JPS6227503B2 - - Google Patents

Info

Publication number
JPS6227503B2
JPS6227503B2 JP55182142A JP18214280A JPS6227503B2 JP S6227503 B2 JPS6227503 B2 JP S6227503B2 JP 55182142 A JP55182142 A JP 55182142A JP 18214280 A JP18214280 A JP 18214280A JP S6227503 B2 JPS6227503 B2 JP S6227503B2
Authority
JP
Japan
Prior art keywords
fluid
fuel
fuel cell
channel
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55182142A
Other languages
Japanese (ja)
Other versions
JPS57107569A (en
Inventor
Takeshi Kuwabara
Toshiaki Seki
Hiroshi Hayashi
Taichi Takechi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP55182142A priority Critical patent/JPS57107569A/en
Publication of JPS57107569A publication Critical patent/JPS57107569A/en
Publication of JPS6227503B2 publication Critical patent/JPS6227503B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 本発明は、燃料電池のセパレータおよびその製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cell separator and a method for manufacturing the same.

従来、燃料の有しているエネルギーを直接電気
的エネルギーに変換する装置として燃料電池が知
られている。この燃料電池は、通常、電解質を挾
んで一対の多孔質電極を配置するとともに、一方
の電極の背面に水素等の流体燃料を接触させ、ま
た、他方の電極の背面に酸素等の流体酸化剤を接
触させ、このときに起る電気化学反応を利用して
上記電極間から電気エネルギーを取り出すように
したものであり、前記燃料と酸化剤とが供給され
ている限り高い変換効率で電気エネルギーを取り
出すことができるものである。
2. Description of the Related Art Fuel cells are conventionally known as devices that directly convert energy contained in fuel into electrical energy. This fuel cell usually has a pair of porous electrodes sandwiching an electrolyte, a fluid fuel such as hydrogen is brought into contact with the back of one electrode, and a fluid oxidant such as oxygen is brought into contact with the back of the other electrode. The system uses the electrochemical reaction that occurs at this time to extract electrical energy from between the electrodes, and as long as the fuel and oxidizer are supplied, electrical energy can be extracted with high conversion efficiency. It is something that can be taken out.

ところで、上記のような原理に基づく特にリン
酸を電解質とした燃料電池の単位セルは通常第1
図a又はbに示すように構成されており、また、
この単位セルを複数個積層することによつて第2
図に示すように燃料電池装置全体を構成してい
る。
By the way, the unit cell of a fuel cell based on the above principle and using phosphoric acid as an electrolyte is usually
It is configured as shown in figure a or b, and
By stacking a plurality of these unit cells, the second
As shown in the figure, the entire fuel cell device is constructed.

すなわち、第1図aにおいて、単位セルは電解
質を含浸したマトリツクス1を挟んで両側に多孔
質体で形成された触媒が付加されている電極2,
3(通常炭素材から成る)を配置し、さらに両電
極2,3のマトリツクス1と反対側の背面にそれ
ぞれリブ4,5の付いたプレート6(一般にはグ
ラフアイトと熱硬化性樹脂の混合結着体から構成
される。以後インタコネクタと称する)を配置し
ている。上記インタコネクタ6の各電極2,3側
に位置する面には、それぞれ、リブ4,5によつ
て互いに直交するような向きに溝7,8が複数本
規則的に平行に設けてあり、これらの溝7,8は
それぞれ流体燃料および流体酸化剤の流路を構成
する。またインタコネクタ6の反対側の面にも同
様にリブ4,5によつて互いに直交するような向
きに隣接する単位セルにおける流体燃料および流
体酸化剤の流路に供される溝7,8が形成されて
いる。このようにマトリツクス1、電極2,3お
よびインタコネクタ6を積層し、この状態でイン
タコネクタ6の各溝7,8の両端開口だけを残し
て各積層端面部を気密にシールして単位セルを構
成している。
That is, in FIG. 1a, the unit cell includes electrodes 2, to which catalysts made of porous material are attached on both sides of a matrix 1 impregnated with an electrolyte.
3 (usually made of carbon material), and a plate 6 (generally made of a mixture of graphite and thermosetting resin) with ribs 4 and 5 on the back side of both electrodes 2 and 3 opposite to matrix 1, respectively. (hereinafter referred to as an interconnector) is arranged. On the surface of the interconnector 6 located on the side of each electrode 2, 3, a plurality of grooves 7, 8 are regularly provided in parallel in directions perpendicular to each other by ribs 4, 5, respectively. These grooves 7, 8 constitute flow paths for fluid fuel and fluid oxidant, respectively. Further, on the opposite side of the interconnector 6, grooves 7 and 8 are formed by ribs 4 and 5 to serve as flow paths for fluid fuel and fluid oxidizer in adjacent unit cells in a direction perpendicular to each other. It is formed. In this way, the matrix 1, electrodes 2, 3, and interconnector 6 are stacked, and in this state, the end faces of each stack are hermetically sealed, leaving only the openings at both ends of the grooves 7, 8 of the interconnector 6, to form a unit cell. It consists of

