JPS61131253A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPS61131253A
JPS61131253A JP59252705A JP25270584A JPS61131253A JP S61131253 A JPS61131253 A JP S61131253A JP 59252705 A JP59252705 A JP 59252705A JP 25270584 A JP25270584 A JP 25270584A JP S61131253 A JPS61131253 A JP S61131253A
Authority
JP
Japan
Prior art keywords
layer
recording layer
recording
alloy
body layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59252705A
Other languages
Japanese (ja)
Inventor
Toshiteru Kaneko
寿輝 金子
Ryuji Watanabe
隆二 渡辺
Tetsuo Minemura
哲郎 峯村
Hisashi Ando
寿 安藤
Yoshihira Maeda
佳均 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59252705A priority Critical patent/JPS61131253A/en
Priority to US06/801,950 priority patent/US4651172A/en
Priority to CA000496335A priority patent/CA1238489A/en
Priority to EP85308665A priority patent/EP0186329B1/en
Priority to DE8585308665T priority patent/DE3583599D1/en
Priority to KR1019850008929A priority patent/KR920001263B1/en
Publication of JPS61131253A publication Critical patent/JPS61131253A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24304Metals or metalloids group 2 or 12 elements (e.g. Be, Ca, Mg, Zn, Cd)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00454Recording involving phase-change effects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To prevent the strains of a recording body layer even when the recording body layer is thin and to improve writing and erasing characteristics by providing a strain relieving layer in the recoding body layer between a substrate and the recording body layer in the titled optical recoding medium wherein recording, reproducing, and erasing are possible. CONSTITUTION:Strains are generated in a recording body layer 2, when the film of the layer is formed. To relieve the strains, a metallic film contg. 35wt% Ag and the remainder of Zn is formed on a glass substrate 5 by sputtering as a strain relieving layer 4, and a layer of a Zn alloy contg. 37.5-40wt% Ag is formed thereon as the recording body layer 2 by sputtering. A protective layer film 1 is coated on the layer 2. The recording body layer is thus freed of strains, hence the phase transforming behavior of the recording body layer is normalized, and the writing and erasing is made possible even with a thin film. Accordingly, the writing and erasing characteristics can be improved. Besides, the instability of the phase due to aging at room temp. can be eliminated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は消去と書き替えが可能な高密度光記録媒体に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an erasable and rewritable high-density optical recording medium.

〔発明の背景〕[Background of the invention]

光記録合金は高温の固体状態から急冷によって室温での
平衡相とは異なる結晶構造を形成する金属または合金で
あシ、この合金を基板上に蒸着し薄膜の状態で用いるこ
とによシ、レーザを利用して高密度の光記録媒体として
用いることができる。
Optical recording alloys are metals or alloys that, when rapidly cooled from a high-temperature solid state, form a crystal structure different from the equilibrium phase at room temperature. can be used as a high-density optical recording medium.

