JPS61131369A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS61131369A
JPS61131369A JP59253049A JP25304984A JPS61131369A JP S61131369 A JPS61131369 A JP S61131369A JP 59253049 A JP59253049 A JP 59253049A JP 25304984 A JP25304984 A JP 25304984A JP S61131369 A JPS61131369 A JP S61131369A
Authority
JP
Japan
Prior art keywords
fuel
electrodes
ribs
carbon fibers
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59253049A
Other languages
Japanese (ja)
Inventor
Toshiaki Seki
関 敏昭
Masamitsu Tsushima
対馬 政光
Susumu Kojima
晋 小嶋
Masayuki Okawa
大川 雅行
Nobuyuki Ueshima
上嶋 信幸
Tsutomu Nagata
勉 永田
Mitsuo Ito
光生 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Toshiba Corp
Kyocera Chemical Corp
Original Assignee
Toshiba Corp
Toshiba Chemical Corp
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Chemical Corp, Toshiba Ceramics Co Ltd filed Critical Toshiba Corp
Priority to JP59253049A priority Critical patent/JPS61131369A/en
Publication of JPS61131369A publication Critical patent/JPS61131369A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To prevent the increase of contact resistance and the lowering of conductivity to maintain the stable performance through a long time without causing the lowering of strength and the buckling by using carbon fibers which are made high purity by the processing of chlorine gas at high temperatures as the material of electrodes with ribs. CONSTITUTION:A unit cell is constituted by laminating a matrix 1 impregnating electrolyte, electrodes 2, 3 with ribs which have flow passages 4, 5 for fluid fuel and fluid oxidizing agent and to which catalyst is added and a separator 6. Carbon fibers which are made high purity are used as the material of electrodes 2, 3 with ribs. Carbon fibers which is reduced in impurity content are obtained by raising the temperature of the carbon fibers by the use of a graphitization furnace, and blowing chlorine gas at the temperature of 1,500 deg.C, and raising the temperature of it to 2,300 deg.C to scatter and eliminate impurities as chloride. A carbon porous plate of the electrode with ribs is obtained by carrying out the hot press forming of the mixture of the obtained carbon fibers and phenol series resin, and carrying out the processing of hardening, and carrying out the processing of carbonization for the resin, and carrying out the processing of graphitization.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池に係わシ、特に流体燃料または流体酸
化剤の反応場への拡散機能を有するvf付電極の改良を
図った燃料電池に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a fuel cell, and more particularly to a fuel cell with an improved VF-equipped electrode having a function of diffusing fluid fuel or fluid oxidizer into a reaction field. .

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、燃料の有しているエネルギーを直接電気的エネル
ギーに変換する装置として燃料電池が知られている。こ
の燃料電池は通常、電解質を挾んで一対の多孔質電極を
配置するとともに、一方の電極の背面に水素等の流体燃
料を接触させ、また他方の電極の背面に酸素等の流体酸
化剤を接触させ、このとき起こる電気料学的反応を利用
して、上記電極間から電気エネルギーを取シ出すように
したものでう)、前記燃料と酸化剤が供給されている限
シ高い変換効率で電気エネルギーを取ル出すことができ
るものである。
2. Description of the Related Art Fuel cells are conventionally known as devices that directly convert energy contained in fuel into electrical energy. This fuel cell usually has a pair of porous electrodes sandwiching an electrolyte between them, and a fluid fuel such as hydrogen is brought into contact with the back surface of one electrode, and a fluid oxidizer such as oxygen is brought into contact with the back surface of the other electrode. (The electrochemical reaction that occurs at this time is used to extract electrical energy from between the electrodes.) As long as the fuel and oxidizer are supplied, electricity can be extracted with high conversion efficiency. It is something that can extract energy.

とζろで、上記のような原理に基づく、特にす/酸を電
解質とした燃料電池の単位セルは、第1図に示すように
構成されておシ、またこの単位セルを複数個積層するこ
とによって、第2図に示すように燃料電池装置全体を構
成している。
A unit cell of a fuel cell based on the above-mentioned principle, especially using sour/acid as an electrolyte, is constructed as shown in Fig. 1, and a plurality of these unit cells are stacked. As a result, the entire fuel cell device is configured as shown in FIG.