第1図aのように構成された単位セルは複数個
積層され、第2図に示すように積層体の1つの対
向する端面の一方に燃料供給口9を有したマニホ
ルド10と、他方に燃料排出口11を有したマニ
ホルド12とが当てがわれ、また、他の対向する
端面の一方に酸化剤供給口13を有したマニホル
ド14と他方に酸化剤排出口15を有したマニホ
ルド16とが当てがわれ、これらマニホルド1
0,12,14,16がボルト等で締付けられて
気密保持され、これによつて燃料電池装置17が
構成されている。したがつて、この燃料電池装置
17によると、燃料供給口9から流体燃料を供給
すると、この燃料は各単位セルの流路である複数
の溝7を分流して多孔性の電極2の背面に接しな
がら流れ、その後、燃料排出口11から排出され
る。また、酸化剤供給口13から流体酸化剤を供
給すると、この酸化剤は各単位セルの流路である
複数の溝8を分流して多孔性の電極3の背面に接
触しながら流れ、その後、酸化剤排出口15から
排出されることになりそのとき流体燃料と流体酸
化剤とはそれぞれ拡散によつて多孔性の電極2,
3内に供給され燃料電池としての電気エネルギー
を発生する。なお図では出力端子を省略してい
る。
A plurality of unit cells configured as shown in FIG. 1a are stacked, and as shown in FIG. A manifold 12 having a discharge port 11 is applied, and a manifold 14 having an oxidizing agent supply port 13 on one of the other opposing end faces and a manifold 16 having an oxidizing agent discharge port 15 on the other side are applied. We, these manifolds 1
0, 12, 14, and 16 are tightened with bolts or the like to maintain airtightness, thereby constructing a fuel cell device 17. Therefore, according to this fuel cell device 17, when fluid fuel is supplied from the fuel supply port 9, this fuel flows through the plurality of grooves 7, which are the flow paths of each unit cell, and is distributed to the back surface of the porous electrode 2. The fuel flows in contact with the fuel, and is then discharged from the fuel discharge port 11. Furthermore, when a fluid oxidant is supplied from the oxidizer supply port 13, this oxidant flows through the plurality of grooves 8, which are the flow paths of each unit cell, and flows while contacting the back surface of the porous electrode 3, and then, The fluid fuel and the fluid oxidant are discharged from the oxidizer outlet 15, and at that time, the fluid fuel and the fluid oxidizer are respectively diffused into the porous electrode 2,
3 and generates electrical energy as a fuel cell. Note that the output terminal is omitted in the figure.

しかしながら、従来の上記のように構成された
燃料電池にあつては次のような問題があつた。
However, the conventional fuel cell configured as described above has the following problems.

(1) インタコネクタの厚さが大きいので電気抵抗
が大きくなり電圧降下分が大きくなり出力電気
エネルギーの損失が大きくなる。
(1) Since the thickness of the interconnector is large, the electrical resistance increases, the voltage drop increases, and the loss of output electrical energy increases.

(2) インタコネクタの厚さが大きく、かつ密度が
大きい(約1.8g/cm3程度)ので燃料電池装置
の重量が大きい。
(2) Since the interconnector is thick and dense (approximately 1.8 g/cm 3 ), the weight of the fuel cell device is large.

(3) 自重が大きいため、その自重により劣化が促
進される。
(3) Since it has a large self-weight, its own weight accelerates deterioration.