しかし記録層である光記録合金を薄膜化する際この薄膜
中には種々の残留歪が残ってしまう。光記録合金は無負
荷状態ならば正常な相変態挙動を示し、情報記録媒体と
して用いることができるが、ある−元以上歪んでいる場
合には正常な相変態をせずに光記録層として用いること
ができない。例えば光記録層としてAg−40重量%Z
n合金を用いた場合、平衡相はζ相であり、これをレー
ザで加熱急冷することにより準安定相であるβ′相を形
成することによって情報を記録するのであるが、合金膜
が80nm以下だと記録層に歪みが入シ、β′相が安定
な状態になってしまい、情報の記録が不可能になってし
甘う。ところが膜厚は簿い程相変態を起こすのに必要な
熱量が少なくてすむため、書込、消去特性が向上するの
で膜厚は薄い程良いという矛盾がある。−!たAg−(
35〜40重量%)Zn合金を加工して歪を加えた場合
、35重量%Znでは遅く、40重量%Znでは速いと
いう違いはあるが室温でζ相からβ′相への変態が起こ
ってしまい(’1rrans、 Met、Soc。
However, when thinning the optical recording alloy that is the recording layer, various residual strains remain in the thin film. Optical recording alloys exhibit normal phase transformation behavior when under no load and can be used as information recording media, but if they are distorted by more than a certain amount, they do not undergo normal phase transformation and can be used as optical recording layers. I can't. For example, as an optical recording layer, Ag-40% by weight Z
When an n-alloy is used, the equilibrium phase is the ζ phase, and information is recorded by heating and rapidly cooling this with a laser to form a metastable β' phase. However, if the alloy film is 80 nm or less If this happens, distortion will occur in the recording layer, and the β' phase will become stable, making it impossible to record information. However, there is a contradiction in that the thinner the film, the smaller the amount of heat required to cause phase transformation, which improves writing and erasing characteristics, so the thinner the film, the better. -! Ag-(
When a Zn alloy (35 to 40% by weight) is processed and strained, the transformation from ζ phase to β' phase occurs at room temperature, although the difference is that it is slow with 35% Zn and fast with 40% Zn. Shima ('1rrans, Met, Soc.

AIME Vol、 242 July 1968参照
)、記録層として用いた時、室温での経時変化が起こっ
てしまう。
AIME Vol., 242 July 1968), when used as a recording layer, changes occur over time at room temperature.

〔発明の目的〕[Purpose of the invention]

本発明は結晶量相変態に伴なう光学的特性の変化を利用
した光記録媒体において、書込消去特性が向上し、しか
も消去部の相安定性の優れた光記録媒体を提供するもの
である。
The present invention provides an optical recording medium that utilizes changes in optical properties due to crystalline phase transformation, which has improved writing/erasing characteristics and excellent phase stability in the erasing section. be.

〔発明の概要〕[Summary of the invention]

本発明は記録体層と基板との間に記録体層の薄膜作製時
に発生する歪の緩和を目的とした層を入れたものであシ
、これによって記録体層を無歪の状態にできる。無歪状
態にすることによって記録体層の相変態挙動を正常にし
、より薄い膜でも書込、消去が可能となり、従って書込
、消去特性を向上させることができる。また室温時効に
よる相の不安定性も解消することができる。
In the present invention, a layer is provided between the recording layer and the substrate for the purpose of alleviating the strain generated during the production of the thin film of the recording layer, thereby making it possible to make the recording layer in a strain-free state. By creating a strain-free state, the phase transformation behavior of the recording layer is normalized, and writing and erasing can be performed even with a thinner film, thereby improving the writing and erasing characteristics. It is also possible to eliminate phase instability caused by room temperature aging.

記録体の薄膜化はスパッタリング法によって行なうが、
通常基板に蒸着した記録体の粒子の再配列または回復を
促すために基板温度は200Cで行なっている。しかし
200Cの基板で薄膜化した記録体層はスパッタリング
終了後室温に冷却する過程において基板との熱膨張係数
の差による熱応力を受ける。基板の弾性定数の方が記録
体層の弾性定数より高い場合には基板と記録体層との間
に熱応力が働くと記録体層が変形し、歪が生じる。
The thinning of the recording medium is done by sputtering method.
Usually, the substrate temperature is 200C to promote rearrangement or recovery of particles of the recording material deposited on the substrate. However, the recording layer formed into a thin film using a 200C substrate is subjected to thermal stress due to the difference in coefficient of thermal expansion with the substrate during the process of cooling to room temperature after sputtering. When the elastic constant of the substrate is higher than that of the recording layer, the recording layer is deformed and strain occurs when thermal stress acts between the substrate and the recording layer.

