenishment flow path by a pump, and is cooled by a heat exchange means connected to a heat medium circulation path from a low heat source to absorb hydrogen into the hydrogen storage alloy on the low temperature side. Furthermore, in the dark, the 8-temperature side reaction tank is heated by a heat exchange means connected from a high heat source to the heat medium circulation path, and the gaseous hydrogen released by the high-temperature side hydrogen storage alloy is transferred to the other side using a pump. Store it in a hydrogen storage tank. In this way, when the transfer of gaseous hydrogen from the low-temperature side reaction vessel of the first series to the high-temperature side reaction vessel is completed, the first series and the second series are switched and the same operation as described above is repeated to continuously generate heat. Utilization device fK heat is supplied.
(実施例)
本発明に係る水素貯蔵合金を利用した熱交換装置の実施
例を第1図に基づいて説明する。(Example) An example of a heat exchange device using a hydrogen storage alloy according to the present invention will be described based on FIG. 1.
l、rは第1、第2高温側反応槽であり、高温側水素貯
蔵合金Mを内蔵する。2.2′は第1、第2低温側反応
槽であり、低温側水素貯蔵合金M′を内蔵している。3
,3′は該両反応槽1,2またはr、τを連絡して気体
水素8流通させる第1、第、2水素流通路であり、該両
流通路3,3′に設けた各ノ々ルプv8 * Y8’は
常態において開位置で使用される。4は高熱源であり、
高温側水素貯蔵合金M8加熱または冷却する各熱交換手
段5.5′にポンプP4、パルプv4、三方切換弁■、
を設けた熱媒体循環路L4にて接続している。なおay
、 、 cv(は該循環路L4に設けた逆止弁であり、
それぞれ、第2高温側反応僧fの加熱時に熱媒体かig
1高温側反応壇1へ逆流するの8阻止し、または第1高
温側反応槽lの加熱時に熱媒体が第2高温側反応−a逆
流するのを阻止する。l and r are first and second high-temperature side reaction tanks, which contain a high-temperature side hydrogen storage alloy M. Reference numeral 2.2' denotes first and second low-temperature side reaction tanks, which contain a low-temperature side hydrogen storage alloy M'. 3
, 3' are first, second, and second hydrogen flow passages that connect the two reaction vessels 1, 2 or r, τ and allow gaseous hydrogen 8 to flow through them, and each of the nozzles provided in the two flow passages 3, 3' The loop v8*Y8' is normally used in the open position. 4 is a high heat source;
Each heat exchange means 5.5' for heating or cooling hydrogen storage alloy M8 on the high temperature side is equipped with pump P4, pulp v4, three-way switching valve ■,
They are connected through a heat medium circulation path L4 provided with. In addition, ay
, , cv (is a check valve provided in the circulation path L4,
When heating the second high-temperature side reactor f, the heating medium or ig
1. Prevent the heat medium from flowing back into the reaction chamber 1 on the high temperature side 8, or prevent the heat medium from flowing back into the reaction tank 1 on the high temperature side 1 during heating of the first reaction tank 1 on the high temperature side.
高熱源4は、第1、第2低温側反応槽円の低温側水素貯
蔵合金M′を加熱する各熱交換手段6.6′に、熱媒体
循環路L4のパルプV、とポンプP4との間にて分岐し
て三方切換弁Vs’E−介して接続している。The high heat source 4 connects the pulp V of the heat medium circulation path L4 and the pump P4 to each heat exchange means 6,6' for heating the low temperature side hydrogen storage alloy M' of the first and second low temperature side reaction tanks. It branches in between and is connected via a three-way switching valve Vs'E-.
なお、 CV6. CV、/は該循環路L4に設けた逆
止弁であり、それぞれ第2低温側反応4vτの加熱時に
熱媒体か第1低温側反応槽2へ逆流するのを阻止し、ま
たは第1低温側反応槽2の加熱時に熱媒体が第2低温側
反応槽τへ逆流するのを阻止する。Furthermore, CV6. CV and / are check valves provided in the circulation path L4, which respectively prevent the heat medium from flowing back into the first low temperature side reaction tank 2 during heating of the second low temperature side reaction 4vτ, or When heating the reaction tank 2, the heat medium is prevented from flowing back into the second low temperature side reaction tank τ.