以上の問題点に対する改良形として第1図bに
示すように構成された燃料電池単位セルが考えら
れている。すなわち、第1図bにおいて、18は
セパレータ、19はリブドサブストレートであ
る。第1図aと同じ作用を示すものは同じ番号で
示してある。すなわち第1図aに示すインタコネ
クタ6がセパレータ18とリブに分割構成され、
そのリブが電極2,3と夫々1体化されて、リブ
ドサブストレート19として構成されている。こ
の改良形の特徴は、セパレータ18が流体燃料と
流体酸化剤との混合を防止し、かつ単位セル積層
化の集電体としての役目をしている。この改良形
燃料電池は第1図aに示すインタコネクタを用い
た燃料電池に比較すると約半分に軽量化が達成さ
れる。
As an improvement over the above problems, a fuel cell unit cell constructed as shown in FIG. 1b has been considered. That is, in FIG. 1b, 18 is a separator and 19 is a ribbed substrate. Components having the same effect as in FIG. 1a are designated by the same numbers. That is, the interconnector 6 shown in FIG. 1a is divided into a separator 18 and a rib,
The ribs are integrated with the electrodes 2 and 3, respectively, to form a ribbed substrate 19. A feature of this improved version is that the separator 18 prevents mixing of the fluid fuel and fluid oxidizer and serves as a current collector for unit cell stacking. This improved fuel cell achieves a weight reduction of about half compared to the fuel cell using the interconnector shown in FIG. 1a.

しかし、セパレータ18の材料及びその製造方
法は従来のインタコネクタと同じ材料及びその製
法によるのが一般的である。従つて、500mm×500
mm以上の大きさのシート状のセパレータを形成す
ることは困難であり、その厚さも2mm以下でピン
ホールのないものにすることは技術的に困難であ
つた。
However, the material and manufacturing method for the separator 18 are generally the same as those for conventional interconnectors. Therefore, 500mm x 500
It is difficult to form a sheet-like separator with a size of mm or more, and it is technically difficult to form a separator with a thickness of 2 mm or less without pinholes.

本発明は、このような事情に鑑みてなされたも
ので、その目的とするところは、製造が簡単で、
1mm以下の厚さの薄いシート状に成形でき、比較
的電気伝導性が大きく、かつ軽量化を図つた燃料
電池のセパレータおよびその製造方法を提供する
ことにある。
The present invention has been made in view of the above circumstances, and its purpose is to be easy to manufacture,
An object of the present invention is to provide a fuel cell separator that can be formed into a thin sheet having a thickness of 1 mm or less, has relatively high electrical conductivity, and is light in weight, and a method for manufacturing the separator.

本発明の特徴とするところは、特殊なグラフア
イト原料から製造された膨張黒鉛をシート状に加
圧成形し、フエノール系樹脂ワニスを含浸させる
ようにしたことである。
A feature of the present invention is that expanded graphite produced from a special graphite raw material is pressure-molded into a sheet shape and impregnated with a phenolic resin varnish.

以下本発明の一実施例を図面を参照して更に詳
しく説明する。
An embodiment of the present invention will be described in more detail below with reference to the drawings.

第3図において、18はセパレータ、19はリ
ブドサブストレートで電極2とリブ4、電極3と
リブ5とを夫々一体化して構成されている。7,
8は夫々流体燃料流路および流体酸化剤流路を構
成する溝である。
In FIG. 3, 18 is a separator, and 19 is a ribbed substrate, which is constructed by integrating the electrode 2 and the rib 4, and the electrode 3 and the rib 5, respectively. 7,
8 are grooves forming a fluid fuel flow path and a fluid oxidizer flow path, respectively.

本発明の燃料電池におけるセパレータは次のよ
うな実施例により形成される。
The separator in the fuel cell of the present invention is formed by the following embodiment.

実施例 黒鉛層間化合物を950℃で急熱して膨大させた
膨張化黒鉛を50Kg/cm2の圧力で700mm×700mmの大
きさで0.4mmの厚さのシート状に加圧成形し、そ
の炭素シートにレゾールタイプのフエノール樹脂
ワニスを含浸させる。その後、150℃で5時間加
熱処理して得られた炭素シートは、ゲージ圧0.5
Kg/cm2条件下で水素ガスに対する通気性はなく、
厚さ方向の電気伝導性は0.02Ω以下で200℃、95
%リン酸中に1周間浸漬しても安定であつた。
Example: Expanded graphite made by rapidly heating a graphite intercalation compound at 950°C to expand it is pressure-molded into a sheet with a size of 700mm x 700mm and a thickness of 0.4mm at a pressure of 50Kg/ cm2 , and the resulting carbon sheet is impregnated with resol type phenolic resin varnish. Thereafter, the carbon sheet obtained by heat treatment at 150℃ for 5 hours has a gauge pressure of 0.5
There is no permeability to hydrogen gas under Kg/ cm2 conditions,
Electrical conductivity in the thickness direction is 0.02Ω or less at 200℃, 95
% phosphoric acid for one round.