したがってこの熱応力による記録体層中の歪を除去する
ためには、熱膨張係数が記録体層と同程度か、違ってい
る場合には、はるかに弾性定数の小さい層を基板と記録
体層との間にはさむか、負荷されている応力とそれによ
って発生する歪に対して変態挙動が鈍感な記録体層を用
いなければならない。記録体層が合金である場合、適当
な歪除去膜としては同様の物性値を持つ金属が挙げられ
る。
Therefore, in order to remove the strain in the recording layer due to this thermal stress, if the coefficient of thermal expansion is the same as that of the recording layer, or if it is different, a layer with a much smaller elastic constant should be used as the substrate and the recording layer. A recording layer whose transformation behavior is insensitive to the applied stress and the resulting strain must be used. When the recording layer is an alloy, suitable strain relief films include metals having similar physical properties.

しかし金属を歪除去膜として用いると、記録体層である
合金層との相互拡散による反応が起こシ得ることに注意
しなければならない。そこでこのような反応が起こり得
る場合には歪緩和層と記録体層の間にごく薄い酸化物層
をはさむことによって両者の拡散、反応を防止しつつ記
録体層の歪緩和を行なうことができる。
However, it must be noted that when metal is used as the strain relief film, a reaction may occur due to interdiffusion with the alloy layer that is the recording layer. Therefore, if such a reaction is likely to occur, by sandwiching a very thin oxide layer between the strain relaxation layer and the recording layer, it is possible to prevent the diffusion and reaction between the two while relaxing the strain on the recording layer. .

一方歪緩和膜として金属又は合金であpl しかも記録
体層とは反応しないような高融点金属を用いることによ
って記録体層の歪を緩和することができる。
On the other hand, the strain in the recording layer can be alleviated by using a high melting point metal that is a metal or an alloy and does not react with the recording layer as the strain relaxation film.

また歪緩和層として記録体層と同種の合金系で歪に対し
て鈍感な組成のものを用いることによって記録体層の歪
緩和を行なうことができる。特にAg−Zn系合金を記
録体層として用いる場合stoichiometry 
(Ag −50原子%Z寒)に近いAg−(37,5〜
40重量%)7n合金の方がよ、j)Agrich側の
組成よりも記録体としては適している。これはまず見た
目の色変化の度合いもstoichiometryに近
い方が大きい。また消却時の結晶の相変態であるβ′→
ζ相変態はリング拡散機構に律速されておムこのリング
拡散機構は通常の空孔を媒介とした拡散と違って結晶構
造が整っている程拡散が速くなる。一方A g−Z n
合金においてはstoichiometry組成が最も
整った結晶構造であり、この組成からずれてAg−ri
chになるにつれてZnの空孔が多くなるためにリング
拡散は起こりにくくなってくる。従って記録体層として
ばAg −(37,5〜40重量%)Zn合金が適して
いるのだが、この組成範囲では応力に対して敏感であり
、ある程度の歪がかかるとβ′相が安定になってしまう
。一方stoichiometry組成からAg−r 
i chに寄っているAg−(30〜35重量%)Zn
合金は上記の理由で変態速度は遅く、かつζ相の方がよ
り安定であるため記録層のβ′相が経時変化でζに戻っ
ていくという欠点があった。そこでAg又はAg−35
重量%Z 11合金を歪緩和層とし、その上に記録体層
としてAg −(37,5−40重量%)Zn合金を用
いることによって書込、消去特性の優れた光記録媒体と
なる。
Furthermore, by using a strain-relaxing layer made of the same alloy system as the recording layer and having a composition that is insensitive to strain, the strain of the recording layer can be relaxed. Especially when Ag-Zn alloy is used as the recording layer, stoichiometry
Ag-(37,5~
40% by weight) 7n alloy is more suitable as a recording medium than the composition on the j) Agrich side. First of all, the degree of color change in appearance is greater when it is closer to stoichiometry. Also, β′→ which is the phase transformation of the crystal during extinction
The rate of zeta-phase transformation is determined by the ring diffusion mechanism. Unlike ordinary diffusion mediated by holes, the ring diffusion mechanism is different from ordinary diffusion mediated by pores, and the better the crystal structure is, the faster the diffusion becomes. On the other hand, A g-Z n
In alloys, the stoichiometry composition is the most ordered crystal structure, and Ag-ri deviates from this composition.
As the channel increases, the number of Zn vacancies increases, making ring diffusion less likely to occur. Therefore, Ag-(37.5-40% by weight) Zn alloy is suitable for the recording layer, but this composition range is sensitive to stress, and the β' phase becomes stable when a certain amount of strain is applied. turn into. On the other hand, from the stoichiometric composition, Ag-r
Ag-(30-35% by weight) Zn near i ch
For the reasons mentioned above, the alloy has a slow transformation rate, and since the ζ phase is more stable, the β' phase of the recording layer returns to ζ over time. Therefore, Ag or Ag-35
An optical recording medium with excellent writing and erasing characteristics can be obtained by using a Z11 alloy as a strain relaxation layer and using an Ag-(37.5-40% by weight) Zn alloy as a recording layer thereon.