7は低熱源であり、第1、第2低温側反応槽の低温側水
素貯蔵合金M′を冷却する各熱交換手段8゜8′に、ポ
ンプP、および両三方切換弁v8 + ”@を設けた熱
媒体循環路L7にて接続している。7 is a low heat source, and a pump P and both three-way switching valves v8 + "@ are connected to each heat exchange means 8゜8' for cooling the low-temperature side hydrogen storage alloy M' of the first and second low-temperature side reaction tanks. They are connected through a heat medium circulation path L7 provided.
10 、10’は第1、第2水素貯蔵タンクであり、そ
れぞれ、第1、第2高温側反応槽x、fに、各パルプV
1. Vい各ポンプP、。+PiOおよび各パルプvt
r v2 fJ’順次に介在する第1、第2配管L1
.L71/(て連絡している。また、各)々ルプv1.
■1′と各ポンプP、。+PIOとの間からの各バイパ
ス配管L’、、L’、’にそれぞれバルブvs+vs+
設けて第1、第2水素貯蔵タンク10.1げに連絡して
いる。第1、WJ2水素補充流通路L10 e LlG
は、それぞれポンプPIO* P+o ト’j’フVt
+V:t!−ノ間からA /L/ f VlotvIJ
を介して第2、第1低温側反応槽τ、2に連絡している
。そして一方の第1水素貯蔵タンク10は、第1低温側
反応槽2内の低温側水素貯蔵合金M′が充分に吸収して
いる水素量と等しい水素を貯蔵し、他方の第2水素貯蔵
タンク10’は真空とされている。10 and 10' are first and second hydrogen storage tanks, and each pulp V is stored in the first and second high temperature side reaction tanks x and f, respectively.
1. Each pump P. +PiO and each pulp vt
r v2 fJ' First and second pipes L1 interposed in sequence
.. L71/(I am in contact with you.Also, each)Telup v1.
■1' and each pump P. +Valve vs+vs+ for each bypass piping L', ,L',' from between +PIO
The hydrogen storage tank 10.1 is connected to the first and second hydrogen storage tanks 10.1. 1st, WJ2 hydrogen replenishment flow path L10 e LlG
are respectively pump PIO* P+o to'j'fu Vt
+V:t! - A /L/ f VlotvIJ
It is connected to the second and first low temperature side reaction vessels τ, 2 via. One first hydrogen storage tank 10 stores hydrogen equal to the amount of hydrogen sufficiently absorbed by the low-temperature side hydrogen storage alloy M' in the first low-temperature side reaction tank 2, and the other second hydrogen storage tank 10' is a vacuum.
9は、熱利用装置であり、両高温側反応槽1.rに設け
た熱取出し手段11.11’に、両三方切換弁V11.
Vl: を介在させた熱媒体循環路り、にて接礫し
ている。9 is a heat utilization device, which includes both high temperature side reaction tanks 1. Both three-way switching valves V11.
Gravel is attached using a heat medium circulation path with Vl: interposed.
次に作用について説明する。Next, the effect will be explained.
先ず、本装置の最初の状態を説明する。First, the initial state of this device will be explained.
第1低温側反応槽2に内蔵された低温鋼水素貯蔵合金ゾ
および第2高温側反応槽rに内蔵された高温側水素貯蔵
合金Mに水素を飽和状態に吸収させ、第2低温側反応檀
τに内1w、された低温側′水素貯蔵合金イおよび第1
高温側反応市1に内蔵された高温側水素貯蔵合金Mは水
素未飽軸の状態とす する。Hydrogen is absorbed to a saturated state in the low temperature steel hydrogen storage alloy Z built in the first low temperature side reaction tank 2 and the high temperature side hydrogen storage alloy M built in the second high temperature side reaction tank R. The low-temperature side 'hydrogen storage alloy A and the first
The high temperature side hydrogen storage alloy M built in the high temperature side reaction city 1 is assumed to be in a state of hydrogen unsaturated axis.