本発明による燃料電池のセパレータによれば従
来のセパレータと同等の寿命を有するが、従来の
製造方法では不可能とされていた1mm以下の厚さ
のシートが容易に製造でき、したがつて、材料使
用量も減るため、セパレータの重量も従来の1/5
〜1/10(従来は700mm×700mm×3mmで約3Kgであ
つたが本発明によれば700mm×700mm×0.5mmで約
0.35Kgとなる)に低減化され、燃料電池の軽量化
を可能とし、かつ、オーム降下による熱損は低減
できるため結果的に燃料電池の熱効率の向上を図
れる。
The fuel cell separator according to the present invention has a lifespan equivalent to that of conventional separators, but it is possible to easily manufacture sheets with a thickness of 1 mm or less, which was considered impossible with conventional manufacturing methods. Since the amount used is reduced, the weight of the separator is also 1/5 of that of the conventional one.
~1/10 (Conventionally, it was 700mm x 700mm x 3mm and weighed about 3Kg, but according to the present invention, it weighs about 700mm x 700mm x 0.5mm and weighs about 3Kg.)
0.35Kg), making it possible to reduce the weight of the fuel cell, and also to reduce heat loss due to ohmic drop, resulting in an improvement in the thermal efficiency of the fuel cell.

以上説明したように本発明によれば、安価で簡
単な製造によつて大量生産が可能となり、オーム
降下による熱損失を低減でき、かつ、反応流体の
混合も防止され、かつ軽量化を図つた燃料電池の
セパレータおよびその製造方法を提供できる。
As explained above, according to the present invention, mass production is possible due to inexpensive and simple manufacturing, heat loss due to ohmic drop can be reduced, mixing of reaction fluids is prevented, and weight reduction is achieved. A fuel cell separator and a method for manufacturing the same can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは従来の燃料電池の単位セルを示
す分解斜視図、第2図は同セルを組込んだ従来の
燃料電池装置の外観図、第3図は本発明の一実施
例を示す分解斜視図である。 1……マトリツクス、2,3……電極、4,5
……リブ、6……インタコネクタ、7,8……
溝、18……セパレータ、19……リブドサブス
トレート。
Figures 1a and b are exploded perspective views showing a unit cell of a conventional fuel cell, Figure 2 is an external view of a conventional fuel cell device incorporating the same cell, and Figure 3 is an embodiment of the present invention. FIG. 1... Matrix, 2, 3... Electrode, 4, 5
...Rib, 6...Interconnector, 7,8...
Groove, 18... separator, 19... ribbed substrate.

Claims (1)

【特許請求の範囲】 1 電解質を含浸したマトリツクスを挟んで配置
された一対の電極に接するような流体燃料流路お
よび流体酸化剤流路を形成し、各流路に燃料およ
び酸化剤を流通させて電気エネルギーを出力する
単位セルを前記流体燃料流路と流体酸化剤流路と
が交互になるように積層し、この状態で対向する
流路の間に設けられ流体燃料と流体酸化剤との混
合を防止するシート状をした燃料電池のセパレー
タにおいて、前記セパレータを黒鉛層間化合物を
急熱膨張させた膨張化黒鉛を加工成形して炭素シ
ートを形成しこの炭素シートにフエノール系樹脂
ワニスを含浸したことを特徴とする燃料電池のセ
パレータ。 2 炭素シートの厚さが0.1mmから0.8mmの範囲に
あることを特徴とする特許請求の範囲第1項記載
の燃料電池のセパレータ。 3 炭素シートの密度が1.3g/cm3から1.7g/cm3
の範囲にあることを特徴とする特許請求の範囲1
項乃至第2項記載の燃料電池のセパレータ。 4 電解質を含浸したマトリツクスを挟んで配置
された一対の電極に接するような流体燃料流路お
よび流体酸化剤流路を形成し、各流路に燃料およ
び酸化剤を流通させて電気エネルギーを出力する
単位セルを前記流体燃料流路と流体酸化剤流路と
が交互になるように積層し、この状態で対向する
流路の間に設けられ流体燃料と流体酸化剤との混
合を防止するシート状をした燃料電池のセパレー
タの製造方法において、黒鉛層間化合物を900℃
〜1000℃の温度で急熱するかまたは薬品加熱処理
して膨張させた膨張化黒鉛を0.1〜2mmの範囲の
厚さに加圧成形することを特徴とする燃料電池の
セパレータの製造方法。
[Scope of Claims] 1. A fluid fuel channel and a fluid oxidant channel are formed so as to be in contact with a pair of electrodes arranged with an electrolyte-impregnated matrix sandwiched therebetween, and the fuel and oxidant are caused to flow through each channel. The unit cells that output electrical energy are stacked so that the fluid fuel flow path and the fluid oxidizer flow path are alternately stacked, and in this state, the unit cells that are provided between the opposing flow paths and the fluid fuel and fluid oxidizer flow paths are stacked. In a sheet-shaped fuel cell separator that prevents mixing, the separator is formed by processing and molding expanded graphite obtained by rapidly expanding a graphite intercalation compound to form a carbon sheet, and this carbon sheet is impregnated with a phenolic resin varnish. A fuel cell separator characterized by: 2. The fuel cell separator according to claim 1, wherein the carbon sheet has a thickness in the range of 0.1 mm to 0.8 mm. 3 The density of the carbon sheet is 1.3g/cm 3 to 1.7g/cm 3
Claim 1 characterized in that it falls within the scope of
A separator for a fuel cell according to items 1 to 2. 4. Form a fluid fuel channel and a fluid oxidant channel in contact with a pair of electrodes arranged with an electrolyte-impregnated matrix in between, and output electrical energy by flowing fuel and oxidant through each channel. The unit cells are stacked so that the fluid fuel flow path and the fluid oxidizer flow path are alternately stacked, and in this state, a sheet-shaped sheet is provided between the opposing flow paths to prevent mixing of the fluid fuel and the fluid oxidizer. In the method for manufacturing fuel cell separators, graphite intercalation compounds are heated to 900°C.
1. A method for producing a fuel cell separator, which comprises press-molding expanded graphite expanded by rapid heating at a temperature of ~1000°C or chemical heat treatment to a thickness in the range of 0.1 to 2 mm.
JP55182142A 1980-12-24 1980-12-24 Fuel cell and its manufacture Granted JPS57107569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55182142A JPS57107569A (en) 1980-12-24 1980-12-24 Fuel cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55182142A JPS57107569A (en) 1980-12-24 1980-12-24 Fuel cell and its manufacture