すなわち、第1図において単位セルは、電解質を含浸し
たマトリックス1を境にして両側に多孔質体で形成され
触媒が付加されているリブ付電極2,3(通常炭素材か
ら成る)を配置し、またこのリブ付電極2,3は触媒付
加面の反対面にそれぞれ流体燃料または流体酸化剤の流
通路4,5を有している。さらに、両リゾ付電極2.3
のマトリ、クス1と反対側の背面には、それぞれ七74
レータ6を配置している。このように、マトリックス1
、リゾ付電極2,3およびセ/4レータ6を積層し、こ
の状態でそれぞれリブ付電極2,3の流体燃料流通路お
よび流体酸化剤流通路の両端開口だけを残し、各積層端
1部を気密にシールして単位セルを構成している。
That is, in FIG. 1, the unit cell has ribbed electrodes 2 and 3 (usually made of carbon material) formed of a porous material and provided with a catalyst on both sides of a matrix 1 impregnated with an electrolyte. Further, the ribbed electrodes 2, 3 have flow passages 4, 5 for fluid fuel or fluid oxidant, respectively, on the opposite side of the catalyst application surface. Furthermore, both electrodes 2.3
On the back of the matori, opposite to Kusu 1, there are seven 74, respectively.
A controller 6 is installed. In this way, matrix 1
, the electrodes 2 and 3 with ribs and the separator 6 are stacked, and in this state, only the openings at both ends of the fluid fuel flow passage and the fluid oxidant flow passage of the ribbed electrodes 2 and 3 are left, and one part of each stacked end is opened. are hermetically sealed to form a unit cell.

第1図のように構成された単位セルは複数個積層され、
第2図に示すように単位セル間の電気的導通を得るため
に、締付具10によ)所定圧で締付けられた後に1この
積層体の1つの対向する端面の一方に燃料供給口11を
有したマニホルド12と、他に燃料排出口13を有した
マニホルド14とが当てがわれ、また他の対向する端面
の一方に酸化剤供給口15を有したマニホルド16と、
他方に酸化剤排出口17を有したwニホルド18とが当
てがわれ、これらマニホルド12.14.16.18が
♂ルト等で締付けられて気密保持され、これによって燃
料電池装置19が構成されている。したがってこの燃料
電池装置19によると、燃料供給口IIから流体燃料を
供給すると、この燃料は各単位セルの流路4を分流・し
て多孔性のリゾ付電極2の背面に接しながら流れ、その
後燃料排出口13から排出される。また酸化剤供給口1
5から流体酸化剤を供給すると、この酸化剤は各単位セ
ルの流通路5を分流して多孔性のリブ付電極3の背面に
接触しながら流れ、その後酸化剤排出口1rから排出さ
れることになシ、そのとき流体燃料と流体酸化剤とはそ
れぞれ拡散によって多孔性のリブ付電極2,3内に供給
され、燃料電池としての電気エネルギーを発生する。
A plurality of unit cells configured as shown in Fig. 1 are stacked,
As shown in FIG. 2, after being tightened with a predetermined pressure by a fastener 10 in order to obtain electrical continuity between the unit cells, a fuel supply port 11 is provided at one of the opposing end faces of the stack. a manifold 12 having a fuel outlet 13, and a manifold 14 having a fuel outlet 13, and a manifold 16 having an oxidizer supply port 15 on one of its opposite end faces;
A w manifold 18 having an oxidizing agent outlet 17 is applied to the other side, and these manifolds 12, 14, 16, 18 are tightened with a bolt or the like to maintain airtightness, thereby forming a fuel cell device 19. There is. Therefore, according to this fuel cell device 19, when fluid fuel is supplied from the fuel supply port II, this fuel branches through the flow path 4 of each unit cell, flows while contacting the back surface of the porous electrode 2, and then The fuel is discharged from the fuel discharge port 13. Also, oxidant supply port 1
When a fluid oxidizer is supplied from 5, this oxidant flows through the flow path 5 of each unit cell, flows while contacting the back surface of the porous ribbed electrode 3, and is then discharged from the oxidizer outlet 1r. Otherwise, the fluid fuel and the fluid oxidant are then supplied by diffusion into the porous ribbed electrodes 2, 3, respectively, to generate electrical energy as a fuel cell.