また、第1水素貯蔵タンク10は、第1低温側反応槽2
内の水素貯蔵合金ゾが飽和状態で吸収している水素量と
同量の水素を貯蔵し、第2水素貯蔵タンクi o’は真
空の状態とする。In addition, the first hydrogen storage tank 10 includes a first low temperature side reaction tank 2.
The second hydrogen storage tank i o' is kept in a vacuum state, and the second hydrogen storage tank i o' is kept in a vacuum state.
上記のような状態にある本装置の作動を第3図のヒート
ポンプの圧力一温度特性線図を参照して説明する。The operation of the present device in the above state will be explained with reference to the pressure-temperature characteristic diagram of the heat pump shown in FIG.
現状にて、装置の第1低温側反応槽2と第1高温側反応
槽1との関係は点け)の状態にある。ここで、高熱源4
を第1低温側反応槽2および第2高温側反応槽rに接続
し、かつ低熱源7を第2低温側反応権τに接続する。す
なわち、具体的には、三方切換弁v6を第1低温側反応
槽2に開、およびパルプv4を開、三方切換弁V、を第
2高温側反応槽r側に開とし、更に、両三方切換弁vs
、vaj!l−第2低温側反応槽2側に開として両ポン
プP、、馬を駆動する。At present, the relationship between the first low-temperature side reaction tank 2 and the first high-temperature side reaction tank 1 of the apparatus is in a state of 1). Here, high heat source 4
is connected to the first low temperature side reaction tank 2 and the second high temperature side reaction tank r, and the low heat source 7 is connected to the second low temperature side reaction right τ. Specifically, the three-way switching valve v6 is opened to the first low-temperature side reaction tank 2, the pulp v4 is opened, the three-way switching valve V is opened to the second high-temperature side reaction tank r side, and both three-way switching valves are opened to the second high-temperature side reaction tank r side. Switching valve vs
, vaj! l- Drive both pumps P, with the second low-temperature side reaction tank 2 side open.
かくして、第1低温側反応槽2内の低温側水素貯蔵合金
Mは熱交換手段8にて加熱されて水素を放出し、水素圧
P1水素温度Tを上昇させてB行程を経て点(ロ)に至
り、放出された気体水素は第1水素流通路3を経て移動
し、はぼ平衡圧にて第1高温側反応槽1内の高温側水素
貯蔵合金Mに吸収されてC行程8経て点(ハ)に至る。In this way, the low-temperature side hydrogen storage alloy M in the first low-temperature side reaction tank 2 is heated by the heat exchange means 8, releases hydrogen, increases the hydrogen pressure P1 and the hydrogen temperature T, and passes through the B process to point (B). The released gaseous hydrogen moves through the first hydrogen flow path 3, is absorbed by the high temperature side hydrogen storage alloy M in the first high temperature side reaction tank 1 at almost equilibrium pressure, and reaches the point after passing C process 8. This leads to (c).
この間に高温側水素貯蔵合金Mか氷菓吸収によって発生
する反応熱を、両三方切換弁v+t t Ml/ ’)
熱取出し手段1111111C開として熱利用装置9
K卓出して利用する。During this time, the reaction heat generated by the hydrogen storage alloy M on the high temperature side or the absorption of ice cream is transferred to both three-way switching valves v+t t Ml/')
Heat utilization device 9 as heat extraction means 1111111C open
Use K prominently.
上記のように、第1低温糊反応情2から気体水素を発生
し、第1高温側反応槽lにて該水素を吸収している閣に
、熱交換手段ぎにて加熱されているWkz高諷糊反応槽
r内の一温一水木貯戚合金Mは、水素を放出し、放出さ
れた気体水素はポンプptoの駆動によってm2配tL
t+Mて鴫2水素貯蔵タンク1σに貯Rされ、他方、熱
交換器ぎにて冷却されている間2低温糊反応fIr内の
低温鋼水素貯蔵合金Mは、4ンプP、。の1sAllE
t+によってMl水素貯蔵タンクlOから第1バイパス
配tLt ’) #iテ送出され、第1水素補元流通M
L鱒を畦て供給される気体水素を吸収している。従って
、第2低温側反応橿2′と第2高温側反応4@rとの間
では、点rjから点に)に至るD行程、および点に)か
ら点(イ)に至るA行程か行われる。As mentioned above, gaseous hydrogen is generated from the first low-temperature glue reaction condition 2, and the hydrogen is absorbed in the first high-temperature side reaction tank 1, and the Wkz high temperature heated by the heat exchange means is heated. The one-temperature, one-mizuki storage alloy M in the tatami reaction tank R releases hydrogen, and the released gaseous hydrogen is transferred to m2 by driving the pump PTO.