Publications (2)

Publication Number Publication Date
JPS57107569A JPS57107569A (en) 1982-07-05
JPS6227503B2 true JPS6227503B2 (en) 1987-06-15

Family

ID=16113078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55182142A Granted JPS57107569A (en) 1980-12-24 1980-12-24 Fuel cell and its manufacture

Country Status (1)

Country Link
JP (1) JPS57107569A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1259101A (en) * 1984-04-09 1989-09-05 Hiroyuki Fukuda Carbonaceous fuel cell electrode substrate incorporating three-layer separator, and process for preparation thereof
US4794043A (en) * 1985-04-30 1988-12-27 Kureha Kagaku Kogyo Kabushiki Kaisha Carbon product comprising carbonaceous materials joined together, said carbon product for electrode substrate of fuel cells and process for production thereof
JP4650673B2 (en) * 2004-12-14 2011-03-16 東海カーボン株式会社 Separator material for fuel cell and manufacturing method thereof

Also Published As

Publication number Publication date
JPS57107569A (en) 1982-07-05

Similar Documents

Publication Publication Date Title
US6635378B1 (en) Fuel cell having improved condensation and reaction product management capabilities
EP1107339B1 (en) Flow channels in current collecting plates of fuel cells
US6207310B1 (en) Fuel cell with metal screen flow-field
US6261710B1 (en) Sheet metal bipolar plate design for polymer electrolyte membrane fuel cells
KR100949423B1 (en) Fuel Cell
EP1222703B1 (en) Fuel cell and bipolar plate for use with same
US5342706A (en) Fully internal manifolded fuel cell stack
US8003273B2 (en) Polymer electrolyte fuel cell and fuel cell sealing member for the same
WO2024037530A1 (en) Fuel cell
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
US20040265675A1 (en) Fuel Cell Flow Field Design
JPH1012262A (en) Solid high polymer electrolyte fuel cell
JPS6227503B2 (en)
JP4642975B2 (en) Polymer electrolyte fuel cell system
US8460840B2 (en) Separator for fuel cell and fuel cell comprising the same
JPH0249640Y2 (en)
KR100488723B1 (en) A bipolar plate for fuel cell comprising prominence and depression type gas flow channel
JPS59154771A (en) Fuel cell
CN2718795Y (en) Fuel cell with higher operating stability
JPS6398965A (en) Fuel cell
CN2607670Y (en) Fuel cell stack suitable for batch production and mounting
JPS59169077A (en) Fuel cell
JPS6398964A (en) Fuel cell
JP2007157667A (en) Fuel cell
JPH0696781A (en) Solid polymer electrolytic fuel cell