なお、図では出力端子を省略している。Note that the output terminal is omitted in the figure.

ところで上述したリブ付電極2,3は、力−ゲン繊維と
熱硬化性樹脂の混合物を成形して数蛎のシートとした後
、不活性雰囲気で900℃〜1100℃に昇温すること
により熱硬化性樹脂の炭化を図シ、更に耐熱・耐食性・
電気熱特性を向上させるため、2100℃〜2500℃
で黒鉛化処理を行なったものに、機械加工により所定の
ガス流通路を形成するととくよシ得られる。
By the way, the above-mentioned ribbed electrodes 2 and 3 are made by molding a mixture of force-generating fibers and a thermosetting resin into several sheets, and then heating the mixture to 900°C to 1100°C in an inert atmosphere. In addition to carbonizing hardening resin, it also improves heat resistance, corrosion resistance,
2100℃~2500℃ to improve electrothermal properties
When a predetermined gas flow passage is formed by machining on the graphitized material, a special result can be obtained.

またこのリブ付電極2,3は、反応ガスの拡散、電解質
の保持機能、電子伝導性、積層締め封圧から通常は0.
4〜0.6 iP/lx”の低密度に、また数10ミク
ロン程度の小さな平均細孔径を有するように作られてい
る。
Furthermore, the ribbed electrodes 2 and 3 are usually 0.00% in terms of reaction gas diffusion, electrolyte retention function, electronic conductivity, and lamination sealing pressure.
It is made to have a low density of 4 to 0.6 iP/lx'' and a small average pore diameter of about several tens of microns.

しかしながら、このように黒鉛化処理された炭素質多孔
板からなるリブ付電極2,3においても、原材料のカー
ボン繊維および熱硬化性樹脂に含まれる不純物は完全く
除去されず相当の部分が残存している。このことは、特
に石油ピッチ、石炭ピッチから作られるカーボン繊維に
ついて著しいものである。かかるリゾ付電極2゜3を素
電池として組立て、高温高圧の条件で燃、料電池の運転
を行なうと、リグ付電砥2,3中に残存する不純物を電
解質、酸化剤および水蒸気等と反応することにより、リ
ゾ付電極2,3の強度が低下して著しい時は座屈を起し
、接触抵抗の増大、電気伝導性の低下、熱伝導性の低下
が生じて、結果的に電池性能が低下し長期間安定して運
転を行なうことが困難である。このことは、特にリン酸
電解質型の燃料電池において問題となっている。したが
って、不純物の少ないリゾ付電極を製作する技術の出現
が、燃料電池の長期間にわたる安定運転の観点から強く
望まれてきている。
However, even in the ribbed electrodes 2 and 3 made of graphitized carbonaceous porous plates, the impurities contained in the raw material carbon fibers and thermosetting resin are not completely removed and a considerable portion remains. ing. This is particularly true for carbon fibers made from petroleum pitch and coal pitch. When such electrodes 2゜3 with rigs are assembled as a unit cell and the fuel cell is operated under high temperature and high pressure conditions, impurities remaining in the rigged electric grinders 2 and 3 react with the electrolyte, oxidizing agent, water vapor, etc. As a result, the strength of the electrodes 2 and 3 with ribs decreases, and in severe cases, buckling occurs, resulting in an increase in contact resistance, a decrease in electrical conductivity, and a decrease in thermal conductivity, resulting in a decrease in battery performance. This makes it difficult to operate stably for a long period of time. This is particularly a problem in phosphoric acid electrolyte type fuel cells. Therefore, the emergence of a technology for producing electrodes with reduced impurities has been strongly desired from the viewpoint of long-term stable operation of fuel cells.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような事情を考慮して成されたもので、
その目的は不純物量の少ないリゾ付電極を用いるととく
よ)、高温高圧の運転条件下でも強度低下、座屈を起す
ことなく接触抵抗の増大、導電率の低下を防止し長期間
にわたシ安定した性能を維持することが可能な燃料電池
を提供することにある。
The present invention was made in consideration of the above circumstances, and
The purpose is to use electrodes with a ridge with a small amount of impurities), and to maintain stability over a long period of time by preventing an increase in contact resistance and a decrease in conductivity without causing a decrease in strength or buckling even under operating conditions of high temperature and high pressure. The object of the present invention is to provide a fuel cell that can maintain the desired performance.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明では、電解質を含む一
対の電極に接するような流体燃料流通路および流体酸化
剤流通路を形成し、上記流通燃料および流体酸化剤の反
応場への拡散機能を有するリブ付電極を備え、各流通路
に燃料および酸化剤が流通している条件下で電気エネル
ギーを出力する単位セルを複数積層して成る燃料電池K
>いて、上記リブ付電極の材料として高温で塩素ガス処
理により高純度化したカーノン繊維を用いるようにした
ことを特徴とする。
In order to achieve the above object, the present invention forms a fluid fuel flow path and a fluid oxidant flow path that are in contact with a pair of electrodes containing an electrolyte, and has a function of diffusing the flowing fuel and fluid oxidant into the reaction field. A fuel cell K comprising a plurality of stacked unit cells each having a ribbed electrode and outputting electrical energy under conditions where fuel and oxidizer are flowing through each flow path.
The present invention is characterized in that carnon fibers highly purified by high-temperature chlorine gas treatment are used as the material of the ribbed electrode.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面に示す一実施例について説明する。 An embodiment of the present invention shown in the drawings will be described below.