〔発明の実施例〕[Embodiments of the invention]

実施例1 透明ガラス基板上にAg−40重量%Znを基本ルミ 盤温度200Cで7Qnmスパッタリング法によ)仄 って記録体層を作製したが、基盤を室温域で下げる間に
β′相に相変態してし1い、消去に相当する熱処理を行
なってもζ相にならず消去できなか坂 った。そこでガラス基盤上にAAまたはCr層を200
〜400 nm蒸着またはスパッタリングによシ作製し
た。さらにこの上にlQnm〜20nm程度のAt20
3、またはCroX層をスパッタリングによって積層し
、この上からAg−37,5〜40重量%Znを50〜
1100n積層し、更に保護層を積層した。このような
膜構成にすることによって50nm〜70nm程度の膜
厚でも消去状態のζ相にすることができた。この膜構成
を第1図に示す。第1図において、符号1は膜厚200
〜500nmの保護膜層、2は膜厚50〜1100nの
記録体層、3は膜厚10〜20nmの反応防止層、4は
膜厚200〜5QQnmの歪緩和層、5はガラス基板で
ある。
Example 1 A recording layer was prepared on a transparent glass substrate by sputtering Ag-40% by weight Zn at a basic luminescent temperature of 200 C using a 7Q nm sputtering method. After phase transformation, even if heat treatment equivalent to erasing was performed, the phase did not change to ζ phase, and erasing could not be performed. Therefore, a 200% AA or Cr layer was placed on the glass substrate.
~400 nm evaporation or sputtering. Furthermore, on top of this, At20 of about 1Qnm to 20nm
3, or a CroX layer is laminated by sputtering, and on top of this, 50 to 40% by weight of Zn is added to Ag-37, 5 to 40% by weight.
1100n was laminated, and a protective layer was further laminated. By adopting such a film configuration, it was possible to form the ζ phase in the erased state even with a film thickness of about 50 nm to 70 nm. This membrane structure is shown in FIG. In FIG. 1, numeral 1 indicates a film thickness of 200
2 is a recording layer with a thickness of 50 to 1100 nm, 3 is a reaction prevention layer with a thickness of 10 to 20 nm, 4 is a strain relaxation layer with a thickness of 200 to 5 QQ nm, and 5 is a glass substrate.

実施例2 ガラス基板上に歪緩和層としてAg−Zn系合金、特に
Znと反応しないような金属層としてMOまたはWを1
00〜200nmスパッタしてその上にAg−37,5
〜40重量%Znを50〜1100nスパツタしたが正
常な消去状態に相当するζ相となり、歪の緩和によシ薄
い記録層でも消去状態を安定に存在させることができる
ようになった。この膜構成を第2図に示す。
Example 2 An Ag-Zn alloy was formed as a strain relaxation layer on a glass substrate, in particular MO or W was added as a metal layer that did not react with Zn.
00~200nm sputtering and Ag-37,5 on top.
~40 wt % Zn was sputtered for 50 to 1100 nm, resulting in a ζ phase corresponding to a normal erased state, and it became possible to stably exist an erased state even in a thin recording layer due to relaxation of strain. This membrane structure is shown in FIG.