The low temperature steel hydrogen storage alloy M in the low temperature glue reaction fIr is stored in the hydrogen storage tank 1σ at t+M, while being cooled in the heat exchanger 4p. 1sAllE
t+, Ml is sent from the hydrogen storage tank lO to the first bypass distribution tLt') #ite, and the first hydrogen supplementary distribution M
The L trout absorbs gaseous hydrogen supplied by ridges. Therefore, between the second low-temperature side reaction rod 2' and the second high-temperature side reaction 4@r, there is a D process from point rj to point ), and an A process from point ) to point (A). be exposed.
かくして、絹1Il16温1国反応+111円の尚温側
水ス貯絨合金Mおよび第2はVrAi1d1反応槽2内
の低温鋼水素貯蔵合金Mか充分に水A8囁収し、かつ第
2水素貯蔵タンク10′に水素か貯蔵された後に、高熱
源48第2低温側反応槽τおよび第1高温側反応槽lに
接続し、かつ低熱源7を第1低温側反応横2に接続して
第2低温側反応楕τで発生する気体水素8第2高温側反
応槽1’に内蔵された高温側水素貯蔵合金Mに吸収させ
、発生する反応熱を、熱取出し手段lfを三方切換弁v
1□r vllにて熱利用装置9に接続させて熱媒体を
利用して熱利用装置9に散り出す。そしてこの間、第2
水素貯蔵タンク10′から気体水素を第1低温側反応槽
2に供給すると共に第1篇温側反応槽1から発生する気
体水素を第1水素貯蔵タンク10に貯蔵する。Thus, the silk 1Il 16 temperature 1 country reaction + 111 yen still temperature side water storage alloy M and the second low temperature steel hydrogen storage alloy M in the VrAi1d1 reaction tank 2 can sufficiently collect water A8, and the second hydrogen storage After hydrogen is stored in the tank 10', the high heat source 48 is connected to the second low temperature side reaction tank τ and the first high temperature side reaction tank l, and the low heat source 7 is connected to the first low temperature side reaction tank 2. 2. Gaseous hydrogen generated in the low-temperature side reaction ellipse 8 is absorbed into the high-temperature side hydrogen storage alloy M built in the second high-temperature side reaction tank 1', and the generated reaction heat is transferred to the heat extraction means lf by the three-way switching valve v.
1□r vll is connected to the heat utilization device 9 and the heat medium is used to discharge the heat to the heat utilization device 9. And during this time, the second
Gaseous hydrogen is supplied from the hydrogen storage tank 10' to the first low temperature side reaction tank 2, and gaseous hydrogen generated from the first warm side reaction tank 1 is stored in the first hydrogen storage tank 10.
上記の作動を繰り返すことによって、第1、第2高温側
反応槽1.rで発生する熱を連続して外部に供給できる
。By repeating the above operations, the first and second high temperature side reaction tanks 1. The heat generated by r can be continuously supplied to the outside.
(発明の効果)
上記の説明によって理解されるように、本発明になる水
素貯蔵合金を利用した熱交換装置においては次のような
効果を有する。(Effects of the Invention) As understood from the above explanation, the heat exchange device using the hydrogen storage alloy according to the present invention has the following effects.
(1) 予め水素貯蔵タンクに収容された気体水素を
ポンプで比較的圧力差の大きな状態で低温側反応槽に送
り込むので気体水素の移動が迅速になされ、従って低温
側水素貯蔵合金の水素吸収も速やか(なされ、−サイク
ルタイムを減少できる。(1) Since the gaseous hydrogen stored in the hydrogen storage tank in advance is pumped into the low-temperature reaction tank under a relatively large pressure difference, the gaseous hydrogen can be moved quickly, and therefore the hydrogen storage alloy at the low-temperature side can absorb hydrogen. Can be done quickly - reduce cycle time.