つマ)、本実施例は前述した燃料電池におけるリブ付電
極2,3の材料として、高温で塩素ガス処理によυ高純
度化したカーノン繊維を用いるようにするものである。
In this embodiment, as the material for the ribbed electrodes 2 and 3 in the fuel cell described above, carnon fibers which have been highly purified by chlorine gas treatment at high temperatures are used.

そして、本リブ付電極2.3は以下のようにして得る。The present ribbed electrode 2.3 is obtained as follows.

すなわち、黒鉛化炉を用いてカーボン繊維を昇温し、温
度が1500℃に達した後に塩素ガスを所定の流量、時
間だけ吹き込みを行ない、さらに2300℃に昇温して
不純物を塩化物として飛散除去し、しかる後に残存する
塩素を飛散除去することによりネ細物含有量の少ないカ
ーボン繊維を得る。このようにして得られるカーノン繊
維中の不純物の残有量の元素分析値を下表に示し、併せ
て塩素ガスによる高純度化処理を行なう前のカーはン繊
維中の不純物の含有量を比較のために示した。表から明
らかなように、本実施例によるカーノン繊維中の不純物
は未処理の場合に比して極めて少なく、非常に高純度化
されていることがわかる。
That is, carbon fiber is heated using a graphitization furnace, and after the temperature reaches 1500°C, chlorine gas is blown in at a predetermined flow rate for a specified period of time, and the temperature is further raised to 2300°C to scatter impurities as chloride. After that, the remaining chlorine is removed by scattering, thereby obtaining carbon fibers with a low content of fine particles. The table below shows the elemental analysis values of the amount of impurities remaining in the carnon fibers obtained in this way, and also compares the content of impurities in the carnon fibers before high purification treatment with chlorine gas. Shown for. As is clear from the table, the amount of impurities in the carnon fibers according to this example is extremely small compared to the untreated case, indicating that the fibers are highly purified.

〔表〕  残存不純物の元素分析値 単位 p−p−m・ 次に、上記のようにして得られたカーノン繊維を材料と
してフェノール系樹脂との混合物を所定量秤量し、均一
厚みに平面(例えば650×750■の形状)K配置す
る。そして、この配置した材料を所定の厚さに160〜
170℃の温度で5分間熱間加圧成形し、さらに180
℃で72時間後硬化処理を行ない反応を完結させる。し
かる後に、1100℃で樹脂分の炭化処理を行ない、さ
らに2100〜2400′c楊度で黒鉛化処理を行なう
ことにより、リゾ付電極の炭素多孔質板を得る。
[Table] Elemental analysis value unit of residual impurities ppm・Next, a predetermined amount of the mixture with phenolic resin is weighed using the carnon fiber obtained as above, and a flat surface (e.g. 650 x 750 square) K arrangement. Then, the arranged material is made into a predetermined thickness of 160~
Hot pressure molding at a temperature of 170°C for 5 minutes, and further 180°C
A post-cure treatment is carried out at 0.degree. C. for 72 hours to complete the reaction. Thereafter, the resin component is carbonized at 1100 DEG C., and then graphitized at 2100 to 2400'C, to obtain a carbon porous plate of a ribbed electrode.