実施例3 ガラス基板上に歪緩和層としてA、 g −Z n系の
合金のうち歪に対して鈍感な組成を20〜3Qnmスパ
ッタし、更にその上から記録体層としてAg−37,5
〜40重量%7.nのどれかをスパッタリングによって
50〜80nm作製して、その上に保護膜をかぶせた。
Example 3 A 20 to 3 Q nm of A, g-Zn alloy, which is insensitive to strain, was sputtered as a strain relaxation layer on a glass substrate, and then Ag-37,5 was further sputtered on top of it as a recording layer.
~40% by weight7. A film of 50 to 80 nm was formed by sputtering, and a protective film was placed thereon.

この膜構成を第3図に示す。This membrane structure is shown in FIG.

このような膜構成にすることによって薄膜化における記
録体層中の歪を緩和して、優れた記録、消去特性を得る
ことができる。
By adopting such a film structure, strain in the recording layer due to thinning can be alleviated, and excellent recording and erasing characteristics can be obtained.

本発明の光記録媒体は記録、再生そして消却可能な光記
録媒体において記録体層と基板との間に記録体層中の歪
緩和層を設けたものである。このようにすることによっ
て、記録体層が薄くても記録体層に歪が導入されるのを
防ぎ、歪に敏感な組成の記録体層の7 Qnm以下の薄
膜化を可能にすることによって書込、消去特性を、速め
ることができる。
The optical recording medium of the present invention is an optical recording medium that can be recorded, reproduced, and erased, and a strain relaxation layer in the recording layer is provided between the recording layer and the substrate. By doing this, even if the recording layer is thin, distortion is prevented from being introduced into the recording layer, and the recording layer having a strain-sensitive composition can be made thinner than 7 Qnm, thereby making it possible to write. The embedding and erasing characteristics can be accelerated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は歪緩和層と反応防止層を組みあわせた例を示す
断面図、第2図は記録体層と反応しない歪緩和層を用い
た例を示す断面図、第3図は歪緩和層に記録体層と同種
で歪に鈍感な層を用いた例を示す断面図である。 1・・・保護膜層、2・・・記録体層、3・・・反応防
止層、4・・・歪緩和層、5・・・ガラス基板。
Figure 1 is a cross-sectional view showing an example in which a strain relaxation layer and a reaction prevention layer are combined, Figure 2 is a cross-sectional view showing an example in which a strain relaxation layer that does not react with the recording layer is used, and Figure 3 is a strain relaxation layer. FIG. 3 is a cross-sectional view showing an example in which a layer of the same type as the recording layer and insensitive to strain is used. DESCRIPTION OF SYMBOLS 1... Protective film layer, 2... Recording layer, 3... Reaction prevention layer, 4... Strain relaxation layer, 5... Glass substrate.

Claims (1)