(2) 熱利用を連続的に必要とする場合に、低片側
反応槽と高温側反応槽との組合せ数の減少か期待できる
。(2) When continuous heat utilization is required, a reduction in the number of combinations of low-side reaction tanks and high-temperature side reaction tanks can be expected.
(3)所要の熱交換量に対して、サイクルタイムの短縮
により、必要な水素貯蔵合金!8減少できる。(3) Required hydrogen storage alloy due to shortened cycle time for the required amount of heat exchange! It can be reduced by 8.
第1図は、本発明に係る水素貯蔵合金を利用した熱交換
装置の実施例の憬器配t1t8示す図、第2図は、従来
の水素貯蔵合金を利用した熱交換装置の機器配置を示す
図、第3図は、水氷貯蔵合金の温度一時間特性を示す線
図である。
1:第1高温側反応槽、1′:第2高温側反応僧、2:
第1低温側反応槽、′r=第2低温側反応槽、3:第1
水素流通路、3′:第2水素流通路、4:高熱源、5.
5’、6.6’、8.8’ :熱交換手段、7:低熱源
、9:熱利用装置、lO二第1水素貯蔵タンク、lσ:
第2水素貯蔵タンク、11,1r:熱取出し装置、M:
高温側水素貯蔵合金1M′:低温側水素貯蔵合金、Vl
、Vj 、V@、V; 、V@、V: +v4svws
v; evtov”tj : A tv f、L%L:
、配管、L/ 、 、 L/ / 、バイパス配管、
P、、P、、Pl。。
P+: : $ 7 f、v8pV?yva*v8
pvll*vll ’ 三方切換弁、L4e LYr
L* ’熱媒体循環路、L+o :第1水素補充流
通路、L、j:第2水素補充流通路
代理人 弁理士 前 1) 利 2
宵1 図Fig. 1 is a diagram showing the equipment arrangement of an embodiment of a heat exchange device using a hydrogen storage alloy according to the present invention, and Fig. 2 is a diagram showing the equipment arrangement of a conventional heat exchange device using a hydrogen storage alloy. FIG. 3 is a diagram showing the temperature one-hour characteristics of the water ice storage alloy. 1: First high temperature side reaction tank, 1': Second high temperature side reaction tank, 2:
1st low temperature side reaction tank, 'r = 2nd low temperature side reaction tank, 3: 1st
Hydrogen flow path, 3': second hydrogen flow path, 4: high heat source, 5.
5', 6.6', 8.8': heat exchange means, 7: low heat source, 9: heat utilization device, lO2 first hydrogen storage tank, lσ:
Second hydrogen storage tank, 11,1r: Heat extraction device, M:
High temperature side hydrogen storage alloy 1M': Low temperature side hydrogen storage alloy, Vl
, Vj , V@, V; , V@, V: +v4svws
v; evtov"tj: A tv f, L%L:
, Piping, L/ , , L/ / , Bypass piping,
P,,P,,Pl. . P+: : $7 f, v8pV? yva*v8
pvll*vll ' Three-way switching valve, L4e LYr
L* 'Heating medium circulation path, L+o: 1st hydrogen replenishment flow path, L, j: 2nd hydrogen replenishment flow path Agent Patent attorney Mae 1) Li 2 Yoi 1 Figure
Claims (1)
路に接続する熱交換手段と、高熱源からの熱媒体循環路
に接続する熱交換手段とを有する一対の低温側反応槽と
、高温側水素貯蔵合金を内蔵し、高熱源からの熱媒体循
環路に接続する熱交換手段と、熱取出し手段とを有する
一対の高温側反応槽と、高温側反応槽と低温側反応槽と
を連絡する一対の水素流通路と、両高温側反応槽の熱取
出し手段の熱媒体循環路に接続する熱利用装置と、高温
側反応槽と前記水素流通路で連絡されていない側の低温
側反応槽とを一対としてそれぞれ水素補充流通路で連絡
し、両水素補充流通路中にそれぞれ水素貯蔵タンクと、
高温側反応槽からの水素を水素貯蔵タンクに送り込みま
たは該タンクから低温側反応槽に水素を送り出すポンプ
とを有することを特徴とする水素貯蔵合金を利用した熱
交換装置。A pair of low-temperature side reaction vessels each containing a low-temperature side hydrogen storage alloy and having a heat exchange means connected to a heat medium circulation path from a low heat source and a heat exchange means connected to a heat medium circulation path from a high heat source; A pair of high-temperature side reaction tanks containing a high-temperature side hydrogen storage alloy and having a heat exchange means connected to a heat medium circulation path from a high heat source and a heat extraction means, a high-temperature side reaction tank and a low-temperature side reaction tank. A pair of communicating hydrogen flow paths, a heat utilization device connected to the heat medium circulation path of the heat extraction means of both high-temperature side reaction tanks, and a low-temperature side reaction on the side not communicating with the high-temperature side reaction tanks and the hydrogen flow path. The tanks are connected as a pair through hydrogen replenishment flow passages, and a hydrogen storage tank is provided in both hydrogen replenishment flow passages, respectively.