このようKして得られた炭素多孔質板に反応ガス流通路
としての溝を形成し、さらに触媒、電解質層を付加して
一体化して単位セルを作シ、電池として組込んで205
℃で長期運転を行ない評価した。約3000時間運転後
分解してリブ付電極部分を観察した所、従来のリゾ付電
極に発生したリブ材の強度低下、リブ部の座屈等は、本
実施例のものでは全く認められなかった。従ってこれに
より、本実施例で得られたリゾ付電極用の炭素多孔質板
は、高温高圧の条件下での燃料電池運転に安定した特性
を維持することが明らかとなり、その結果これを電池に
組込むことにより、従来の如き強度低下、座屈等による
接触抵抗の増大、導電率の低下等による電池性能の低下
を防止し、長期間にわたって安定した性能を維持するこ
とが可能な燃料電池を得ることができるものである。
Grooves as reaction gas flow passages were formed in the carbon porous plate obtained in this way, and a catalyst and electrolyte layer were further added and integrated to form a unit cell, which was assembled as a battery (205).
It was evaluated by long-term operation at ℃. After approximately 3,000 hours of operation, the electrode with ribs was disassembled and the electrode with ribs was observed. The decrease in strength of the rib material, buckling of the ribs, etc. that occurred in conventional electrodes with ribs were not observed in this example at all. . Therefore, it is clear from this that the carbon porous plate for electrodes with ribs obtained in this example maintains stable characteristics in fuel cell operation under high temperature and high pressure conditions, and as a result, it can be used in batteries. By incorporating the fuel cell, it is possible to prevent the conventional decrease in strength, increase in contact resistance due to buckling, etc., decrease in battery performance due to decrease in conductivity, etc., and to obtain a fuel cell that can maintain stable performance over a long period of time. It is something that can be done.

尚、上記において多孔質板を得るための混合物としては
、上記以外にカーボン繊維とフルフラール等の7エノー
ル樹脂(俗にフルフラール樹脂ともいう)の混合物を用
いるようKしてもよいものである。
In addition to the above, a mixture of carbon fiber and a 7-enol resin such as furfural (also commonly referred to as furfural resin) may be used as the mixture for obtaining the porous plate in the above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、材料として高温で
塩素ガス処理によ)高純度化したカー4ン繊維から成る
不純物量の少ないリブ付電極を・用いるようにしたので
、高温高圧の運転条件下でも強度低下、座屈を起すこと
なく接融抵抗の増大、導電率の低下を防止し長期間にわ
たシ安定した性能を維持することが可能な極めて信頼性
の高い燃料電池が提供できる。
As explained above, according to the present invention, a ribbed electrode with a small amount of impurities is used, which is made of highly purified carbon fiber (through chlorine gas treatment at high temperature). It is possible to provide an extremely reliable fuel cell that can maintain stable performance over a long period of time by preventing an increase in welding resistance and a decrease in conductivity without causing a decrease in strength or buckling even under various conditions. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃料電池の単位セルを示す分解斜視図、第2図
は同単位セルを組込んだ燃料電池装置を示す斜視図であ
る。 1・・・マトリ、クス、2,3・・・リブ付電極、4゜
5・・・流体流通路、6・・・セパレータ、10・・・
締付具、11・・・燃料供給口、12,14.16゜1
8・・・マニホルド、13−燃料排出口、15・−・酸
化剤供給口、17・・・酸化剤排出口、19・・・燃料
電池装置。 出原人代理人  弁理士 鈴 江 武 彦手続補正書 昭和 IpO,b、23日 特許庁長官   志 賀    学 殿1、事件の表示 特願昭59−253049号 2、発明の名称 燃料電池 3、補正をする者 事件との関係 特許出願人 (307)株式会社 東芝 (ほか2名) 4、代理人 5、自発補正 ア、補正の内容
FIG. 1 is an exploded perspective view showing a unit cell of a fuel cell, and FIG. 2 is a perspective view showing a fuel cell device incorporating the same unit cell. DESCRIPTION OF SYMBOLS 1... Matrix, box, 2, 3... Ribbed electrode, 4° 5... Fluid flow path, 6... Separator, 10...
Fastener, 11...Fuel supply port, 12, 14.16゜1
8... Manifold, 13--Fuel outlet, 15-- Oxidizing agent supply port, 17... Oxidizing agent outlet, 19... Fuel cell device. Originator's representative Patent attorney Takehiko Suzue Procedural amendments Showa IpO, b, 23rd Patent Office Commissioner Manabu Shiga 1, Indication of case Patent application No. 59-253049 2, Name of invention fuel cell 3, Amendment Relationship with the case of a person who makes a patent application Patent applicant (307) Toshiba Corporation (and 2 others) 4. Agent 5. Voluntary amendment A. Contents of amendment