【特許請求の範囲】 1、光エネルギーによつて状態を変化させ、それにもと
づく光学的特性の変化を利用して情報を記録、再生、消
去可能な光記録媒体において、記録体層と基板の間に記
録層の歪緩和層を有し、前記記録体層は高温の固体状態
から急冷による相変態で室温での平衡相とは異なる結晶
構造を形成する金属又は合金からなることを特徴とする
光記録媒体。 2、前記歪緩和層として、弾性定数、熱膨張係数が記録
体層とほぼ同程度の金属層を有するか、または上記金属
層上に薄い酸化物層を有することを特徴とする特許請求
の範囲第1項記載の光記録媒体。 3、前記歪緩和層として、上記記録体層の金属又は合金
成分と反応しない金属層を有することを特徴とする特許
請求の範囲第1項記載の光記録媒体。 4、前記歪緩和層としてAg又はAg−35重量%Zn
合金の金属膜を有し、上記記録体層としてAg−(37
.5〜40重量%)Zn合金層を有することを特徴とす
る特許請求の範囲第1項記載の光記録媒体。
[Claims] 1. In an optical recording medium whose state can be changed by light energy and information can be recorded, reproduced, and erased by using the change in optical properties based on the change, there is a structure between the recording layer and the substrate. The recording layer has a strain relaxation layer, and the recording layer is made of a metal or an alloy that forms a crystal structure different from an equilibrium phase at room temperature through phase transformation by rapid cooling from a high-temperature solid state. recoding media. 2. Claims characterized in that the strain relaxation layer has a metal layer whose elastic constant and coefficient of thermal expansion are approximately the same as those of the recording layer, or has a thin oxide layer on the metal layer. The optical recording medium according to item 1. 3. The optical recording medium according to claim 1, wherein the strain relaxation layer includes a metal layer that does not react with the metal or alloy component of the recording layer. 4. Ag or Ag-35% by weight Zn as the strain relaxation layer
It has a metal film of an alloy, and the recording layer is made of Ag-(37
.. The optical recording medium according to claim 1, characterized in that it has a Zn alloy layer (5 to 40% by weight).
JP59252705A 1984-11-29 1984-11-29 Optical recording medium Pending JPS61131253A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59252705A JPS61131253A (en) 1984-11-29 1984-11-29 Optical recording medium
US06/801,950 US4651172A (en) 1984-11-29 1985-11-26 Information recording medium
CA000496335A CA1238489A (en) 1984-11-29 1985-11-27 Information recording medium
EP85308665A EP0186329B1 (en) 1984-11-29 1985-11-28 Information recording medium
DE8585308665T DE3583599D1 (en) 1984-11-29 1985-11-28 INFORMATION RECORDING MEDIUM.
KR1019850008929A KR920001263B1 (en) 1984-11-29 1985-11-29 Recording and removing method of information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59252705A JPS61131253A (en) 1984-11-29 1984-11-29 Optical recording medium

Publications (1)

Publication Number Publication Date
JPS61131253A true JPS61131253A (en) 1986-06-18

Family

ID=17241099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59252705A Pending JPS61131253A (en) 1984-11-29 1984-11-29 Optical recording medium

Country Status (1)

Country Link
JP (1) JPS61131253A (en)

Similar Documents

Publication Publication Date Title
US6120890A (en) Magnetic thin film medium comprising amorphous sealing layer for reduced lithium migration
JPH03173958A (en) Magneto-optical disk
JPS61131253A (en) Optical recording medium
JPH0451963B2 (en)
JPS62281139A (en) Magneto-optical disk
KR930004333B1 (en) Optical information recording material
JPH0773435A (en) Magnetic recording medium and its production
JPS61216125A (en) Production of magnetic recording medium
JPS62159341A (en) Magnetic recording film
JP2704186B2 (en) Magneto-optical storage medium
JP3116430B2 (en) Method for manufacturing magneto-optical recording medium
JP2723905B2 (en) Manufacturing method of information recording material
JPH0699769B2 (en) Thermal stability High magnetic flux density amorphous alloy
JPH04290793A (en) Phase variation-type recording material and its manufacture
JPH0773438A (en) Magnetic recording medium and its production
JPS62109935A (en) Alloy having variable spectral reflectance
JPS6190324A (en) Vertical magnetic recording medium
JPS61134294A (en) Information recording medium
JPS61190030A (en) Alloy having variable spectral reflectance and recording material
JPS62104111A (en) Soft magnetic thin film
JPS61131254A (en) Optical information recording medium
JPS62278091A (en) Optical recording medium
JPS61190033A (en) Alloy having variable spectral reflectance and recording material
JPH0773436A (en) Magnetic recording medium and its production
JPS62217441A (en) Production of substrate for optical recording carrier