1. A heat exchange device using a hydrogen storage alloy, comprising a pump that sends hydrogen from a high temperature side reaction tank to a hydrogen storage tank or sends hydrogen from the tank to a low temperature side reaction tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59255793A JPS61134594A (en) | 1984-12-05 | 1984-12-05 | Heat exchange device utilizing hydrogen occlusion alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59255793A JPS61134594A (en) | 1984-12-05 | 1984-12-05 | Heat exchange device utilizing hydrogen occlusion alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61134594A true JPS61134594A (en) | 1986-06-21 |
Family
ID=17283709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59255793A Pending JPS61134594A (en) | 1984-12-05 | 1984-12-05 | Heat exchange device utilizing hydrogen occlusion alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61134594A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2514684A (en) * | 2013-05-21 | 2014-12-03 | Europ Thermodynamics Ltd | Energy storage |
-
1984
- 1984-12-05 JP JP59255793A patent/JPS61134594A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2514684A (en) * | 2013-05-21 | 2014-12-03 | Europ Thermodynamics Ltd | Energy storage |
EP2808640A3 (en) * | 2013-05-21 | 2015-04-08 | European Thermodynamics Limited | Energy storage |
GB2514684B (en) * | 2013-05-21 | 2016-10-12 | European Thermodynamics Ltd | Adsorption heat pipe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5818574B2 (en) | heat pump | |
JPH046357A (en) | Operation method of heat utilizing apparatus using hydrogen-occlusion alloy | |
US2037679A (en) | Method and apparatus for rejecting heat from a cascade system | |
CA2225335A1 (en) | Compression absorption heat pump | |
JPS61110853A (en) | Absorption heat pump/refrigeration system | |
JPS61134594A (en) | Heat exchange device utilizing hydrogen occlusion alloy | |
KR101652484B1 (en) | Heating and hot water supply chiller of low temperature water two-stage absorption | |
CN104567117B (en) | Flat plate heat exchanger | |
JP3786547B2 (en) | Absorption chiller / heater | |
JP3126086B2 (en) | Compression metal hydride heat pump | |
JPS61119945A (en) | Heat pipe type heating device utilizing hydrogen occlusion alloy | |
JP3786535B2 (en) | Absorption chiller / heater | |
SU330785A1 (en) | Apparatus for obtaining extra low temperatures | |
JPS5913667B2 (en) | Absorption type water cooler/heater | |
JPS61190261A (en) | Heat pipe type cooling and refrigerating device utilizing hydrogen storage alloy | |
US2002958A (en) | Absorption refrigerating apparatus and method | |
JPH10132417A (en) | Cooling system using hydrogen occlusion alloy | |
JPH02279501A (en) | Device for maintaining hydrogen purity in generator by metal hydride | |
JPS5983897A (en) | Hydrogen-gas purifying and storing apparatus | |
JPS6096802A (en) | Steam generator | |
JP2787182B2 (en) | Single / double absorption chiller / heater | |
JPS62276372A (en) | Intermittent operation type heat pump device | |
JPS61285357A (en) | Heat pump device | |
JPH06194077A (en) | Heat-exchanging device | |
JPS5817390B2 (en) | Heat recovery type absorption chiller/heater |