Claims (2)

【特許請求の範囲】[Claims] (1)電解質を含む一対の電極に接するような流体燃料
流通路および流体酸化剤流通路を形成し、前記流通燃料
および流体酸化剤の反応場への拡散機能を有するリブ付
電極を備え、各流通路に燃料および酸化剤が流通してい
る条件下で電気エネルギーを出力する単位セルを複数積
層して成る燃料電池において、前記リブ付電極の材料と
して高温で塩素ガス処理により高純度化したカーボン繊
維を用いるようにしたことを特徴とする燃料電池。
(1) Forming a fluid fuel flow path and a fluid oxidizer flow path in contact with a pair of electrodes containing an electrolyte, each of which includes a ribbed electrode having a function of diffusing the flowing fuel and fluid oxidizer into a reaction field; In a fuel cell formed by stacking a plurality of unit cells that output electrical energy under conditions where fuel and oxidizer are flowing through the flow path, carbon highly purified by chlorine gas treatment at high temperature is used as the material for the ribbed electrode. A fuel cell characterized by using fibers.
(2)塩素ガス処理により高純度化する温度が1500
〜2500℃であることを特徴とする特許請求の範囲第
(1)項記載の燃料電池。
(2) The temperature at which high purity is achieved by chlorine gas treatment is 1500
The fuel cell according to claim (1), characterized in that the temperature is 2500°C to 2500°C.
JP59253049A 1984-11-30 1984-11-30 Fuel cell Pending JPS61131369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59253049A JPS61131369A (en) 1984-11-30 1984-11-30 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59253049A JPS61131369A (en) 1984-11-30 1984-11-30 Fuel cell

Publications (1)

Publication Number Publication Date
JPS61131369A true JPS61131369A (en) 1986-06-19

Family

ID=17245769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59253049A Pending JPS61131369A (en) 1984-11-30 1984-11-30 Fuel cell

Country Status (1)

Country Link
JP (1) JPS61131369A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348740A (en) * 1999-06-08 2000-12-15 Ibiden Co Ltd Separator of solid high polymer type fuel cell and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348740A (en) * 1999-06-08 2000-12-15 Ibiden Co Ltd Separator of solid high polymer type fuel cell and its manufacture

Similar Documents

Publication Publication Date Title
US5292600A (en) Hydrogen power cell
JPS6047702B2 (en) Fuel cell assembly and its manufacturing method
WO2014109957A1 (en) Improved bipolar plate for flow batteries
JP3358222B2 (en) Activation method of polymer electrolyte fuel cell
JP5124900B2 (en) Fuel cell having a stack structure
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
US20040157111A1 (en) Fuel cell
JPS61131369A (en) Fuel cell
JP5132997B2 (en) Polymer electrolyte fuel cell
JPS61158668A (en) Fuel cell
JP3838403B2 (en) Phosphoric acid fuel cell
JPS6398965A (en) Fuel cell
JPS5927466A (en) Fuel cell
JPS59132572A (en) Fuel cell
JP2000348741A (en) Solid high-polymer type fuel cell
US20060240292A1 (en) Fuel cell
JPS59154771A (en) Fuel cell
JPS59154770A (en) Fuel cell
JPS6227503B2 (en)
JP2005190749A (en) Membrane electrode assembly for fuel cell, and solid polymer fuel cell using it
JPH11154521A (en) Fuel cell, fuel cell separator and its manufacture
JPS6398964A (en) Fuel cell
JPS6139455A (en) Fuel cell
JPS59154773A (en) Fuel cell
JPS59169077A (en) Fuel cell